REPRESENTATION THEORY EXERCISES 3

HENNING KRAUSE JAN GEUENICH

For (small) abelian categories \mathcal{A}, \mathcal{B} and \mathcal{D} , an exact functor $\mathcal{A} \xrightarrow{F} \mathcal{B}$ and a Serre subcategory \mathcal{C} of \mathcal{B} we will denote by $\operatorname{Ex}_{\mathcal{C}}^{F}(\mathcal{B}, \mathcal{D})$ the category whose objects are the exact functors $\mathcal{B} \to \mathcal{D}$ that annihilate \mathcal{C} and whose morphisms $G \to G'$ are the natural transformations $GF \Rightarrow G'F$.

- **1.** Fix an exact functor $\mathcal{A} \xrightarrow{F} \mathcal{B}$ of abelian categories that annihilates a Serre subcategory \mathcal{C} of \mathcal{A} .
 - (a) Show that *F* is a quotient functor of \mathcal{A} by \mathcal{C} iff the map $\operatorname{Ex}_{0}^{F}(\mathcal{B}, \mathcal{D}) \xrightarrow{F^{\mathcal{D}}} \operatorname{Ex}_{\mathcal{C}}^{\operatorname{id}}(\mathcal{A}, \mathcal{D})$ given by precomposition with *F* on objects and as the identity on morphisms is an isomorphism of categories for all \mathcal{D} .
- We call F a *weak quotient functor* of A by C if $F^{\mathcal{D}}$ is an equivalence of categories for all \mathcal{D} .
 - (b) Explain why the existence of a quotient functor of \mathcal{A} by \mathcal{C} is equivalent to the existence of a weak quotient functor of \mathcal{A} by \mathcal{C} and how to obtain one from the other.
 - (c) Let P be a projective module in the length category A = mod Λ and let C be the kernel of the functor F = Hom_A(P, −): A → B where B = mod End_A(P). In the lectures, F was shown to be a weak quotient functor of A by C. In which situations is F a quotient functor?

Given a class S of morphisms in an abelian category A, an exact functor $\mathcal{A} \xrightarrow{F} \mathcal{A}[S^{-1}]$ of abelian categories is said to be the *localization* of A at S if it satisfies the following universal property:

- (1) F maps morphisms in S to isomorphisms.
- (2) If $\mathcal{A} \xrightarrow{H} \mathcal{B}$ is another exact functor between abelian categories mapping morphisms in S to isomorphisms, then there is a unique exact functor $\mathcal{A}[S^{-1}] \xrightarrow{G} \mathcal{B}$ with GF = H.

Generalizing from rings to abelian categories and leaving set-theoretic issues aside, it is not hard to construct the localization granted that S is a *multiplicative system* in the following sense:

- (i) Multiplicativity: S contains all identities in A and is closed under composition.
- (ii^{*L*}) Left Ore condition: For all morphisms s in S and r in A with common source there exists morphisms s' in S and r' in A with common target such that s'r = r's.
- (ii^{*R*}) *Right Ore condition:* For all morphisms s in S and r in A with common target there exists morphisms s' in S and r' in A with common source such that rs' = sr'.
- (iii^L) Left reversibility: If rs = 0 for morphisms s in S and r in A, there is s' in S with s'r = 0.
- (iii^{*R*}) Right reversibility: If sr = 0 for morphisms s in S and r in A, there is s' in S with rs' = 0.
- **2.** Let \mathcal{A} be an abelian category. Prove for every Serre subcategory \mathcal{C} of \mathcal{A} :
 - (a) The morphisms s in \mathcal{A} with $\operatorname{Ker}(s)$ and $\operatorname{Coker}(s)$ in \mathcal{C} form a multiplicative system $S_{\mathcal{C}}$.
 - (b) The localization functor $\mathcal{A} \to \mathcal{A}[S_{\mathcal{C}}^{-1}]$ is the quotient functor $\mathcal{A} \to \mathcal{A}/\mathcal{C}$.

To be handed in by November 7, 2019, 2 p.m. into post box 30.

3. Let $\mathcal{A} \xrightarrow{F} \mathcal{B}$ be an exact functor of abelian categories with a fully faithful left or right adjoint. Prove that *F* is a weak quotient functor of \mathcal{A} by the Serre subcategory Ker *F*.

Hint: In an adjoint pair (L, R) the functor L (resp. R) is fully faithful iff the unit $id \rightarrow RL$ (resp. the counit $LR \rightarrow id$) is an isomorphism.

- 4. (a) Prove $\operatorname{mod} \mathbb{Z} / \operatorname{tors} \mathbb{Z} \simeq \operatorname{mod} \mathbb{Q}$ where $\operatorname{tors} \mathbb{Z}$ is the full subcategory of torsion groups.
 - (b) Decide for each pair $C \subseteq D$ of Serre subcategories of $\mathcal{A} = \mod \Lambda$ if the canonical inclusion $\mathcal{C} \to \mathcal{D}$ is a homological embedding, where $\Lambda = \mathbb{C}Q/(ab)$ is the algebra defined by

$$Q = 1 \xrightarrow{a} 2 \xrightarrow{b} 3 .$$