REPRESENTATION THEORY EXERCISES 4

HENNING KRAUSE

JAN GEUENICH

1. Let \mathcal{T} be an additive category with shift functor Σ. Candidate triangles are triangles (α, β, γ) such that ($\Sigma^{-1} \gamma, \alpha, \beta, \gamma, \Sigma \alpha$) forms a complex. A morphism between two candidate triangles in \mathcal{T}

is null-homotopic if there are maps $\Phi_{1}: Y \rightarrow X^{\prime}, \Phi_{2}: Z \rightarrow Y^{\prime}, \Phi_{3}: \Sigma X \rightarrow Z^{\prime}$ in \mathcal{T} satisfying:

$$
\begin{array}{lll}
\phi_{1} & =\Sigma^{-1}\left(\gamma^{\prime} \circ \Phi_{3}\right)+\Phi_{1} \circ \alpha \\
\phi_{2} & = & \alpha^{\prime} \circ \Phi_{1}+\Phi_{2} \circ \beta \\
\phi_{3} & = & \beta^{\prime} \circ \Phi_{2}+\Phi_{3} \circ \gamma
\end{array}
$$

A candidate triangle in \mathcal{T} is said to be contractible if its identity morphism is null-homotopic.
Verify that the following statements hold in every triangulated category:
(a) Every contractible triangle is an exact triangle.
(b) Every exact triangle of the form $X \rightarrow Y \rightarrow Z \xrightarrow{0} \Sigma X$ splits, i.e. it is isomorphic to

$$
X \xrightarrow{\binom{1}{0}} X \oplus Z \xrightarrow{(01)} Z \xrightarrow{0} \Sigma X .
$$

(c) Triangles (α, β, γ) and $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ are exact iff their sum $\left(\alpha \oplus \alpha^{\prime}, \beta \oplus \beta^{\prime}, \gamma \oplus \gamma^{\prime}\right)$ is exact.
2. A triangulated category \mathcal{T} is said to be algebraic if there is an exact equivalence between \mathcal{T} and the stable category $\operatorname{St} \mathcal{A}$ of a Frobenius category \mathcal{A} with the induced triangulated structure.
Prove the following:
(a) For every exact triangle of the form

$$
X \xrightarrow{2 \cdot \operatorname{did} x} X \longrightarrow Z \longrightarrow \Sigma
$$

in an algebraic triangulated category we have $2 \cdot \mathrm{id}_{Z}=0$.
(b) The category \mathcal{T} of finitely generated projective modules over the ring $R=\mathbb{Z} / 4 \mathbb{Z}$ with shift $\Sigma=\mathrm{id}_{\mathcal{T}}$ can be endowed with a triangulated structure such that the exact triangles are the triangles isomorphic to finite direct sums of contractible triangles and the triangle

$$
R \xrightarrow{\cdot 2} R \xrightarrow{\cdot 2} R \xrightarrow{\cdot 2} \Sigma R=R .
$$

(c) The triangulated category \mathcal{T} in (b) is not algebraic.

To be handed in via email by May 18, 2020, 2 p.m.
3. Let \mathcal{A} be an exact category and denote for objects $X, Z \in \mathcal{A}$ by $\operatorname{Ext}^{1}(Z, X)$ the collection of all isomorphism classes of admissible exact sequences $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{A}.

Recall or verify the following facts:
(a) There are well-defined bilinear maps

$$
\begin{aligned}
& \operatorname{Ext}^{1}(Z, X) \times \operatorname{Hom}\left(Z^{\prime}, Z\right) \longrightarrow \operatorname{Ext}^{1}\left(Z^{\prime}, X\right), \quad(\eta, g) \longmapsto \eta \cdot g, \\
& \operatorname{Hom}\left(X,,^{\prime} X\right) \times \operatorname{Ext}^{1}(Z, X) \longrightarrow \operatorname{Ext}^{1}\left(Z,^{\prime} X\right), \quad(f, \eta) \longmapsto f \cdot \eta,
\end{aligned}
$$

satisfying $f \cdot(\eta \cdot g)=(f \cdot \eta) \cdot g$ induced by commutative diagrams in \mathcal{A} as follows:

Namely, $\eta \cdot g$ is obtained by pulling back β along g and $f \cdot \eta$ by pushing out α along f.
(b) For every morphism of admissible exact sequences in \mathcal{A}

the identity $\phi_{1} \cdot \xi=\xi^{\prime} \cdot \phi_{3}$ holds in $\operatorname{Ext}^{1}\left(Z, X^{\prime}\right)$, i.e. we can factor $\phi_{2}=\phi_{2}^{\prime \prime} \phi_{2}^{\prime}$ such that there is a commutative diagram as drawn below:

