REPRESENTATION THEORY EXERCISES 12

HENNING KRAUSE
JAN GEUENICH

Our goal is to compare the right derived functor $\mathbf{R}(G \circ F)$ of the composite $G \circ F$ of two left exact functors F and G with the composite $\mathbf{R} G \circ \mathbf{R} F$ of their right derived functors. To do this, we begin with an example and then refresh our knowledge about spectral sequences.

1. Let Λ be the path algebra of the quiver $\bullet \rightarrow \bullet$ over some field k and as usual $D=\operatorname{Hom}_{k}(-, k)$. Consider on $\operatorname{Mod} \Lambda$ the endofunctor $F=G=\operatorname{Hom}_{\Lambda}(D \Lambda,-)$. Show that $\mathbf{R}(G \circ F) \not \equiv \mathbf{R} G \circ \mathbf{R} F$.

From now on, fix an abelian category \mathcal{A} with countable exact coproducts.
By a differential object in \mathcal{A} we mean a pair (X, d) consisting of an object X in \mathcal{A} together with an endomorphism $d \in \operatorname{End}_{\mathcal{A}}(X)$ such that $d^{2}=0$. Its cohomology is defined as $H(X)=\operatorname{Ker} d / \operatorname{Im} d$. A spectral sequence in \mathcal{A} is a sequence $E=\left(E_{r}\right)_{r \in \mathbb{N}_{+}}$of differential objects with $E_{r+1}=H\left(E_{r}\right)$. Given such E, define inductively $B_{r}=\left(\varepsilon_{r} \pi_{r}\right)^{-1}\left(\operatorname{Im} d_{r}\right)$ and $Z_{r}=\left(\varepsilon_{r} \pi_{r}\right)^{-1}\left(\operatorname{Ker} d_{r}\right)$ to obtain

$$
0=B_{0} \subseteq \cdots \subseteq B_{r} \subseteq B_{r+1} \subseteq \cdots \subseteq Z_{r+1} \subseteq Z_{r} \subseteq \cdots \subseteq Z_{0}=E_{1}
$$

where d_{r} is the differential of E_{r} and $Z_{r-1} \xrightarrow{\pi_{r}} Z_{r-1} / B_{r-1} \xrightarrow{\varepsilon_{r}} E_{r}$ are the canonical maps. Granted existence of $B_{\infty}=\bigcup_{r} B_{r}$ and $Z_{\infty}=\bigcap_{r} Z_{r}$, the limit of E is $E_{\infty}=Z_{\infty} / B_{\infty}$.
2. An exact couple in \mathcal{A} is a triple $\Gamma=(\alpha, \beta, \gamma)$ where $\cdots \xrightarrow{\gamma} A \xrightarrow{\alpha} A \xrightarrow{\beta} X \xrightarrow{\gamma} \cdots$ is exact in \mathcal{A}.

Verify the following facts about exact couples Γ in \mathcal{A} :
(a) The pair $X_{\Gamma}=(X, \beta \gamma)$ is a differential object in \mathcal{A}.
(b) Γ gives rise to another exact couple Γ^{\prime} where $A^{\prime}=\operatorname{Im} \alpha$ and $X^{\prime}=H\left(X_{\Gamma}\right)$ and the map α^{\prime} is induced by α, the map β^{\prime} by $\beta \alpha^{-1}$ and the map γ^{\prime} by γ.
(c) Γ gives rise to a spectral sequence E given by $E_{r}=X_{\Gamma_{r}}$ where $\Gamma_{1}=\Gamma$ and $\Gamma_{r+1}=\Gamma_{r}^{\prime}$. The differentials d_{r} of E_{r} are thus induced by $\beta \alpha^{-r+1} \gamma$.
Check for each exact sequence $\eta: 0 \rightarrow X \xrightarrow{f} X \xrightarrow{g} Y \rightarrow 0$ of differential objects in \mathcal{A} :
(d) η gives rise to a spectral sequence E_{η} that is induced by the exact couple $(H(f), H(g), \delta)$ where δ is the connecting morphism in cohomology obtained from the snake lemma.
Now convince yourself of the following facts that hold for each filtered differential object X in \mathcal{A}, i.e. coming equipped with a filtration of differential subobjects $\cdots \subseteq X^{p+1} \subseteq X^{p} \subseteq \cdots \subseteq X$:
(e) The spectral sequence E induced by $\bigoplus_{p}\left(0 \rightarrow X^{p+1} \rightarrow X^{p} \rightarrow X^{p} / X^{p+1} \rightarrow 0\right)$ starts with

$$
E_{1}=\bigoplus_{p} H\left(X^{p} / X^{p+1}\right) .
$$

(f) Whenever for the spectral sequence from (e) we have in each X^{p} / X^{p+1} the identities

$$
\bigcup_{r} d\left(X^{p-r}\right) \cap X^{p}=\operatorname{Im} d \cap X^{p} \quad \text { and } \quad \bigcap_{r} d^{-1}\left(X^{p+r}\right) \cap X^{p}=\operatorname{Ker} d \cap X^{p}
$$

we say $E p$-converges to $H(X)^{p}$, since in this situation there is a canonical isomorphism

$$
E_{\infty} \cong \bigoplus_{p} H(X)^{p} / H(X)^{p+1} .
$$

To record this fact, we use the common notation $E_{r}^{p} \Rightarrow_{p} H(X)^{p}$.
To be handed in via email by July 13, 2020, 2 p.m.

Next, recall that a double complex $C=\left(C, d_{\rightarrow}, d_{\uparrow}\right)$ consists of a $(\mathbb{Z} \times \mathbb{Z})$-graded object C in \mathcal{A} with maps d_{\rightarrow} of degree $(1,0)$ and d_{\uparrow} of degree $(0,1)$ such that $d_{\rightarrow}^{2}=d_{\uparrow}^{2}=d_{\rightarrow} d_{\uparrow}+d_{\uparrow} d_{\rightarrow}=0$.
Denote by Tot C the total complex, i.e. the differential object $\left(\bigoplus_{i, j} C^{i, j}, d_{\rightarrow}+d_{\uparrow}\right)$. There are two natural ways to view it as a filtered differential object: as $\operatorname{Tot}_{\rightarrow} C$ and as $\operatorname{Tot}_{\uparrow} C$ with components

$$
\operatorname{Tot}_{\rightarrow}^{p} C=\bigoplus_{j \geq p} C^{\bullet}, j \quad \text { and } \quad \operatorname{Tot}_{\uparrow}^{p} C=\bigoplus_{i \geq p} C^{i, \bullet}
$$

Let $\rightarrow E$ and ${ }_{\uparrow} E$ be the spectral sequences induced by $\operatorname{Tot}_{\rightarrow} C$ and $\operatorname{Tot}_{\uparrow} C$, respectively.
Check the statements below:
(g) With the bigradings $H\left(\operatorname{Tot}_{\rightarrow} C\right)^{p, q}=H^{p+q}\left(\operatorname{Tot}_{\rightarrow}^{p} C\right)$ and $H\left(\operatorname{Tot}_{\uparrow} C\right)^{p, q}=H^{p+q}\left(\operatorname{Tot}_{\uparrow}^{p} C\right)$ the differentials $\rightarrow d_{r}$ and ${ }_{\uparrow} d_{r}$ are homogeneous maps of degree $(r,-r+1)$ and we have

$$
\left.\begin{array}{rlrl}
\rightarrow E_{1}^{p, q} \cong H_{\rightarrow}^{q}\left(C^{\bullet, p}\right) & \text { and } & \rightarrow E_{2}^{p, q} \cong H_{\uparrow}^{p}\left(H_{\rightarrow}^{q}\left(C^{\bullet \bullet \bullet}\right)\right), \\
\uparrow E_{1}^{p, q} \cong H_{\uparrow}^{q}\left(C^{p, \bullet}\right) & \text { and } & \uparrow E_{2}^{p, q} \cong H_{\rightarrow}^{p}\left(H _ { \uparrow } ^ { q } \left(C^{\bullet}, \bullet\right.\right.
\end{array}\right) .
$$

Moreover, $\rightarrow d_{1}^{p, q}$ and $\uparrow d_{1}^{p, q}$ identify with $H_{\rightarrow}^{q}\left(d_{\uparrow}^{\bullet, p}\right)$ and $H_{\uparrow}^{q}\left(d_{\rightarrow}^{p \bullet \bullet}\right)$ under the left-hand maps.
(h) If C is mostly positively (resp. mostly negatively) graded, i.e. there is n such that $C^{i, j} \neq 0$ implies $i, j \geq n$ (resp. $i, j \leq n$), each of $\rightarrow E^{p, q}$ and $\uparrow E^{p, q} p$-converges to $H^{p+q}(\operatorname{Tot} C)$.
3. Let $\mathcal{A} \xrightarrow{F} \mathcal{B}$ and $\mathcal{B} \xrightarrow{G} \mathcal{C}$ be left exact functors between abelian categories with enough injectives and countable exact coproducts. Recall that by definition of the derived functors we have a diagram

where the outer triangles commute and the functors $\mathbf{i}_{\mathcal{X}}$ are left inverse quasi-inverses of the canonical embeddings $\mathbf{K}^{+}(\operatorname{Inj} \mathcal{X}) \rightarrow \mathbf{D}^{+}(\mathcal{X})$. In particular, there is a canonical natural transformation

$$
\mathbf{R}(G \circ F) \longrightarrow \mathbf{R} G \circ \mathbf{R} F .
$$

Convince yourself of the following facts:
(a) For $X \in \mathcal{A}$ the canonical map $F(X) \rightarrow \mathbf{R} F(X)$ is invertible iff $R^{i} F(X)=0$ for all $i \neq 0$. If this is the case, the object X is said to be right F-acyclic.
(b) The map $\mathbf{R}(G \circ F) \rightarrow \mathbf{R} G \circ \mathbf{R} F$ is invertible iff $F(\operatorname{Inj} \mathcal{A})$ consists of G-acyclic objects.
(c) Every $X \in \mathbf{C}^{+}(\mathcal{A})$ admits a Cartan-Eilenberg resolution, i.e. a mostly positively $(\mathbb{Z} \times \mathbb{N})$ graded double complex C in $\operatorname{Inj} \mathcal{A}$ together with a map $\iota: X \rightarrow C^{\bullet, 0}$ such that for each p the following diagram commutes and all of its columns are injective resolutions in \mathcal{A} :

Show for any Cartan-Eilenberg resolution (C, ι) of $X \in \mathbf{C}^{+}(\mathcal{A})$:
(d) The map ι induces an isomorphism $X \rightarrow \operatorname{Tot} C$ in $\mathrm{D}^{+}(\mathcal{A})$.
(e) For the spectral sequences $\rightarrow E$ and ${ }_{\uparrow} E$ of the double complex $F(C)$ we have

$$
\rightarrow E_{2}^{p, q} \cong R^{p} F\left(H^{q}(X)\right) \quad \text { and } \quad \uparrow E_{1}^{p, q} \cong R^{q} F\left(X^{p}\right)
$$

Both of these spectral sequences p-converge to $R^{p+q} F(X)$.
(f) If $\mathbf{R}(G \circ F) \rightarrow \mathbf{R} G \circ \mathbf{R} F$ is invertible, there is a spectral sequence E in \mathcal{A} with

$$
E_{2}^{p, q}=R^{p} G\left(R^{q} F(X)\right) \Rightarrow_{p} R^{p+q}(G \circ F)(X) .
$$

This is known as Grothendieck's spectral sequence.
4. Let Λ be a ring. Show that for each left Λ-module M and each complex $X \in \mathbf{C}^{-}(\operatorname{Mod} \Lambda)$ there exists a spectral sequence E such that

$$
E_{2}^{p, q}=\operatorname{Tor}_{p}^{\Lambda}\left(H^{q}(X), M\right) \Rightarrow_{p} H^{p+q}\left(X \otimes_{\Lambda}^{\mathbf{L}} M\right) .
$$

