REPRESENTATION THEORY EXERCISES 10

HENNING KRAUSE JAN GEUENICH

A map $X \xrightarrow{\alpha} Y$ in a category C is *left almost split* if it is not a section and all non-sections $X \to Y'$ factor through α . *Right almost split* maps are defined dually. If C is triangulated, a triangle

 $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \longrightarrow \Sigma X$

in C is said to be *almost split* whenever α is left almost split and β right almost split.

1. Recall or verify the following facts in triangulated Krull-Schmidt categories:

- (a) For each triangle $\varepsilon \colon X \to Y \to Z \to \Sigma X$ the following are equivalent:
 - (i) ε is almost split.
 - (ii) α is left almost split and left minimal.
 - (iii) α is left almost split and $\operatorname{End}(Z)$ is local.
 - (iv) β is right almost split and right minimal.
 - (v) β is right almost split and End(X) is local.
- (b) An endomorphism (f, g, h) of an almost split triangle is an iso iff any of f, g, h is an iso.
- (c) $X \to Y$ and $Y \to Z$ in an almost split triangle $X \to Y \to Z \to \Sigma X$ are irreducible maps.
- (d) For any given indecomposable object Z (resp. X) there exists up to isomorphism at most one almost split triangle $X \to Y \to Z \to \Sigma X$.

Compare the notion of almost split triangles with the notion of almost split sequences.

We fix now an artin algebra Λ over k. As usual, $D = \text{Hom}_k(-, E)$ denotes the Matlis duality, $\nu = - \bigotimes_{\Lambda} D\Lambda$ the Nakayama functor and $\tau = D$ Tr the Auslander-Reiten translation.

2. Let Z be an object of $\mathbf{D}^b \pmod{\Lambda}$. Recall that, if Z is perfect, we have a natural isomorphism

 $DE_Z \xrightarrow{\phi_Z} \operatorname{Hom}(Z, \nu Z)$ where $E_Z = \operatorname{End}(Z)$.

Prove the following facts:

(a) If Z is perfect, then there exists an almost split triangle in $\mathbf{D}^b \pmod{\Lambda}$

 $\Sigma^{-1}\nu Z \longrightarrow Y \longrightarrow Z \stackrel{\gamma}{\longrightarrow} \nu Z$

where $\gamma = \phi_Z(\eta)$ for any non-zero $\eta \in DE_Z$ with $J(E_Z) \subseteq \text{Ker } \eta$.

(b) If Z is not perfect, there is no almost split triangle $X \to Y \to Z \to \Sigma X$ in $\mathbf{D}^b \pmod{\Lambda}$.

(c) $\mathbf{D}^{b}(\mod \Lambda)$ admits almost split triangles iff Λ has finite global dimension.

(d) $\mathbf{D}^{per}(\Lambda)$ admits almost split triangles iff Λ is Gorenstein.

Hint for (b): Any such $Z \to \Sigma X$ would be a phantom map in contradiction to $Ph(Z, \Sigma X) = 0$. *Hint for (d):* Almost split triangles in $\mathbf{D}^{per}(\Lambda)$ remain almost split in $\mathbf{D}^{b}(\text{mod }\Lambda)$.

To be handed in via email by June 29, 2020, 2 p.m.

3. Verify the following statements about the derived Nakayama functor $\hat{\nu}$:

- (a) Λ is symmetric iff $\hat{\nu} \simeq \operatorname{id}_{\mathbf{D}^{-}(\operatorname{mod}\Lambda)}$.
- (b) $H^i \circ \widehat{\nu} \simeq D \operatorname{Ext}^i_{\Lambda}(-, \Lambda)$ on $\operatorname{mod} \Lambda$.
- (c) If Λ is hereditary, then $\widehat{\nu} \simeq D \operatorname{Hom}_{\Lambda}(-, \Lambda) \oplus \Sigma D \operatorname{Ext}^{1}_{\Lambda}(-, \Lambda) \simeq \nu \oplus \Sigma \tau$ on $\operatorname{mod} \Lambda$.