Lemma. Let C and D be two closed and unbounded \mathcal{M} -classes in \mathbb{O} and $f: \mathbb{O} \to \mathbb{O}$ be an \mathcal{M} -class function. Then the following hold:

- (1) $C \cap D$ is closed and unbounded in \mathbb{O} .
- (2) $C_f = \{ \alpha \in \mathbb{O} : f(\gamma) < \alpha \text{ for all } \gamma < \alpha \}$ is closed and unbounded in \mathbb{O} .

Proof. (1) Clearly, $C \cap D$ is closed in \mathbb{O} .

To verify that it is unbounded in \mathbb{O} choose $\varepsilon \in \mathbb{O}$. Since C and D are both unbounded we can recursively construct two sequences $\langle \gamma_{\alpha} \rangle_{\alpha < \omega}$ in C and $\langle \delta_{\alpha} \rangle_{\alpha < \omega}$ in D with the property $\varepsilon \leq \gamma_{\alpha} \leq \delta_{\alpha} \leq \gamma_{\alpha+\underline{1}}$ for all $\alpha < \omega$. Then $\varepsilon \leq \bigsqcup_{\alpha < \omega} \gamma_{\alpha} = \bigsqcup_{\alpha < \omega} \delta_{\alpha} \in C \cap D$.

(2) For all $X \sqsubseteq C_f$ and $\gamma < \bigsqcup X$ there is $\alpha \vDash X$ with $\gamma < \alpha$, so $f(\gamma) < \alpha \le \bigsqcup X$, hence $\bigsqcup X \in C_f$. This shows that C_f is closed in \mathbb{O} .

To prove unboundedness of C_f choose $\varepsilon \in \mathbb{O}$. Then $\varepsilon \leq \alpha \in C_f$ where $\alpha = \bigsqcup_{\beta < \omega} \eta_{\beta}$ with $\langle \eta_{\beta} \rangle_{\beta < \omega}$ recursively defined as $\eta_{\underline{0}} = \varepsilon$ and $\eta_{\beta+\underline{1}} = \bigsqcup_{\gamma < \eta_{\beta}} f(\gamma) + \underline{1}$ for all $\beta < \omega$. Indeed, for all $\gamma < \alpha$ there is some $\beta < \omega$ with $\gamma < \eta_{\beta}$ such that $f(\gamma) < \eta_{\beta+\underline{1}} \leq \alpha$.

1. In order to be able to use structural induction on π , we will prove more generally for all S^{Set} -formulas π (instead of only for sentences) the existence of a closed and unbounded \mathcal{M} -class C_{π} in \mathbb{O} such that for every $\alpha \in C_{\pi}$

$$\mathcal{M}|_{\mathbb{V}} \models \pi\left[\vec{x}/\vec{X}\right] \Leftrightarrow \mathcal{M}|_{\mathbb{V}_{\alpha}} \models \pi\left[\vec{x}/\vec{X}\right] \text{ for all } \vec{X} = (X_1, \dots, X_n) \in \mathbb{V}_{\alpha}^n,$$

where the tuple $\vec{x} = (x_1, \ldots, x_n)$ consists of the distinct free variables of π .

If π is atomic, we can take $C_{\pi} = \mathbb{O}$.

If $\pi = (\varphi \to \psi)$, we can take $C_{\pi} = C_{\varphi} \cap C_{\psi}$.

If $\pi = \bigwedge_x \varphi$, consider the \mathcal{M} -class function $f: \mathbb{O} \to \mathbb{O}$ defined as

$$f(\gamma) = \bigsqcup \left[\alpha_{\vec{X}} : \vec{X} \in \mathbb{V}_{\gamma}^{n} \right]$$

where – using the convention $\min \emptyset = \underline{0}$ –

$$\alpha_{\vec{X}} = \min\left\{\alpha \in \mathbb{O} : \mathcal{M}|_{\mathbb{V}} \not\vDash \varphi\left[(\vec{x}, x) / (\vec{X}, X)\right] \text{ for some } X \in \mathbb{V}_{\alpha}\right\}.$$

The lemma and the fact that \mathbb{O}_{lim} is closed and unbounded in \mathbb{O} imply that

$$C_{\pi} = \{ \alpha \in \mathbb{O}_{\lim} \cap C_{\varphi} : f(\gamma) < \alpha \text{ for all } \gamma < \alpha \}$$

is closed and unbounded in \mathbb{O} . It remains to check the equivalence \Leftrightarrow claimed above. Here, \Rightarrow follows from $\mathbb{V}_{\alpha} \subseteq \mathbb{V}$ and $\alpha \in C_{\varphi}$. To verify \Leftarrow assume $\mathcal{M}|_{\mathbb{V}} \not\models \pi \left[\vec{x}/\vec{X}\right]$. Then there is $X \in \mathbb{V}_{\alpha_{\vec{x}}}$ such that

$$\mathcal{M}|_{\mathbb{V}} \not\vDash \varphi \left[(\vec{x}, x) / (\vec{X}, X) \right].$$

Now, $\alpha \in \mathbb{O}_{\lim}$ and $\underline{n} < \omega$ ensures $\vec{X} \in \mathbb{V}^n_{\gamma}$ for some $\gamma < \alpha$. From $\alpha_{\vec{X}} \leq f(\gamma) < \alpha$ we get $\mathbb{V}_{\alpha_{\vec{X}}} \subseteq \mathbb{V}_{\alpha}$ and therefore $X \in \mathbb{V}_{\alpha}$. Finally, $\alpha \in C_{\varphi}$ implies

$$\mathcal{M}|_{\mathbb{V}_{\alpha}} \not\models \varphi \lfloor (\vec{x}, x) / (\vec{X}, X) \rfloor,$$

which shows $\mathcal{M}|_{\mathbb{V}_{\alpha}} \not\models \pi \left[\vec{x} / \vec{X} \right]$.

2.

(a) The "only if" part holds since $\operatorname{rk}_{C,\prec}$ is \prec -ranking. For the "if" part let $r: C \to \mathbb{O}$ be a \prec -ranking \mathcal{M} -class function. Then, for every non-empty \mathcal{M} -class $D \subseteq C$, every element $X \in D$ with $r(X) = \min_{\prec} r(D)$ is \prec -minimal in D.

(b) Let us first check that $rk = rk_{C,\prec}$ has this property. If it hadn't, the \mathcal{M} -class

 $\{Y \in C : \text{there is } \alpha < \operatorname{rk}(Y) \text{ such that } \operatorname{rk}(X) \neq \alpha \text{ for all } X \in C_{\prec \infty Y} \}$

would have a minimal element Y and there would be $\alpha < \operatorname{rk}(Y)$ such that $\operatorname{rk}(X) \neq \alpha$ for all $X \in C_{\preceq \infty Y}$. Since $\operatorname{rk}(Y) = \bigsqcup[\operatorname{rk}(W) + \underline{1} : W \in C_{\prec Y}]$, there would be $W \in C_{\prec Y}$ with $\alpha \leq \operatorname{rk}(W)$. Then $\alpha < \operatorname{rk}(W)$ because of $W \in C_{\preceq \infty Y}$. Due to the minimality of Y there would finally be $X \in C_{\preceq \infty W} \sqsubseteq C_{\preceq \infty Y}$ with $\operatorname{rk}(X) = \alpha$, a contradiction.

Now let $r: C \to \mathbb{O}$ be any \prec -ranking \mathcal{M} -class function. On the one hand, $\alpha_Y \leq r(Y)$ for each $Y \in C$ where $\alpha_Y = \bigsqcup[r(W) + \underline{1} : W \in C_{\prec Y}]$. On the other hand, $r(X) < \alpha_Y$ for every $W \in C_{\prec Y}$ and $X \equiv C_{\preceq \infty W}$, as is easily seen by induction. Combining these two observations with the fact $C_{\preceq \infty Y} = [Y] \sqcup \bigsqcup[C_{\preceq \infty W} : W \in C_{\prec Y}]$ shows that for every \mathcal{M} -ordinal α with $\alpha_Y \leq \alpha < r(Y)$ there can be no $X \equiv C_{\preceq \infty Y}$ with $r(X) = \alpha$. Hence, if r has the property that for all $Y \in C$ and $\alpha < r(Y)$ there exists $X \equiv C_{\preceq \infty Y}$ with $r(X) = \alpha$, we must have $r(Y) = \alpha_Y$ for all $Y \in C$, which means r = rk.

(c) Let $t = t_{C,\prec}$.

Firstly, we claim that $t(X) \in \mathbb{O}$ for every $X \in C$. To prove this, we can assume by induction $t(W) \in \mathbb{O}$ for every $W \in C_{\prec X}$. Given that $t(X) = [t(W) : W \in C_{\prec X}]$ and using Exercise 1 on Problem Set 4, it is thus enough to check that t(X) is transitive. For $A \in B \in t(X)$ there are $W \in C_{\prec X}$ with B = t(W) and $V \in C_{\prec W}$ with A = t(V). Since \prec is transitive on C, we get $V \in C_{\prec X}$, so $A = t(V) \in t(X)$.

Secondly, t is \prec -ranking by Lemma 2.5.5.

Thirdly, for every $Y \in C$ and $\alpha \in t(Y)$ there obviously is $X \in C_{\prec Y}$ with $t(X) = \alpha$.

All in all, we can conclude with (b) that t = rk.

(d) It is $X = \langle \underline{2}, \underline{1} \rangle = [\underline{2}, [\underline{1}, \underline{2}]]$. So we easily deduce $t_{X, \in}(\underline{2}) = \underline{0}$ and $t_{X, \in}([\underline{1}, \underline{2}]) = \underline{1}$. Because of $X \sqsubseteq P(\underline{3})$ the rank $\operatorname{rk}_{X^{\infty}, \in} = \operatorname{rk}_{P(\underline{3})^{\infty}, \in}|_{X^{\infty}}$ will be computed in (f).

(e) It is $X = \underline{2} * \underline{1} = [\langle \underline{0}, \underline{0} \rangle, \langle \underline{1}, \underline{0} \rangle] = [\underline{2}, [\underline{1}, \underline{2}]]$. So that's the same X as in (d).

(f) Since <u>3</u> is transitive, so is $X = \mathbb{P}(\underline{3})$. Hence, $t_{X, \in}$ is the identity. The rank $\operatorname{rk}_{X^{\infty}, \in}$ can be read off as the height of the vertices in the diagram depicting $X^{\infty} \setminus [X]$:

3. We begin with an easy observation:

Lemma. Let T be a transitive \mathcal{M} -class such that we have $\boxtimes^{\mathcal{M}}, [X, Y]^{\mathcal{M}}, \bigsqcup^{\mathcal{M}} X \in T$ for all $X, Y \in T$. Then $\mathcal{M}|_T \models \mathsf{EXT} \cup \mathsf{EMP} \cup \mathsf{PAI} \cup \mathsf{UNI}$ and moreover:

- (5) $f[X]^{\mathcal{M}} \in T$ for all $X \in T$, $f : \in^{-1}(X) \not\rightarrow T$ definable in $\mathcal{M} \Rightarrow \mathcal{M}|_T \models \text{REP}$. (6) $\mathbb{P}^{\mathcal{M}}(X)$ exists and $\mathbb{P}^{\mathcal{M}}(X) \sqcap T \in T$ for all $X \in T \Rightarrow \mathcal{M}|_T \models \text{POW}$.
- (7) $T \subseteq \mathbb{W}^{\mathcal{M}}$ and $\omega^{\mathcal{M}} \in T \Rightarrow \mathcal{M}|_T \models \text{INF}.$
- (8) $\mathcal{M} \models \text{CHO} and Z \sqcap X \in T \text{ for all } X \in T \text{ and } \mathcal{M}\text{-sets } Z \Rightarrow \mathcal{M}|_T \models \text{CHO}.$ (9) $T \subseteq \mathbb{W}^{\mathcal{M}} \Rightarrow \mathcal{M}|_T \models \text{REG and } \mathbb{O}^{\mathcal{M}|_T} = \mathbb{O}^{\mathcal{M}} \cap T \text{ and } \mathbb{N}^{\mathcal{M}|_T} = \mathbb{N}^{\mathcal{M}}.$

Proof. Similar to the proof of Lemma 2.7.3 and Theorem 2.7.4.

Because of $\mathbb{HF} = \bigcup_{\alpha \in \mathbb{N}^{\mathcal{M}}} \mathbb{W}^{\mathcal{M}}_{\alpha}$ Corollary 2.6.7 implies that every $X \in \mathbb{HF}$ is a finite \mathcal{M} -set and so has a power set $\mathbb{P}^{\mathcal{M}}(X)$, which again belongs to \mathbb{HF} .

The above lemma applies to $T = \mathbb{HF}$ and the premises in (5), (6), (9) are satisfied such that we can conclude that \mathbb{HF} is a $(\mathbb{ZF}^{\circ} \cup \mathsf{POW} \cup \mathsf{REG})$ -universe with $\mathbb{N}^{\mathcal{M}|_{T}} = \mathbb{N}^{\mathcal{M}}$.

Moreover, an $\mathcal{M}|_{\mathbb{HF}}$ -set is finite if and only if it is finite when regarded as an \mathcal{M} -set, as follows from the observation $[X \to Y]^{\mathcal{M}|_{\mathbb{HF}}} = [X \to Y]^{\mathcal{M}}$ for all $\mathcal{M}|_{\mathbb{HF}}$ -sets X, Y.

We are left with proving $\mathcal{M}|_{\mathbb{HF}} \models CHO$. Given that $\mathbf{*}_{i \in I}^{\mathcal{M}|_{\mathbb{HF}}} X_i = \mathbf{*}_{i \in I}^{\mathcal{M}} X_i$ for every family $\langle X_i \rangle_{i \in I}$ of $\mathcal{M}|_{\mathbb{HF}}$ -sets with $I \in \mathbb{HF}$, this is a consequence of the following fact:

Lemma (FINITE CHOICE). Let \mathcal{N} be a ZF[°]-universe. Then for every family $\langle X_i \rangle_{i \in I}$ of \mathcal{N} -sets with finite I the cartesian product $\bigstar_{i \in I} X_i$ exists and is non-empty.

Proof. Let $\beta \in \mathbb{N}^{\mathcal{N}}$ such that there is a bijective $f: \beta \to I$. Consider the \mathcal{N} -class $C = \left\{ \alpha \in \mathbb{N}^{\mathcal{N}} : \alpha \leq \beta \Rightarrow \bigstar_{\gamma < \alpha} X_{f(\gamma)} \text{ exists and is non-empty} \right\}.$

Clearly, $\underline{0} \in C$. For $\alpha \in \mathbb{N}^{\mathcal{N}}$ with $\alpha - \underline{1} \in C$, we have $\alpha \in C$ trivially in case $\alpha > \beta$ and otherwise because of $\bigstar_{\gamma < \alpha} X_{f(\gamma)} \simeq X * X_{f(\alpha)} \neq \square$ since $X = \bigstar_{\gamma < \alpha - \underline{1}} X_{f(\gamma)} \neq \square$ and $X_{f(\alpha)} \neq \emptyset$. By induction $C = \mathbb{N}^{\mathcal{N}}$, so $\beta \in C$, which gives the lemma.

4. Let Y be an \mathcal{M} -set. By Lemma 2.8.16 there exists an \mathcal{M} -ordinal α with $\alpha \not\preceq Y$. It suffices to show $Y \preceq \alpha$ because any injective $Y \rightarrow \alpha$ yields a well-order on Y.

We may assume without loss of generality that Y and α are disjoint. Let $X = \alpha \sqcup Y$. By assumption there exists an injective \mathcal{M} -function $f: X * X \to X$. For each $y \in Y$ the \mathcal{M} -class $C_y = \{\gamma < \alpha : f(\langle y, \gamma \rangle) \in \alpha\}$ must be non-empty, since otherwise the rule $\gamma \mapsto f(\langle y, \gamma \rangle)$ would define an injective \mathcal{M} -function $\alpha \twoheadrightarrow Y$. Therefore we have an injective \mathcal{M} -function $Y \to \alpha$ given by $y \mapsto f(\langle y, \min C_y \rangle)$.