REPRESENTATION THEORY EXERCISES 11

HENNING KRAUSE JAN GEUENICH

Let k be an infinite field and fix integers $n, d \in \mathbb{N}$. We use the notations from sheets 9 and 10. Moreover, for $\lambda \in \Lambda(n, d)$ write $S_k(n, \lambda)$ for the algebra $e_{\lambda}S_k(n, d)e_{\lambda}$.

In case $n \ge d$ denote by $\mathbb{1}$ the sequence $(1, \ldots, 1) \in \Lambda(n, d)$ of length d and for each $\sigma \in \mathfrak{S}_d$ write ω_{σ} for the element $\omega \in \Omega$ with $(i_1 \sigma, i_1) \in \omega$.

As usual, the canonical map $k \operatorname{GL}(n,k) \to S_k(n,d)$ is used for restriction of scalars.

1. The weight space of weight $\lambda \in \Lambda(n, d)$ for a left $S_k(n, d)$ -module M is by definition

$$M_{\lambda} = \left\{ m \in M : xm = x_1^{\lambda_1} \cdots x_n^{\lambda_n} m \text{ for all } \operatorname{diag}(x_1, \dots, x_n) \in \operatorname{GL}(n, k) \right\}.$$

Verify directly the weight-space decomposition $M = \bigoplus_{\lambda \in \Lambda(n,d)} M_{\lambda}$ and prove $M_{\lambda} = e_{\lambda}M$.

2. The *character* of a finite-dimensional left $S_k(n, d)$ -module M is the integer polynomial

$$\chi_M = \sum_{\lambda \in \Lambda(n,d)} \dim_k M_\lambda \cdot X_1^{\lambda_1} \cdots X_n^{\lambda_n}.$$

Prove that characters are ...

- (a) symmetric in the sense that $\chi_M \in \mathbb{Z}[X_1, \ldots, X_n]^{\mathfrak{S}_n}$,
- (b) *additive* in the sense that $\chi_{M\oplus N} = \chi_M + \chi_N$,
- (c) *multiplicative* in the sense that $\chi_{M\otimes_k N} = \chi_M \cdot \chi_N$.

One can show that $\chi_M(x_1, \ldots, x_n) = \operatorname{tr}_k(M \xrightarrow{g} M)$ for all $g \in \operatorname{GL}(n, k)$ where $x_1, \ldots, x_n \in \overline{k}$ are the eigenvalues of g listed with multiplicity (see Green's *Polynomial Representations of* GL_n).

3. Assuming $n \ge d$ show the following:

- (a) $\sigma \mapsto e_{\omega_{\sigma}}$ defines an isomorphism $k\mathfrak{S}_d \to S_k(n, 1)$ of k-algebras.
- (b) $1 \mapsto e_{i_1}$ defines an isomorphism $k\mathfrak{S}_d \to V^1$ of right $k\mathfrak{S}_d$ -modules.
- (c) $f \mapsto f(e_{i_1})$ defines an isomorphism $S_k(n, d)e_1 \to V^{\otimes d}$ of left $S_k(n, d)$ -modules.

Deduce that there is an induced isomorphism $\operatorname{End}_{S_k(n,d)}(V^{\otimes d}) \cong k\mathfrak{S}_d$ of k-algebras.

4. Let $n \ge d$ and regard $e_{\mathbb{1}}S_k(n,d)$ as a left $k\mathfrak{S}_d$ -module via 3. (a). Prove that the Schur functor

$$F = \operatorname{Hom}_{S_k(n,d)} \left(V^{\otimes d}, - \right) : S_k(n,d) \operatorname{Mod} \longrightarrow k\mathfrak{S}_d \operatorname{Mod}$$

is isomorphic to $e_1 S_k(n,d) \otimes_{S_k(n,d)} -$.

Verify that F maps each projective left module $P_{\lambda} = S_k(n, d)e_{\lambda}$ to the dual of the corresponding permutation module V^{λ} and, restricted to the subcategories permutation by these modules, induces an equivalence, i.e. the map $\operatorname{Hom}_{S_k(n,d)}(P_{\lambda}, P_{\mu}) \to \operatorname{Hom}_{k\mathfrak{S}_d}((V^{\lambda})^{\vee}, (V^{\mu})^{\vee})$ induced by F is bijective.

To be handed in by January 27, 2020, 2 p.m. into post box 30.