REPRESENTATION THEORY EXERCISES 2

HENNING KRAUSE JAN GEUENICH

- 1. (a) Let \mathcal{A} be an exact category such that every morphism f in \mathcal{A} admits a factorization f = gh where g is an admissible mono and f is an admissible epi. Prove that \mathcal{A} is abelian.
 - (b) Let $(\mathcal{A}, \mathcal{E}) \xrightarrow{F} (\mathcal{B}, \mathcal{F})$ be an exact functor and let $\mathcal{F}' \subseteq \mathcal{F}$ be another exact structure on \mathcal{B} . Show that $(\mathcal{A}, \mathcal{E} \cap F^{-1}(\mathcal{F}'))$ is an exact category.
- 2. (a) Let \mathcal{A} be a cocomplete abelian category satisfying (AB5) and let \mathcal{C} be a Serre subcategory of \mathcal{A} that is closed under coproducts. Prove that \mathcal{A}/\mathcal{C} is cocomplete and satisfies (AB5).
 - (b) Give an example of a cocomplete abelian category that does not satisfy condition (AB5).

3. Let $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ be an almost split sequence in an abelian category \mathcal{A} . We denote by $E_X = \operatorname{End}_{\mathcal{A}}(X)$ and $E_Z = \operatorname{End}_{\mathcal{A}}(Z)$ the endomorphism rings of the end terms and consider the effaceable functors $S \in \operatorname{eff} \mathcal{A}$ and $S^{\vee} \in \operatorname{eff} \mathcal{A}^{\operatorname{op}}$ defined by the exact sequences

$$\operatorname{Hom}_{\mathcal{A}}(-,Y) \xrightarrow{\operatorname{Hom}_{\mathcal{A}}(-,g)} \operatorname{Hom}_{\mathcal{A}}(-,Z) \longrightarrow S \longrightarrow 0,$$

$$\operatorname{Hom}_{\mathcal{A}}(Y,-) \xrightarrow{\operatorname{Hom}_{\mathcal{A}}(f,-)} \operatorname{Hom}_{\mathcal{A}}(X,-) \longrightarrow S^{\vee} \longrightarrow 0.$$

Recall or verify the following facts:

- (a) E_X and E_Z are local.
- (b) S and S^{\vee} are simple.
- (c) End $S \cong \operatorname{top} E_Z$ and End $S^{\vee} \cong \operatorname{top} E_X^{\operatorname{op}}$.

Conclude that there is a canonical isomorphism top $E_X \cong \text{top } E_Z$.

To be handed in via email by May 4, 2020, 2 p.m.