1.

(a) Pick a well-order < on Z = □_{|μ|=μ<κ} P(μ * μ) and consider the *M*-class function f: H_κ → E⁻¹(Z) that maps *M*-sets X ∈ H_κ to the <-minimal ≺ E P(|X[∞]| * |X[∞]|) such that there exists an isomorphism ⟨|X[∞]|, ≺⟩ → ⟨X[∞], E⟩, which is then uniquely determined by Theorem 2.5.9. Because X is well-founded, X can be recovered as the E-maximal element of X[∞]. This shows that f is injective and so H_κ forms an *M*-set H_κ of cardinality |H_κ| ≤ |Z| ≤ 2^{<κ}, where the last inequality holds since |P(μ * μ)| = 2^{|μ*μ|} = 2^μ ≤ 2^{<κ} for all *M*-cardinals ω ≤ μ < κ and κ ≤ 2^{<κ} by 3. (a). Conversely, 2^{<κ} ≤ |H_κ| because of 2^μ = |P(μ)| ≤ |H_κ| for every *M*-cardinal μ < κ, since for each X ∈ P(μ) we have X[∞] ⊆ μ[∞], so |X[∞]| ≤ |μ[∞]| = μ < κ, so X ∈ H_κ.
(b) We prove |W_{ω+β}| = □_β for β ∈ O. By induction assume |W_{ω+α}| = □_α for α < β.

If β is a successor, then $|W_{\omega+\beta}| = |\mathsf{P}(W_{\omega+\beta-\underline{1}})| = \underline{2}^{|W_{\omega+\beta-\underline{1}}|} = \underline{2}^{\neg_{\beta-\underline{1}}} = \beth_{\beta}.$

If
$$\beta$$
 is a limit $> \underline{0}$, then $W_{\omega+\alpha} \sqsubseteq W_{\omega+\beta}$ for $\alpha < \beta$, so $\beth_{\alpha} = |W_{\omega+\alpha}| \le |W_{\omega+\beta}|$ and

$$\Box_{\beta} \leq |W_{\omega+\beta}| = \left| \bigsqcup_{\alpha<\beta} W_{\omega+\alpha} \right| \leq \max\left[\beta, \bigsqcup_{\alpha<\beta} |W_{\omega+\alpha}|\right] = \max\left[\beta, \beth_{\beta}\right] = \beth_{\beta}$$

Finally, $|W_{\omega+\underline{0}}| = \omega = \beth_{\underline{0}}$ because of $\omega \sqsubseteq W_{\omega}$ and $|W_{\alpha}| < \omega$ for all $\alpha < \omega$.

It is thus enough to check $\omega + \kappa = \kappa$ for \mathcal{M} -cardinals $\kappa > \omega$. But for all $\gamma < \kappa$ it is $|\omega + \gamma| = \omega \oplus |\gamma| \le \max[\omega, \gamma] < \kappa$, so $\omega + \gamma < \kappa$ and $\kappa \le \omega + \kappa = \bigsqcup_{\gamma < \kappa} (\omega + \gamma) \le \kappa$.

(c) To prove the inclusion let $Y \in \mathbb{H}_{\kappa}$. We know $[\operatorname{rk}(X) : X \in Y^{\infty}] = \operatorname{rk}(Y) + \underline{1}$ from 2. (b) on Problem Set 5, so $|\operatorname{rk}(Y)| = |\operatorname{rk}(Y) + \underline{1}| \leq |Y^{\infty}| < \kappa$, so indeed $\operatorname{rk}(Y) < \kappa$.

Assume now $\kappa = \beth_{\kappa}$ and let $Y \in W_{\kappa}$. Because κ is a limit ordinal greater than ω we have $Y \in W_{\omega+\alpha}$ for some \mathcal{M} -ordinal α with $\omega + \alpha < \kappa$. But then we get $Y^{\infty} \sqsubseteq W_{\omega+\alpha}$ and therefore $|Y^{\infty}| \leq |W_{\omega+\alpha}| = \beth_{\alpha} < \beth_{\kappa} = \kappa$, which means that $Y \in \mathbb{H}_{\kappa}$.

Assume now that $\mathbb{H}_{\kappa} = \mathbb{W}_{\kappa}$. Then for every $\alpha < \kappa$ it is also $\omega + \alpha + \underline{1} < \kappa$ such that $W_{\omega+\alpha} \equiv W_{\omega+\alpha+\underline{1}} \equiv W_{\kappa} = H_{\kappa}$, so $\beth_{\alpha} = |W_{\omega+\alpha}| \le |W_{\omega+\alpha}^{\infty}| < \kappa$, so $\beth_{\kappa} = \bigsqcup_{\alpha < \kappa} \beth_{\alpha} \le \kappa$. The inequality $\kappa \le \beth_{\kappa}$ holds anyway because \beth is normal.

(d,e) We will apply the lemma stated in the solution of Exercise 3 on Problem Set 5. Either $T \in \{\mathbb{H}_{\kappa}, \mathbb{W}_{\kappa}\}$ is a transitive \mathcal{M} -class with $T \subseteq \mathbb{W}$ and $\square, \bigsqcup X, Z \sqcap X \in T$ for all $X, Y \in T$ and \mathcal{M} -sets Z. Furthermore, $[X, Y] \in T$ because κ is a limit ordinal and $\omega \in T$ because of $\kappa > \omega$. Hence, $\mathcal{M}|_T \models \mathsf{EXT} \cup \mathsf{EMP} \cup \mathsf{PAI} \cup \mathsf{UNI} \cup \mathsf{INF} \cup \mathsf{CHO} \cup \mathsf{REG}$.

(d) It remains to check $\mathcal{M}|_{\mathbb{H}_{\kappa}} \vDash \mathsf{REP}$. For this, it is sufficient to show that $f[X] \in \mathbb{H}_{\kappa}$ for each partial \mathcal{M} -class function $f : \equiv^{-1}(X) \nrightarrow \mathbb{H}_{\kappa}$ with $X \in \mathbb{H}_{\kappa}$. Choose a bijective $g \colon \lambda = |f[X]| \twoheadrightarrow f[X]$ and set $\mu_{\gamma} = |g(\gamma)^{\infty}|$. Then $\lambda < \kappa$ and $\mu_{\gamma} < \kappa$ for all $\gamma < \lambda$. Using the fact that $f[X]^{\infty} = [f[X]] \sqcup \bigsqcup_{Y \in f[X]} Y^{\infty}$ we conclude $f[X] \in \mathbb{H}_{\kappa}$ from

$$|f[X]^{\infty}| \leq \underline{1} \oplus \bigoplus_{\gamma < \lambda} \mu_{\gamma} < \kappa,$$

where the strict inequality is due to $\lambda < \kappa = cof(\kappa)$ and Theorem 2.10.24.

(e) It only remains to check $\mathcal{M}|_{\mathbb{W}_{\kappa}} \models POW$. This follows from $P(X) \sqcap \mathbb{W}_{\kappa} = P(X) \in \mathbb{W}_{\kappa}$ for all $X \in \mathbb{W}_{\kappa}$, which holds because κ is a limit ordinal.

2.

(a) We frequently use below that κ as an infinite \mathcal{M} -cardinal is a limit \mathcal{M} -ordinal.

(1) \Rightarrow (2) For all \mathcal{M} -cardinals $\mu, \lambda < \kappa$ use that $\mu^{\lambda} \leq (\underline{2}^{\mu})^{\lambda} = \underline{2}^{\mu \otimes \lambda} = \max \left[\underline{2}^{\mu}, \underline{2}^{\lambda} \right]$ by Lemma 2.10.9 and Theorem 2.10.7.

 $(2) \Rightarrow (1)$ and $(4) \Rightarrow (3)$ are clear.

(3) \Leftrightarrow (5) holds by 1. (c).

(1) \Rightarrow (3) Because \beth is normal and κ is a limit ordinal, we have $\kappa \leq \beth_{\kappa} = \bigsqcup_{\alpha < \kappa} \beth_{\alpha}$. It thus is sufficient to prove $\beth_{\alpha} < \kappa$ for all $\alpha < \kappa$.

Firstly, $\beth_{\underline{0}} = \omega < \kappa$ by assumption. Secondly, if α is a successor and we inductively assume $\beth_{\alpha-\underline{1}} < \kappa$, then $\beth_{\alpha} = \underline{2}^{\beth_{\alpha-\underline{1}}} < \kappa$ by (1). Thirdly, if α is a non-zero limit and by induction $\beth_{\gamma} < \kappa$ for all $\gamma < \alpha$, then $\beth_{\alpha} = \bigsqcup_{\gamma < \alpha} \beth_{\gamma} < \kappa$ because $\alpha < \kappa = \operatorname{cof}(\kappa)$.

(3) \Rightarrow (4) Assuming we know $\kappa = f(\kappa)$ for $f = \beth^{(n)}$ and some $n \in \mathbb{N}$, then $\kappa = f'(\alpha)$ for some \mathcal{M} -ordinal α . Now $\alpha \leq \kappa$ because f' is normal. If α were a successor ordinal, then $\kappa = f^{\omega}(f'(\alpha - \underline{1}) + \underline{1})$ would lead to the contradiction $\kappa = \operatorname{cof}(\kappa) \leq \omega$. So α is a limit ordinal. We then have $\kappa = \bigsqcup f'[\alpha]$ and thus also $\kappa = \operatorname{cof}(\kappa) \leq \alpha$.

(5) \Rightarrow (6) If $\mathbb{H}_{\kappa} = \mathbb{W}_{\kappa}$, then \mathbb{W}_{κ} is a Grothendieck universe because \mathbb{W}_{κ} clearly is a transitive \mathcal{M} -class and by (the proof of) 1. (d,e) $\mathcal{M}|_{\mathbb{W}_{\kappa}}$ is a ZFC-universe with

$$[X,Y]^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} = [X,Y] \text{ and } \mathbb{P}^{\mathcal{M}|_{\mathbb{W}_{\kappa}}}(X) = \mathbb{P}(X) \text{ and } \bigsqcup_{i \in I}^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} X_i = \bigsqcup_{i \in I} X_i$$

for all \mathcal{M} -sets $X, Y \in \mathbb{W}_{\kappa}$ and families $\langle X_i \rangle_{i \in I}$ of \mathcal{M} -sets in \mathbb{W}_{κ} with $I \in \mathbb{W}_{\kappa}$.

(6) \Rightarrow (1) For $\lambda < \kappa$ we have $\lambda \in \mathbb{W}_{\kappa}$, so $\mathsf{P}(\lambda) \in \mathbb{W}_{\kappa}$ by (iii). Because of $\underline{2}^{\lambda} = |\mathsf{P}(\lambda)|$ and $\mathbb{O} \cap \mathbb{W}_{\kappa} = \mathbb{O}_{<\kappa}$ it suffices to prove the following lemma:

Lemma. If \mathbb{W}_{κ} is a Grothendieck universe in \mathcal{M} , then $|X| \in \mathbb{W}_{\kappa}$ for every $X \in \mathbb{W}_{\kappa}$.

Proof. Assume there is some $X \in \mathbb{W}_{\kappa}$ with $|X| \notin \mathbb{W}_{\kappa}$. Then we must have $\kappa \leq |X|$. Choose any bijective $f: X \to |X|$ and let $g: |X| \to \mathbb{W}_{\kappa}$ be given by $g|_{\kappa} = \mathrm{id}_{\kappa}$ and $g(\alpha) = \underline{0}$ for all $\kappa \leq \alpha < |X|$. Using (iv) in the last step, we get the contradiction

$$\kappa = \bigsqcup \kappa = \bigsqcup |X| \sqcap \kappa = \bigsqcup f[X] \sqcap \kappa = \bigsqcup (g \circ f)[X] \in \mathbb{W}_{\kappa}.$$

(b) By Theorem 2.7.4 we can assume that \mathcal{M} is a ZFC-universe.

If \mathcal{M} has no inaccessible cardinals, we are done. Otherwise, let κ be the smallest inaccessible \mathcal{M} -cardinal. By (a) and 1. (d,e) $\mathcal{M}|_{\mathbb{W}_{\kappa}}$ is a ZFC-universe where \mathbb{W}_{κ} is a Grothendieck universe in \mathcal{M} . It is clearly enough to show that $\mathbb{K}^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} = \mathbb{K} \cap \mathbb{W}_{\kappa}$ and that moreover an $\mathcal{M}|_{\mathbb{W}_{\kappa}}$ -cardinal is inaccessible if and only if it is inaccessible as an \mathcal{M} -cardinal. Now (ii,iii,iv) imply $[X \to Y]^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} = [X \to Y]$ for all $X, Y \in \mathbb{W}_{\kappa}$ and together with the lemma proved in (a) we obtain $\mathbb{K}^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} = \mathbb{K} \cap \mathbb{W}_{\kappa}$ as desired. But this also shows that the λ -th power of $\underline{2}$ computed in $\mathcal{M}|_{\mathbb{W}_{\kappa}}$ simply is

$$\left| [\lambda \to \underline{2}]^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} \right|^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} = \left| [\lambda \to \underline{2}] \right| = \underline{2}^{\lambda}.$$

Hence, using the characterization (1) from (a), the inaccessible $\mathcal{M}|_{\mathbb{W}_{\kappa}}$ -cardinals are nothing but the inaccessible \mathcal{M} -cardinals that lie in \mathbb{W}_{κ} . Because of $\mathbb{K}^{\mathcal{M}|_{\mathbb{W}_{\kappa}}} = \mathbb{K}_{<\kappa}$ and the minimal choice of κ we can conclude that $\mathcal{M}|_{\mathbb{W}_{\kappa}}$ has no inaccessible cardinals. 3.

(a) In case $\kappa = \lambda^+$ we have $\kappa = \lambda^+ \leq \underline{2}^{\lambda} = \underline{2}^{<\kappa}$ and in case κ is a limit cardinal $\kappa = \bigsqcup_{|\mu|=\mu<\kappa} \mu \leq \underline{2}^{<\kappa}$ in view of Lemma 2.10.9. The other inequality is obvious.

To prove the equality let $\lambda = \operatorname{cof}(\kappa)$. Then by Theorem 2.10.24 there exists a family $\langle \mu_{\gamma} \rangle_{\gamma < \lambda}$ of \mathcal{M} -cardinals with $\mu_{\gamma} < \kappa$ for all $\gamma < \lambda$ and $\kappa = \bigoplus_{\gamma < \lambda} \mu_{\gamma}$. We compute

$$\underline{2}^{\kappa} = \bigotimes_{\gamma < \lambda} \underline{2}^{\mu_{\gamma}} \le \bigotimes_{\gamma < \lambda} \underline{2}^{<\kappa} = (\underline{2}^{<\kappa})^{\lambda} \le (\underline{2}^{\kappa})^{\lambda} = \underline{2}^{\kappa \otimes \lambda} = \underline{2}^{\kappa}$$

(b) $\underline{2} \leq \kappa \leq \underline{2}^{\lambda}$ for infinite $\kappa = \lambda^+$ by Lemma 2.10.9 and so $\underline{2}^{<\kappa} = \underline{2}^{\lambda} = \kappa^{\lambda} = \kappa^{<\kappa}$ according to Theorem 2.10.7.

(c) For \Rightarrow assume $\underline{2}^{\mu} = \mu^{+}$ for all infinite $|\mu| = \mu < \kappa$ to see $\underline{2}^{<\kappa} = \bigsqcup_{|\mu|=\mu<\kappa} \mu^{+} = \kappa$. For \Leftarrow note that $\underline{2}^{\kappa} = \underline{2}^{<\kappa^{+}}$ and use the assumption $\underline{2}^{<\kappa^{+}} = \kappa^{+}$.

(d) Using (a) in the first step and $\operatorname{cof}(\kappa) < \kappa$ in the last step we compute $\underline{2}^{\kappa} = (\underline{2}^{<\kappa})^{\operatorname{cof}(\kappa)} \leq (\underline{2}^{\lambda})^{\operatorname{cof}(\kappa)} = \underline{2}^{\lambda \otimes \operatorname{cof}(\kappa)} = \max\left[\underline{2}^{\lambda}, \underline{2}^{\operatorname{cof}(\kappa)}\right] = \underline{2}^{\lambda}.$

4. Finding a sequence $\langle U_{\gamma} \rangle_{\gamma < \kappa^{+}}$ of \mathcal{M} -functions $\kappa \to \kappa$ such that for all $\gamma, \gamma' < \kappa^{+}$ there is some $\varepsilon < \kappa$ with $U_{\gamma,\gamma'} = [\tau < \kappa : U_{\gamma}(\tau) = U_{\gamma'}(\tau)] \sqsubseteq \varepsilon$ will prove the exercise. Indeed, taking $X' = [U_{\gamma} : \gamma < \kappa^{+}]$ we then have $|X'| = \kappa^{+}$, since the U_{γ} are pairwise distinct, and of course for all functions $U, V : \kappa \to \kappa$ with $[\tau < \kappa : U(\tau) = V(\tau)] \sqsubseteq \varepsilon$ for some $\varepsilon < \kappa$ we have $|U| = |V| = \kappa$ and $|U \sqcap V| \le \varepsilon < \kappa$. Choosing a bijective \mathcal{M} -function $f : \kappa * \kappa \to \kappa$ we can finally take $X = [f[U_{\gamma}] : \gamma < \kappa^{+}]$.

Let's now turn to the construction of the sequence $\langle U_{\gamma} \rangle_{\gamma < \kappa^+}$.

Before we begin with the work, we use CHOICE for the existence of a family $\langle f_{\delta} \rangle_{\delta < \kappa^+}$ of surjective $f_{\delta} \colon \kappa \to \delta$ and for the existence of a well-order \prec on $[\kappa \to \kappa]$.

Recursively, assume that $\langle U_{\gamma} \rangle_{\gamma < \delta}$ is given for some $\delta < \kappa^+$ such that for all $\gamma, \gamma' < \delta$ there is some $\varepsilon < \kappa$ with $U_{\gamma,\gamma'} \sqsubseteq \varepsilon$. Define U_{δ} to be the \prec -least element in the \mathcal{M} -set $\bigstar_{\tau < \kappa} (\kappa \setminus [U_{f_{\delta}(\sigma)}(\tau) : \sigma < \tau])$, which is non-empty since $|[U_{f_{\delta}(\sigma)}(\tau) : \sigma < \tau]| \leq \tau < \kappa$ for all $\tau < \kappa$ and thanks to CHOICE. To conclude, it merely remains to observe that for all $\gamma < \delta$ we have $U_{\gamma,\delta} \sqsubseteq \sigma + 1$ for any $\sigma < \kappa$ with $f_{\delta}(\sigma) = \gamma$.