REPRESENTATION THEORY EXERCISES 5

HENNING KRAUSE JAN GEUENICH

1. Let \mathcal{A} be an exact category. Prove that the composite

$$\mathcal{A} \to \mathbf{C}(\mathcal{A}) \to \mathbf{K}(\mathcal{A}) \to \mathbf{D}(\mathcal{A})$$

of canonical functors is fully faithful.

- **2.** Verify the following facts about morphisms $f: X \to Y$ in triangulated categories:
 - (a) f admits a kernel iff f admits a cokernel iff f has the form

$$X' \oplus K \xrightarrow{\begin{pmatrix} f' & 0 \\ 0 & 0 \end{pmatrix}} Y' \oplus C$$

for some isomorphism f'.

- (b) f admits a kernel and a cokernel if f is a monomorphism or epimorphism.
- (c) f is an isomorphism iff the cone of f is zero iff f is a monomorphism and an epimorphism.

3. Let $\mathcal{A} = \operatorname{Mod} \Lambda$ be the module category of a ring Λ and let X be a complex in \mathcal{A} . Viewing Λ as a complex in \mathcal{A} concentrated in degree zero, show that there exists a canonical isomorphism:

$$\operatorname{Hom}_{\mathbf{D}(\mathcal{A})}(\Lambda, X) \cong H^0 X$$

To be handed in via email by May 25, 2020, 2 p.m.