REPRESENTATION THEORY EXERCISES 3

HENNING KRAUSE JAN GEUENICH

1. Let \mathcal{A} be an abelian category and \mathcal{C} a Serre subcategory of \mathcal{A} . Prove the following:

- (a) If \mathcal{A} is noetherian, then so are \mathcal{C} and \mathcal{A}/\mathcal{C} .
- (b) If \mathcal{A} is artinian, then so are \mathcal{C} and \mathcal{A}/\mathcal{C} .
- (c) Neither the converse of (a) nor the converse of (b) is true.

Hint for (c): Consider the matrix ring $\begin{pmatrix} \mathbb{R} & \mathbb{R} \\ 0 & \mathbb{Q} \end{pmatrix}$, which is left noetherian and left artinian but neither right noetherian nor right artinian.

- 2. (a) Explain why the condition (Tr4) in the definition of a triangulated category is known as the octahedral axiom.
 - (b) Consult the literature (e.g. Neeman's book *Triangulated Categories* or Hubery's *Notes on the Octahedral Axiom*) and compare different formulations of (Tr4). Pick the one you consider the most elegant.
- 3. (a) Prove the equivalence of the following statements for a ring homomorphism $\phi: A \to B$:
 - (i) ϕ is an epimorphism.
 - (ii) The map $B \otimes_A B \to B$ induced by ϕ is an isomorphism.
 - (iii) Restriction of scalars $Mod B \rightarrow Mod A$ via ϕ is fully faithful.
 - (b) Compute the universal localization of $A = \begin{pmatrix} \mathbb{Z} & \mathbb{Q} \\ 0 & \mathbb{Z} \end{pmatrix}$ with respect to $\Sigma = \{e_2A \xrightarrow{e_{12}} e_1A\}$.

To be handed in via email by May 11, 2020, 2 p.m.