Lemma. Let C and D be two closed and unbounded \mathcal{M}-classes in \mathbb{O} and $f: \mathbb{O} \rightarrow \mathbb{O}$ be an \mathcal{M}-class function. Then the following hold:
(1) $C \cap D$ is closed and unbounded in \mathbb{O}.
(2) $C_{f}=\{\alpha \in \mathbb{O}: f(\gamma)<\alpha$ for all $\gamma<\alpha\}$ is closed and unbounded in \mathbb{O}.

Proof. (1) Clearly, $C \cap D$ is closed in \mathbb{O}.
To verify that it is unbounded in \mathbb{O} choose $\varepsilon \in \mathbb{O}$. Since C and D are both unbounded we can recursively construct two sequences $\left\langle\gamma_{\alpha}\right\rangle_{\alpha<\omega}$ in C and $\left\langle\delta_{\alpha}\right\rangle_{\alpha<\omega}$ in D with the property $\varepsilon \leq \gamma_{\alpha} \leq \delta_{\alpha} \leq \gamma_{\alpha+\underline{1}}$ for all $\alpha<\omega$. Then $\varepsilon \leq \bigsqcup_{\alpha<\omega} \gamma_{\alpha}=\bigsqcup_{\alpha<\omega} \delta_{\alpha} \in C \cap D$.
(2) For all $X \sqsubseteq C_{f}$ and $\gamma<\bigsqcup X$ there is $\alpha \in X$ with $\gamma<\alpha$, so $f(\gamma)<\alpha \leq \bigsqcup X$, hence $\bigsqcup X \in C_{f}$. This shows that C_{f} is closed in \mathbb{O}.
To prove unboundedness of C_{f} choose $\varepsilon \in \mathbb{O}$. Then $\varepsilon \leq \alpha \in C_{f}$ where $\alpha=\bigsqcup_{\beta<\omega} \eta_{\beta}$ with $\left\langle\eta_{\beta}\right\rangle_{\beta<\omega}$ recursively defined as $\eta_{\underline{0}}=\varepsilon$ and $\eta_{\beta+\underline{1}}=\bigsqcup_{\gamma<\eta_{\beta}} f(\gamma)+\underline{1}$ for all $\beta<\omega$. Indeed, for all $\gamma<\alpha$ there is some $\beta<\omega$ with $\gamma<\eta_{\beta}$ such that $f(\gamma)<\eta_{\beta+\underline{1}} \leq \alpha$.

1. In order to be able to use structural induction on π, we will prove more generally for all $S^{\text {Set }}$-formulas π (instead of only for sentences) the existence of a closed and unbounded \mathcal{M}-class C_{π} in \mathbb{O} such that for every $\alpha \in C_{\pi}$

$$
\left.\left.\mathcal{M}\right|_{\mathbb{V}} \vDash \pi[\vec{x} / \vec{X}] \Leftrightarrow \mathcal{M}\right|_{\mathbb{V}_{\alpha}} \vDash \pi[\vec{x} / \vec{X}] \quad \text { for all } \vec{X}=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{V}_{\alpha}^{n}
$$

where the tuple $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ consists of the distinct free variables of π.
If π is atomic, we can take $C_{\pi}=\mathbb{O}$.
If $\pi=(\varphi \rightarrow \psi)$, we can take $C_{\pi}=C_{\varphi} \cap C_{\psi}$.
If $\pi=\bigwedge_{x} \varphi$, consider the \mathcal{M}-class function $f: \mathbb{O} \rightarrow \mathbb{O}$ defined as

$$
f(\gamma)=\bigsqcup\left[\alpha_{\vec{X}}: \vec{X} \in \mathbb{V}_{\gamma}^{n}\right]
$$

where - using the convention $\min \emptyset=\underline{0}-$

$$
\alpha_{\vec{X}}=\min \left\{\alpha \in \mathbb{O}:\left.\mathcal{M}\right|_{\mathbb{V}} \not \forall \varphi[(\vec{x}, x) /(\vec{X}, X)] \text { for some } X \in \mathbb{V}_{\alpha}\right\} .
$$

The lemma and the fact that $\mathbb{O}_{\lim }$ is closed and unbounded in \mathbb{O} imply that

$$
C_{\pi}=\left\{\alpha \in \mathbb{O}_{\lim } \cap C_{\varphi}: f(\gamma)<\alpha \text { for all } \gamma<\alpha\right\}
$$

is closed and unbounded in \mathbb{O}. It remains to check the equivalence \Leftrightarrow claimed above. Here, \Rightarrow follows from $\mathbb{V}_{\alpha} \subseteq \mathbb{V}$ and $\alpha \in C_{\varphi}$. To verify \Leftarrow assume $\left.\mathcal{M}\right|_{\mathbb{V}} \not \models \pi[\vec{x} / \vec{X}]$. Then there is $X \in \mathbb{V}_{\alpha_{\vec{X}}}$ such that

$$
\left.\mathcal{M}\right|_{\mathbb{V}} \not \forall \varphi[(\vec{x}, x) /(\vec{X}, X)] .
$$

Now, $\alpha \in \mathbb{O}_{\lim }$ and $\underline{n}<\omega$ ensures $\vec{X} \in \mathbb{V}_{\gamma}^{n}$ for some $\gamma<\alpha$. From $\alpha_{\vec{X}} \leq f(\gamma)<\alpha$ we get $\mathbb{V}_{\alpha_{\vec{X}}} \subseteq \mathbb{V}_{\alpha}$ and therefore $X \in \mathbb{V}_{\alpha}$. Finally, $\alpha \in C_{\varphi}$ implies

$$
\left.\mathcal{M}\right|_{\mathbb{V}_{\alpha} \not \models \varphi}[(\vec{x}, x) /(\vec{X}, X)],
$$

which shows $\left.\mathcal{M}\right|_{\mathbb{V}_{\alpha}} \not \forall \pi[\vec{x} / \vec{X}]$.
2.
(a) The "only if" part holds since $\mathrm{rk}_{C, \prec}$ is \prec-ranking. For the "if" part let $r: C \rightarrow \mathbb{O}$ be a \prec-ranking \mathcal{M}-class function. Then, for every non-empty \mathcal{M}-class $D \subseteq C$, every element $X \in D$ with $r(X)=\min _{\prec} r(D)$ is \prec-minimal in D.
(b) Let us first check that $\mathrm{rk}=\mathrm{rk}_{C, \prec}$ has this property. If it hadn't, the \mathcal{M}-class

$$
\left\{Y \in C: \text { there is } \alpha<\operatorname{rk}(Y) \text { such that } \operatorname{rk}(X) \neq \alpha \text { for all } X \in C_{\preceq \infty}\right\}
$$

would have a minimal element Y and there would be $\alpha<\operatorname{rk}(Y)$ such that $\operatorname{rk}(X) \neq \alpha$ for all $X \in C_{\preceq \infty Y}$. Since $\operatorname{rk}(Y)=\bigsqcup\left[\operatorname{rk}(W)+\underline{1}: W \in C_{\prec Y}\right]$, there would be $W \in C_{\prec Y}$ with $\alpha \leq \operatorname{rk}(W)$. Then $\alpha<\operatorname{rk}(W)$ because of $W \in C_{\preceq \infty Y}$. Due to the minimality of Y there would finally be $X \in C \preceq^{\infty} W \sqsubseteq C_{\unlhd^{\infty} Y}$ with $\operatorname{rk}(X)=\alpha$, a contradiction.
Now let $r: C \rightarrow \mathbb{O}$ be any \prec-ranking \mathcal{M}-class function. On the one hand, $\alpha_{Y} \leq r(Y)$ for each $Y \in C$ where $\alpha_{Y}=\bigsqcup\left[r(W)+\underline{1}: W \in C_{\prec Y}\right]$. On the other hand, $r(X)<\alpha_{Y}$ for every $W \in C_{\prec Y}$ and $X \in C_{\preceq \infty W}$, as is easily seen by induction. Combining these two observations with the fact $C_{\preceq \infty Y}=[Y] \sqcup \bigsqcup\left[C_{\preceq_{\infty} W}: W \in C_{\prec Y}\right]$ shows that for every \mathcal{M}-ordinal α with $\alpha_{Y} \leq \alpha<r(Y)$ there can be no $X \in C_{\preceq \infty}$ with $r(X)=\alpha$. Hence, if r has the property that for all $Y \in C$ and $\alpha<r(Y)$ there exists $X \in C_{\preceq \infty} Y$ with $r(X)=\alpha$, we must have $r(Y)=\alpha_{Y}$ for all $Y \in C$, which means $r=$ rk.
(c) Let $t=t_{C, \prec}$.

Firstly, we claim that $t(X) \in \mathbb{O}$ for every $X \in C$. To prove this, we can assume by induction $t(W) \in \mathbb{O}$ for every $W \in C_{\prec X}$. Given that $t(X)=\left[t(W): W \in C_{\prec X}\right]$ and using Exercise 1 on Problem Set 4, it is thus enough to check that $t(X)$ is transitive. For $A \in B \in t(X)$ there are $W \in C_{\prec X}$ with $B=t(W)$ and $V \in C_{\prec W}$ with $A=t(V)$. Since \prec is transitive on C, we get $V \in C_{\prec X}$, so $A=t(V) \in t(X)$.
Secondly, t is \prec-ranking by Lemma 2.5.5.
Thirdly, for every $Y \in C$ and $\alpha \in t(Y)$ there obviously is $X \in C_{\prec Y}$ with $t(X)=\alpha$.
All in all, we can conclude with (b) that $t=\mathrm{rk}$.
(d) It is $X=\langle\underline{2}, \underline{1}\rangle=[\underline{2},[\underline{1}, \underline{2}]]$. So we easily deduce $t_{X, E}(\underline{2})=\underline{0}$ and $t_{X, E}([\underline{1}, \underline{2}])=\underline{1}$. Because of $X \sqsubseteq \mathrm{P}(\underline{3})$ the rank $\mathrm{rk}_{X^{\infty}, E}=\left.\operatorname{rk}_{\mathrm{P}(\underline{3})^{\infty}, E}\right|_{X^{\infty}}$ will be computed in (f).
(e) It is $X=\underline{2} * \underline{1}=[\langle\underline{0}, \underline{0}\rangle,\langle\underline{1}, \underline{0}\rangle]=[\underline{2},[\underline{1}, \underline{2}]]$. So that's the same X as in (d).
(f) Since $\underline{3}$ is transitive, so is $X=\mathrm{P}(\underline{3})$. Hence, $t_{X, E}$ is the identity. The rank $\mathrm{rk}_{X^{\infty}, E}$ can be read off as the height of the vertices in the diagram depicting $X^{\infty} \backslash[X]$:

3. We begin with an easy observation:

Lemma. Let T be a transitive \mathcal{M}-class such that we have $\nabla^{\mathcal{M}},[X, Y]^{\mathcal{M}}, \bigsqcup^{\mathcal{M}} X \in T$ for all $X, Y \in T$. Then $\left.\mathcal{M}\right|_{T} \vDash$ EXT \cup EMP $\cup P A I \cup U N I$ and moreover:
(5) $f[X]^{\mathcal{M}} \in T$ for all $X \in T, f: E^{-1}(X) \nrightarrow T$ definable in $\left.\mathcal{M} \Rightarrow \mathcal{M}\right|_{T} \vDash \operatorname{REP}$.
(6) $\mathrm{P}^{\mathcal{M}}(X)$ exists and $\mathrm{P}^{\mathcal{M}}(X) \sqcap T \in T$ for all $\left.X \in T \Rightarrow \mathcal{M}\right|_{T} \vDash$ POW.
(7) $T \subseteq \mathbb{W}^{\mathcal{M}}$ and $\left.\omega^{\mathcal{M}} \in T \Rightarrow \mathcal{M}\right|_{T} \vDash$ InF.
(8) $\mathcal{M} \vDash$ CHO and $Z \sqcap X \in T$ for all $X \in T$ and \mathcal{M}-sets $\left.Z \Rightarrow \mathcal{M}\right|_{T} \vDash$ CHO.
(9) $\left.T \subseteq \mathbb{W}^{\mathcal{M}} \Rightarrow \mathcal{M}\right|_{T} \vDash \operatorname{REG}$ and $\mathbb{O}^{\left.\mathcal{M}\right|_{T}}=\mathbb{O}^{\mathcal{M}} \cap T$ and $\mathbb{N}^{\left.\mathcal{M}\right|_{T}}=\mathbb{N}^{\mathcal{M}}$.

Proof. Similar to the proof of Lemma 2.7.3 and Theorem 2.7.4.
Because of $\mathbb{H} \mathbb{F}=\bigcup_{\alpha \in \mathbb{N} \mathcal{M}} \mathbb{W}_{\alpha}^{\mathcal{M}}$ Corollary 2.6.7 implies that every $X \in \mathbb{H} \mathbb{F}$ is a finite \mathcal{M}-set and so has a power set $\mathrm{P}^{\mathcal{M}}(X)$, which again belongs to $\mathbb{H} \mathbb{F}$.
The above lemma applies to $T=\mathbb{H} \mathbb{F}$ and the premises in (5), (6), (9) are satisfied such that we can conclude that $\mathbb{H I F}$ is a (ZF $\left.{ }^{\circ} \cup P O W \cup R E G\right)$-universe with $\mathbb{N}^{\left.\mathcal{M}\right|_{T}}=\mathbb{N}^{\mathcal{M}}$.
Moreover, an $\left.\mathcal{M}\right|_{\mathbb{H} \mathbb{F}^{-}}$set is finite if and only if it is finite when regarded as an \mathcal{M}-set, as follows from the observation $\left.[X \rightarrow Y]^{\mathcal{M}}\right|_{\mathbb{H I}}=[X \rightarrow Y]^{\mathcal{M}}$ for all $\left.\mathcal{M}\right|_{\mathbb{H} \mathbb{P}}$-sets X, Y.
We are left with proving $\left.\mathcal{M}\right|_{\mathbb{H} \mathbb{F}} \vDash$ CHO. Given that $*_{i \in I}^{\left.\mathcal{M}\right|_{\text {IIF }}} X_{i}=*_{i \in I}^{\mathcal{M}} X_{i}$ for every family $\left\langle X_{i}\right\rangle_{i \equiv I}$ of $\left.\mathcal{M}\right|_{\mathbb{H} \mathbb{F}}$-sets with $I \in \mathbb{H} \mathbb{F}$, this is a consequence of the following fact:

Lemma (Finite Choice). Let \mathcal{N} be a ZF°-universe. Then for every family $\left\langle X_{i}\right\rangle_{i \in I}$ of \mathcal{N}-sets with finite I the cartesian product $\boldsymbol{*}_{i \in I} X_{i}$ exists and is non-empty.

Proof. Let $\beta \in \mathbb{N}^{\mathcal{N}}$ such that there is a bijective $f: \beta \rightarrow I$. Consider the \mathcal{N}-class

$$
C=\left\{\alpha \in \mathbb{N}^{\mathcal{N}}: \alpha \leq \beta \Rightarrow \boldsymbol{*}_{\gamma<\alpha} X_{f(\gamma)} \text { exists and is non-empty }\right\} .
$$

Clearly, $\underline{0} \in C$. For $\alpha \in \mathbb{N}^{\mathcal{N}}$ with $\alpha-\underline{1} \in C$, we have $\alpha \in C$ trivially in case $\alpha>\beta$ and otherwise because of $\boldsymbol{*}_{\gamma<\alpha} X_{f(\gamma)} \simeq X * X_{f(\alpha)} \neq \square$ since $X=\boldsymbol{*}_{\gamma<\alpha-\underline{1}} X_{f(\gamma)} \neq \square$ and $X_{f(\alpha)} \neq \varnothing$. By induction $C=\mathbb{N}^{\mathcal{N}}$, so $\beta \in C$, which gives the lemma.
4. Let Y be an \mathcal{M}-set. By Lemma 2.8.16 there exists an \mathcal{M}-ordinal α with $\alpha \npreceq Y$. It suffices to show $Y \preceq \alpha$ because any injective $Y \rightarrow \alpha$ yields a well-order on Y.
We may assume without loss of generality that Y and α are disjoint. Let $X=\alpha \sqcup Y$. By assumption there exists an injective \mathcal{M}-function $f: X * X \rightarrow X$. For each $y \in Y$ the \mathcal{M}-class $C_{y}=\{\gamma<\alpha: f(\langle y, \gamma\rangle) \in \alpha\}$ must be non-empty, since otherwise the rule $\gamma \mapsto f(\langle y, \gamma\rangle)$ would define an injective \mathcal{M}-function $\alpha \rightarrow Y$. Therefore we have an injective \mathcal{M}-function $Y \rightarrow \alpha$ given by $y \mapsto f\left(\left\langle y, \min C_{y}\right\rangle\right)$.

