REPRESENTATION THEORY EXERCISES 2

HENNING KRAUSE JAN GEUENICH

1. Show for objects X in abelian categories:

- (a) Every ascending chain $0 = X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X$ of subobjects with semisimple quotients X_{i+1}/X_i satisfies $X_i \subseteq \text{soc}^i(X)$ for all $i \in \mathbb{N}$.
- (b) If X is artinian and $X = X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq 0$ is a descending chain of subobjects with semisimple quotients X_i/X_{i+1} , then $\operatorname{rad}^i(X) \subseteq X_i$ for all $i \in \mathbb{N}$.
- (c) If X is artinian and there is a smallest $r \in \mathbb{N}$ with $\operatorname{rad}^{r}(X) = 0$ as well as a smallest $s \in \mathbb{N}$ with $\operatorname{soc}^{s}(X) = X$, then r = s. This integer is then referred to as the *Loewy length* of X.

Hint for (b): For artinian objects X the radical rad(X) is characterized as the smallest subobject Y of X such that the quotient X/Y is semisimple.

2. Let Γ and Λ be unitary rings and $\phi \colon \Gamma \to \Lambda$ a not necessarily unitary homomorphism of rings. Write *e* for the idempotent $\phi(1)$ in Λ . Consider the *restriction of scalars* along ϕ , i.e. the functor

$$\operatorname{Mod} \Lambda \xrightarrow{\phi_*} \operatorname{Mod} \Gamma$$

that associates with each Λ -module M the Γ -module Me with right Γ -operation $(m, x) \mapsto mf(x)$ and that is given on morphisms by restriction. Prove the following:

- (a) ϕ_* is isomorphic to $-\otimes_{\Lambda} \Lambda e$ with right adjoint $\phi^! = \operatorname{Hom}_{\Gamma}(\Lambda e, -)$.
- (b) ϕ_* is isomorphic to $\operatorname{Hom}_{\Lambda}(e\Lambda, -)$ with left adjoint $\phi^* = \otimes_{\Gamma} e\Lambda$.
- (c) ϕ_* is exact, $\phi^!$ left exact and ϕ^* right exact.

Assume from now on that ϕ is the canonical inclusion $e\Lambda e \to \Lambda$ with an idempotent e in Λ .

- (d) $\phi_* \circ \phi^!$ and $\phi_* \circ \phi^*$ are both isomorphic to the identity.
- (e) ϕ_* surjectively maps submodules of $e\Lambda$ to right ideals of $e\Lambda e$.
- (f) ϕ_* maps simple Λ -modules that are not annihilated by the element *e* to simple $e\Lambda e$ -modules. On the level of isomorphism classes, this assignment is bijective.
- (g) $\phi^!$ maps injective Γ -modules to injective Λ -modules and ϕ^* maps projective Γ -modules to projective Λ -modules. On the level of isomorphism classes, this assignment is injective.
- (h) Explicitly describe the assignments in (f) and (g) for $\Lambda = \mathbb{C}Q/(ab)$ and $e = e_1 + e_3$ and

$$Q = 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

To be handed in by October 31, 2019, 2 p.m. into post box 30.

3. Let \mathcal{X} be a class of objects in an abelian category \mathcal{A} . Show that $\operatorname{Filt}(\mathcal{X})$ is the smallest full subcategory of \mathcal{A} that contains \mathcal{X} and is closed under extensions.

4 (*). Find examples M of finite-length modules whose endomorphism ring is ...

- (a) ... not left artinian.
- (b) ... not right artinian.
- (c) ... neither left nor right artinian.

Hint for (b): Consider the field F of rational functions in infinitely many indeterminates X_i over a field K and its K-endomorphism σ given by $\sigma(X_i) = X_i^2$. Let G be the vector space over $\sigma(F)$ spanned by the monomials $X_{i_1} \cdots X_{i_\ell}$ with $i_1 < \cdots < i_\ell$ and $\ell \in \mathbb{N}_+$. Take M = R/I where

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a \in F, \ b \in {}_FF_{\sigma} \right\}, \qquad I = \begin{pmatrix} 0 & G \\ 0 & 0 \end{pmatrix}.$$

Source: Gupta and Singh: Ring of endomorphisms of a finite length module, Proc. AMS, 1985.