REPRESENTATION THEORY EXERCISES 6

HENNING KRAUSE JAN GEUENICH

1. Let \mathcal{A} be a highest weight category with standard modules $\left(\Delta_{i}\right)_{i \in I}$ ordered by a finite poset I. Recall that this means that \mathcal{A} is a length category admitting exact sequences

$$
0 \rightarrow U_{i} \rightarrow P_{i} \rightarrow \Delta_{i} \rightarrow 0
$$

such that the object $\bigoplus_{i \in I} P_{i}$ is a projective generator of \mathcal{A}, the rings $\operatorname{End}_{\mathcal{A}}\left(\Delta_{i}\right)$ are division rings, each U_{i} belongs to the subcategory $\operatorname{Filt}\left(\left\{\Delta_{j}: j>i\right\}\right)$ and $\operatorname{Hom}_{\mathcal{A}}\left(\Delta_{i}, \Delta_{j}\right)=0$ for all $i \not \leq j$.
Verify the following claims, where h denotes the height of the poset I :
(a) The projective dimension of each object in $\operatorname{Filt}\left(\left\{\Delta_{i}: i \in I\right\}\right)$ is at most $h-1$.
(b) The objects $S_{i}=P_{i} / \operatorname{rad} P_{i} \cong \Delta_{i} / \operatorname{rad} \Delta_{i}$ form a complete set of representatives of simple objects in \mathcal{A} and each of the objects rad Δ_{i} belongs to the subcategory $\operatorname{Filt}\left(\left\{S_{j}: j<i\right\}\right)$.
(c) The global dimension of \mathcal{A} is at most $2(h-1)$.
2. Let Λ be a semiprimary ring. Define $\mathfrak{H}(\Lambda)$ to be the simply-laced quiver whose vertices are the idempotent ideals of Λ with an arrow $I \rightarrow J$ iff $I \subseteq J$ and J / I is an heredity ideal in Λ / I.

Convince yourself of the following facts:
(a) The vertices of $\mathfrak{H}(\Lambda)$ correspond to the Serre subcategories of $\bmod \Lambda$. There are $2^{n(\Lambda)}$.
(b) The paths from 0 to Λ in $\mathfrak{H}(\Lambda)$ correspond to the heredity chains of Λ. Therefore the global dimension of Λ is at most $2(\ell-1)$ where ℓ is the minimal length of such a path.
(c) There is an arrow $I \rightarrow J$ between two vertices I, J in $\mathfrak{H}(\Lambda)$ iff $I \subseteq J$ and the embedding $\bmod \Lambda / J \rightarrow \bmod \Lambda / I$ of Serre subcategories is homological with semisimple quotient.

Choose any of the algebras $\Lambda=\mathbb{C} Q / R$ below for which you compute the quiver $\mathfrak{H}(\Lambda)$ and then compare the value of the global dimension of Λ with the bounds implied by 1. (b) and 2. (b):
(i) $Q=a \bigvee 1 \xrightarrow{b} 2$

$$
R=\left(a^{2}\right)
$$

(ii)

$$
Q=1 \underset{a}{\stackrel{b}{\rightleftarrows}} 2 \underset{d}{\stackrel{c}{\rightleftarrows}} 3
$$

$$
R=(a b-c d, d c)
$$

$$
\begin{align*}
& Q=1 \xrightarrow{a} 2 \xrightarrow{b} 3 \tag{iii}\\
& R=0 \text { or } R=(a b)
\end{align*}
$$

$$
R=(a b, d b)
$$

[^0]3. Prove that every semiprimary ring Λ of global dimension at most two is quasi-hereditary. Hint: Consider a local idempotent e in Λ minimizing the Loewy length of the module $e \Lambda$.
4. Consider the regular module $X=\Lambda_{\Lambda}$ over the algebra $\Lambda=\mathbb{C} Q /(b a, a b-c d, d c)$ defined by
$$
Q=1 \underset{a}{\stackrel{b}{\rightleftarrows}} 2 \underset{d}{\stackrel{c}{\rightleftarrows}} 3 .
$$

Determine its Iyama complement $X^{\prime}=\bigoplus_{t>0} \mathfrak{r}^{t} X$ and compute gldim $\operatorname{End}_{\Lambda}\left(X \oplus X^{\prime}\right)$.

[^0]: To be handed in by November 28, 2019, 2 p.m. into post box 30 .

