REPRESENTATION THEORY EXERCISES 12

HENNING KRAUSE JAN GEUENICH

Our goal is to compare the right derived functor $\mathbf{R}(G \circ F)$ of the composite $G \circ F$ of two left exact functors F and G with the composite $\mathbf{R}G \circ \mathbf{R}F$ of their right derived functors. To do this, we begin with an example and then refresh our knowledge about spectral sequences.

1. Let Λ be the path algebra of the quiver $\bullet \to \bullet$ over some field k and as usual $D = \operatorname{Hom}_k(-, k)$. Consider on Mod Λ the endofunctor $F = G = \operatorname{Hom}_{\Lambda}(D\Lambda, -)$. Show that $\mathbf{R}(G \circ F) \cong \mathbf{R}G \circ \mathbf{R}F$.

From now on, fix an abelian category A with countable exact coproducts.

By a *differential object* in \mathcal{A} we mean a pair (X, d) consisting of an object X in \mathcal{A} together with an endomorphism $d \in \operatorname{End}_{\mathcal{A}}(X)$ such that $d^2 = 0$. Its *cohomology* is defined as $H(X) = \operatorname{Ker} d/\operatorname{Im} d$. A *spectral sequence* in \mathcal{A} is a sequence $E = (E_r)_{r \in \mathbb{N}_+}$ of differential objects with $E_{r+1} = H(E_r)$. Given such E, define inductively $B_r = (\varepsilon_r \pi_r)^{-1}(\operatorname{Im} d_r)$ and $Z_r = (\varepsilon_r \pi_r)^{-1}(\operatorname{Ker} d_r)$ to obtain

 $0 = B_0 \subseteq \cdots \subseteq B_r \subseteq B_{r+1} \subseteq \cdots \subseteq Z_{r+1} \subseteq Z_r \subseteq \cdots \subseteq Z_0 = E_1$

where d_r is the differential of E_r and $Z_{r-1} \xrightarrow{\pi_r} Z_{r-1}/B_{r-1} \xrightarrow{\varepsilon_r} E_r$ are the canonical maps. Granted existence of $B_{\infty} = \bigcup_r B_r$ and $Z_{\infty} = \bigcap_r Z_r$, the *limit* of E is $E_{\infty} = Z_{\infty}/B_{\infty}$.

2. An *exact couple* in \mathcal{A} is a triple $\Gamma = (\alpha, \beta, \gamma)$ where $\cdots \xrightarrow{\gamma} A \xrightarrow{\alpha} A \xrightarrow{\beta} X \xrightarrow{\gamma} \cdots$ is exact in \mathcal{A} . Verify the following facts about exact couples Γ in \mathcal{A} :

- (a) The pair $X_{\Gamma} = (X, \beta \gamma)$ is a differential object in \mathcal{A} .
- (b) Γ gives rise to another exact couple Γ' where $A' = \operatorname{Im} \alpha$ and $X' = H(X_{\Gamma})$ and the map α' is induced by α , the map β' by $\beta \alpha^{-1}$ and the map γ' by γ .
- (c) Γ gives rise to a spectral sequence E given by $E_r = X_{\Gamma_r}$ where $\Gamma_1 = \Gamma$ and $\Gamma_{r+1} = \Gamma'_r$. The differentials d_r of E_r are thus induced by $\beta \alpha^{-r+1} \gamma$.

Check for each exact sequence $\eta: 0 \to X \xrightarrow{f} X \xrightarrow{g} Y \to 0$ of differential objects in \mathcal{A} :

(d) η gives rise to a spectral sequence E_{η} that is induced by the exact couple $(H(f), H(g), \delta)$ where δ is the connecting morphism in cohomology obtained from the snake lemma.

Now convince yourself of the following facts that hold for each *filtered* differential object X in A, i.e. coming equipped with a filtration of differential subobjects $\cdots \subseteq X^{p+1} \subseteq X^p \subseteq \cdots \subseteq X$:

(e) The spectral sequence E induced by $\bigoplus_{p} (0 \to X^{p+1} \to X^p \to X^p / X^{p+1} \to 0)$ starts with

$$E_1 = \bigoplus_p H(X^p/X^{p+1}).$$

(f) Whenever for the spectral sequence from (e) we have in each X^p/X^{p+1} the identities

$$\bigcup_r d(X^{p-r}) \cap X^p = \operatorname{Im} d \cap X^p \quad \text{and} \quad \bigcap_r d^{-1}(X^{p+r}) \cap X^p = \operatorname{Ker} d \cap X^p,$$

we say E p-converges to $H(X)^p$, since in this situation there is a canonical isomorphism

$$E_{\infty} \cong \bigoplus_{n} H(X)^{p} / H(X)^{p+1}$$
.

To record this fact, we use the common notation $E_r^p \Rightarrow_p H(X)^p$.

To be handed in via email by July 13, 2020, 2 p.m.

Next, recall that a *double complex* $C = (C, d_{\rightarrow}, d_{\uparrow})$ consists of a $(\mathbb{Z} \times \mathbb{Z})$ -graded object C in \mathcal{A} with maps d_{\rightarrow} of degree (1, 0) and d_{\uparrow} of degree (0, 1) such that $d_{\rightarrow}^2 = d_{\uparrow}^2 = d_{\rightarrow}d_{\uparrow} + d_{\uparrow}d_{\rightarrow} = 0$.

Denote by Tot C the *total complex*, i.e. the differential object $(\bigoplus_{i,j} C^{i,j}, d_{\rightarrow} + d_{\uparrow})$. There are two natural ways to view it as a filtered differential object: as Tot_{\rightarrow} C and as Tot_{\uparrow} C with components

 $\operatorname{Tot}_{\to}^p C = \bigoplus_{j \ge p} C^{\bullet, j}$ and $\operatorname{Tot}_{\uparrow}^p C = \bigoplus_{i \ge p} C^{i, \bullet}$.

Let $_{\rightarrow}E$ and $_{\uparrow}E$ be the spectral sequences induced by $\operatorname{Tot}_{\rightarrow}C$ and $\operatorname{Tot}_{\uparrow}C$, respectively. Check the statements below:

(g) With the bigradings $H(\operatorname{Tot}_{\rightarrow} C)^{p,q} = H^{p+q}(\operatorname{Tot}_{\rightarrow}^p C)$ and $H(\operatorname{Tot}_{\uparrow} C)^{p,q} = H^{p+q}(\operatorname{Tot}_{\uparrow}^p C)$ the differentials $_{\rightarrow}d_r$ and $_{\uparrow}d_r$ are homogeneous maps of degree (r, -r+1) and we have

$${}_{\rightarrow}E_1^{p,q} \cong H^q_{\rightarrow}(C^{\bullet,p}) \quad \text{and} \quad {}_{\rightarrow}E_2^{p,q} \cong H^p_{\uparrow}(H^q_{\rightarrow}(C^{\bullet,\bullet})) \,,$$
$${}_{\uparrow}E_1^{p,q} \cong H^q_{\uparrow}(C^{p,\bullet}) \quad \text{and} \quad {}_{\uparrow}E_2^{p,q} \cong H^p_{\rightarrow}(H^q_{\uparrow}(C^{\bullet,\bullet})) \,.$$

Moreover, $_{\rightarrow}d_1^{p,q}$ and $_{\uparrow}d_1^{p,q}$ identify with $H^q_{\rightarrow}(d^{\bullet,p}_{\uparrow})$ and $H^q_{\uparrow}(d^{p,\bullet}_{\rightarrow})$ under the left-hand maps.

(h) If C is mostly positively (resp. mostly negatively) graded, i.e. there is n such that $C^{i,j} \neq 0$ implies $i, j \geq n$ (resp. $i, j \leq n$), each of $_{\rightarrow}E^{p,q}$ and $_{\uparrow}E^{p,q}$ p-converges to $H^{p+q}(\text{Tot }C)$.

3. Let $\mathcal{A} \xrightarrow{F} \mathcal{B}$ and $\mathcal{B} \xrightarrow{G} \mathcal{C}$ be left exact functors between abelian categories with enough injectives and countable exact coproducts. Recall that by definition of the derived functors we have a diagram

where the outer triangles commute and the functors $i_{\mathcal{X}}$ are left inverse quasi-inverses of the canonical embeddings $\mathbf{K}^+(\operatorname{Inj} \mathcal{X}) \to \mathbf{D}^+(\mathcal{X})$. In particular, there is a canonical natural transformation

$$\mathbf{R}(G \circ F) \longrightarrow \mathbf{R}G \circ \mathbf{R}F \, .$$

Convince yourself of the following facts:

- (a) For $X \in \mathcal{A}$ the canonical map $F(X) \to \mathbf{R}F(X)$ is invertible iff $R^iF(X) = 0$ for all $i \neq 0$. If this is the case, the object X is said to be *right F-acyclic*.
- (b) The map $\mathbf{R}(G \circ F) \to \mathbf{R}G \circ \mathbf{R}F$ is invertible iff $F(\operatorname{Inj} \mathcal{A})$ consists of G-acyclic objects.
- (c) Every $X \in \mathbf{C}^+(\mathcal{A})$ admits a *Cartan–Eilenberg resolution*, i.e. a mostly positively $(\mathbb{Z} \times \mathbb{N})$ graded double complex C in Inj \mathcal{A} together with a map $\iota \colon X \to C^{\bullet,0}$ such that for each pthe following diagram commutes and all of its columns are injective resolutions in \mathcal{A} :

Show for any Cartan–Eilenberg resolution (C, ι) of $X \in \mathbf{C}^+(\mathcal{A})$:

- (d) The map ι induces an isomorphism $X \to \text{Tot } C$ in $\mathbf{D}^+(\mathcal{A})$.
- (e) For the spectral sequences $_{\rightarrow}E$ and $_{\uparrow}E$ of the double complex F(C) we have

$$_{\rightarrow}E_2^{p,q} \cong R^p F(H^q(X))$$
 and $_{\uparrow}E_1^{p,q} \cong R^q F(X^p)$.

Both of these spectral sequences *p*-converge to $R^{p+q}F(X)$.

(f) If $\mathbf{R}(G \circ F) \to \mathbf{R}G \circ \mathbf{R}F$ is invertible, there is a spectral sequence E in \mathcal{A} with

$$E_2^{p,q} = R^p G(R^q F(X)) \Rightarrow_p R^{p+q} (G \circ F)(X) .$$

This is known as Grothendieck's spectral sequence.

4. Let Λ be a ring. Show that for each left Λ -module M and each complex $X \in \mathbf{C}^{-}(\operatorname{Mod} \Lambda)$ there exists a spectral sequence E such that

$$E_2^{p,q} = \operatorname{Tor}_p^{\Lambda}(H^q(X), M) \Rightarrow_p H^{p+q}(X \otimes_{\Lambda}^{\mathbf{L}} M) .$$