REPRESENTATION THEORY EXERCISES 11

HENNING KRAUSE

JAN GEUENICH

Let k be an infinite field and fix integers $n, d \in \mathbb{N}$. We use the notations from sheets 9 and 10 . Moreover, for $\lambda \in \Lambda(n, d)$ write $S_{k}(n, \lambda)$ for the algebra $e_{\lambda} S_{k}(n, d) e_{\lambda}$.
In case $n \geq d$ denote by $\mathbb{1}$ the sequence $(1, \ldots, 1) \in \Lambda(n, d)$ of length d and for each $\sigma \in \mathfrak{S}_{d}$ write ω_{σ} for the element $\omega \in \Omega$ with $\left(i_{1} \sigma, i_{1}\right) \in \omega$.

As usual, the canonical map $k \mathrm{GL}(n, k) \rightarrow S_{k}(n, d)$ is used for restriction of scalars.

1. The weight space of weight $\lambda \in \Lambda(n, d)$ for a left $S_{k}(n, d)$-module M is by definition

$$
M_{\lambda}=\left\{m \in M: x m=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} m \text { for all } \operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{GL}(n, k)\right\} .
$$

Verify directly the weight-space decomposition $M=\bigoplus_{\lambda \in \Lambda(n, d)} M_{\lambda}$ and prove $M_{\lambda}=e_{\lambda} M$.
2. The character of a finite-dimensional left $S_{k}(n, d)$-module M is the integer polynomial

$$
\chi_{M}=\sum_{\lambda \in \Lambda(n, d)} \operatorname{dim}_{k} M_{\lambda} \cdot X_{1}^{\lambda_{1}} \cdots X_{n}^{\lambda_{n}} .
$$

Prove that characters are ...
(a) symmetric in the sense that $\chi_{M} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]^{\mathfrak{S}_{n}}$,
(b) additive in the sense that $\chi_{M \oplus N}=\chi_{M}+\chi_{N}$,
(c) multiplicative in the sense that $\chi_{M \otimes_{k} N}=\chi_{M} \cdot \chi_{N}$.

One can show that $\chi_{M}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{tr}_{k}(M \xrightarrow{g .} M)$ for all $g \in \operatorname{GL}(n, k)$ where $x_{1}, \ldots, x_{n} \in \bar{k}$ are the eigenvalues of g listed with multiplicity (see Green's Polynomial Representations of GL_{n}).
3. Assuming $n \geq d$ show the following:
(a) $\sigma \mapsto e_{\omega_{\sigma}}$ defines an isomorphism $k \mathfrak{S}_{d} \rightarrow S_{k}(n, \mathbb{1})$ of k-algebras.
(b) $1 \mapsto e_{i_{1}}$ defines an isomorphism $k \mathfrak{S}_{d} \rightarrow V^{1}$ of right $k \mathfrak{S}_{d}$-modules.
(c) $f \mapsto f\left(e_{i_{1}}\right)$ defines an isomorphism $S_{k}(n, d) e_{1} \rightarrow V^{\otimes d}$ of left $S_{k}(n, d)$-modules.

Deduce that there is an induced isomorphism $\operatorname{End}_{S_{k}(n, d)}\left(V^{\otimes d}\right) \cong k \mathfrak{S}_{d}$ of k-algebras.
4. Let $n \geq d$ and regard $e_{1} S_{k}(n, d)$ as a left $k \mathfrak{S}_{d}$-module via 3. (a). Prove that the Schur functor

$$
F=\operatorname{Hom}_{S_{k}(n, d)}\left(V^{\otimes d},-\right): S_{k}(n, d) \operatorname{Mod} \longrightarrow k \mathfrak{S}_{d} \operatorname{Mod}
$$

is isomorphic to $e_{1} S_{k}(n, d) \otimes_{S_{k}(n, d)}-$.
Verify that F maps each projective left module $P_{\lambda}=S_{k}(n, d) e_{\lambda}$ to the dual of the corresponding permutation module V^{λ} and, restricted to the subcategories spanned by these modules, induces an equivalence, i.e. the map $\operatorname{Hom}_{S_{k}(n, d)}\left(P_{\lambda}, P_{\mu}\right) \rightarrow \operatorname{Hom}_{k \mathfrak{S}_{d}}\left(\left(V^{\lambda}\right)^{\vee},\left(V^{\mu}\right)^{\vee}\right)$ induced by F is bijective.

To be handed in by January 27, 2020, 2 p.m. into post box 30 .

