REPRESENTATION THEORY EXERCISES 8

HENNING KRAUSE JAN GEUENICH

1. Let Λ be a ring and M a Λ -bimodule. Recall that the *trivial extension* of Λ by M is the ring

$$T = \Lambda \ltimes M = \begin{pmatrix} \Lambda \\ 0 \\ & \Lambda \end{pmatrix}$$

It contains Λ as a subring via the diagonal embedding $\Lambda \to T$ and can be regarded as a \mathbb{Z} -graded ring with $T^0 = \Lambda$ and $T^1 = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$. Clearly, also the quotient T/T^+ is isomorphic to Λ . Verify the following facts:

- (a) T is canonically isomorphic to the quotient of the tensor algebra of M by the ideal $M^{\otimes 2}$.
- (b) $T^{\times} = \Lambda^{\times} \ltimes M$ and $J(T) = J(\Lambda) \ltimes M$.
- (c) $\operatorname{Mod} T$ is canonically isomorphic to a category with class of objects

$$\left\{ (X,x) \middle| \begin{array}{l} X \in \operatorname{Mod} \Lambda, \\ x \in \operatorname{Hom}_{\Lambda}(X \otimes_{\Lambda} M, X) \end{array} \text{ with } x \circ (x \otimes \operatorname{id}_{M}) = 0 \right\}.$$

(d) $\operatorname{GrMod} T$ is canonically isomorphic to a category with class of objects

$$\left\{ (X^n, x^n)_{n \in \mathbb{Z}} \middle| \begin{array}{l} X^n \in \operatorname{Mod} \Lambda, \\ x^n \in \operatorname{Hom}_{\Lambda}(X^n \otimes_{\Lambda} M, X^{n+1}) \end{array} \right. \text{ with } x^n \circ (x^{n-1} \otimes \operatorname{id}_M) = 0 \right\}.$$

(e) $\operatorname{GrMod} T$ is equivalent to $\operatorname{Mod} R$ for the *repetitive algebra*

$$R = \begin{pmatrix} \ddots & \ddots & & \\ & \Lambda & M \\ & & \Lambda & M \\ & & \ddots & \ddots \end{pmatrix}$$

where multiplication of off-diagonal elements is defined as zero.

Fix now a commutative artinian ring k and denote by $D = \text{Hom}_k(-, E)$ the Matlis duality over k. We assume in what follows that Λ is an artin algebra over k.

(f) If M is finitely generated over k, then T is an artin algebra over k.

Finally, we restrict to the important special case $M = D\Lambda$.

- (g) T is a symmetric algebra, i.e. the T-bimodules T and DT are isomorphic.
- (h) grmod T is a Frobenius category with grproj $T = \text{add}\{T(n) : n \in \mathbb{Z}\}$.

We finish with some explicit examples where k is assumed to be symmetric.

(i) For $\Lambda = k$ we have $T \cong k[x]/(x^2)$ with deg x = 1.

(j) For $\Lambda = k[x]/(x^2)$ we have $T \cong k[x,y]/(x^2,y^2)$ with deg x = 0 and deg y = 1.

(k) For
$$\Lambda = k \left(\bullet \xrightarrow{x} \bullet \right)$$
 we have $T \cong k \left(\bullet \xleftarrow{x} \bullet \right) / (xyx, yxy)$ with deg $x = 0$ and deg $y = 1$

What can you say about $D^b \pmod{\Lambda}$ in these examples?

To be handed in via email by June 15, 2020, 2 p.m.

2. Let Λ be a semilocal ring, $\overline{\Lambda} = \Lambda/J(\Lambda)$ and $M = J(\Lambda)/J^2(\Lambda)$. Consider the *separated algebra* $\Sigma = \left(\overline{\Lambda} \times \overline{\Lambda}\right) \ltimes M$

where $x \in \overline{\Lambda} \times \overline{\Lambda}$ acts on $m \in M$ as $xm = x_1m$ on the left and as $mx = mx_2$ on the right. Prove the following:

- (a) Σ is hereditary with $J^2(\Sigma) = 0$.
- (b) $\operatorname{Mod} \Sigma$ is canonically isomorphic to a category with class of objects

$$\left\{ (X', X'', \phi) \middle| \begin{array}{l} X', X'' \in \operatorname{Mod}\overline{\Lambda}, \\ \phi \in \operatorname{Hom}_{\overline{\Lambda}}(X' \otimes_{\overline{\Lambda}} M, X'') \end{array} \right\}$$

(c) There is a functor $\operatorname{Mod} \Lambda \xrightarrow{T} \operatorname{Mod} \Sigma$ given on objects as

$$Y \mapsto (Y/\operatorname{rad} Y, \operatorname{rad} Y/\operatorname{rad}^2 Y, \phi_Y)$$

where the map ϕ_Y is induced by multiplication, i.e. $\phi_Y(\overline{y} \otimes m) = ym$.

We consider now the trivial extension $\widetilde{\Lambda} = \overline{\Lambda} \ltimes M$.

- (d) $\widetilde{\Lambda}$ identifies with a subring of Σ via the diagonal embedding $\overline{\Lambda} \to \overline{\Lambda} \times \overline{\Lambda}$.
- (e) Restriction of scalars $\operatorname{Mod} \Sigma \xrightarrow{S} \operatorname{Mod} \widetilde{\Lambda}$ acts on objects as

$$(X', X'', \phi) \mapsto (X' \oplus X'', \begin{pmatrix} 0 & 0 \\ \phi & 0 \end{pmatrix}).$$

In the following, we assume $J^2(\Lambda) = 0$ and that the projection $\Lambda \to \overline{\Lambda}$ admits a right inverse σ .

(f) The assignment $(\overline{x}, m) \mapsto \sigma(\overline{x}) + m$ defines a ring isomorphism $\widetilde{\Lambda} \xrightarrow{\sigma_*} \Lambda$.

It can be shown (see Auslander–Reiten–Smalø's *Representation Theory of Artin Algebras*, Ch. X.2) that, if Λ is an artin algebra, then T induces an equivalence $\underline{\text{mod}} \Lambda \to \underline{\text{mod}} \Sigma$ of stable categories. Discuss the special cases $\Lambda = k[x]/(x^2)$ and $\Lambda = k[x,y]/(x^2,y^2)$ where k is a field.

3. Let Λ be a commutative noetherian ring. Denote by \mathfrak{S} the class of Serre subcategories of $\operatorname{mod} \Lambda$ and by \mathfrak{T} the class of thick subcategories of $\mathbf{D}^{\operatorname{per}}(\Lambda)$. Prove that the assignment

$$\mathcal{C} \mapsto \mathcal{T}_{\mathcal{C}} = \left\{ X \in \mathbf{D}^{\mathrm{per}}(\Lambda) : H^{i}(X) \in \mathcal{C} \text{ for all } i \in \mathbb{Z} \right\}$$

establishes a bijection $\mathfrak{S} \to \mathfrak{T}$.

Hint: Use the *classification theorem of Hopkins and Neeman*, which states that \mathfrak{T} is in bijection with the set of specialization-closed subsets of Spec Λ via $\mathcal{T} \mapsto \text{Supp } \mathcal{T} = \bigcup_{X \in \mathcal{T}, i \in \mathbb{Z}} \text{Supp } H^i(X)$.

Furthermore, observe that every thick subcategory of $\operatorname{mod}\Lambda$ is a Serre subcategory.