REPRESENTATION THEORY EXERCISES 6

HENNING KRAUSE JAN GEUENICH

1. Let \mathcal{A} be a highest weight category with standard modules $(\Delta_i)_{i \in I}$ ordered by a finite poset I. Recall that this means that \mathcal{A} is a length category admitting exact sequences

$$0 \to U_i \to P_i \to \Delta_i \to 0$$

such that the object $\bigoplus_{i \in I} P_i$ is a projective generator of \mathcal{A} , the rings $\operatorname{End}_{\mathcal{A}}(\Delta_i)$ are division rings, each U_i belongs to the subcategory $\operatorname{Filt}(\{\Delta_j: j > i\})$ and $\operatorname{Hom}_{\mathcal{A}}(\Delta_i, \Delta_j) = 0$ for all $i \not \leq j$.

Verify the following claims, where h denotes the height of the poset I:

- (a) The projective dimension of each object in $Filt(\{\Delta_i : i \in I\})$ is at most h-1.
- (b) The objects $S_i = P_i / \operatorname{rad} P_i \cong \Delta_i / \operatorname{rad} \Delta_i$ form a complete set of representatives of simple objects in A and each of the objects $\operatorname{rad} \Delta_i$ belongs to the subcategory $\operatorname{Filt}(\{S_i : j < i\})$.
- (c) The global dimension of A is at most 2(h-1).
- **2.** Let Λ be a semiprimary ring. Define $\mathfrak{H}(\Lambda)$ to be the simply-laced quiver whose vertices are the idempotent ideals of Λ with an arrow $I \to J$ iff $I \subseteq J$ and J/I is an heredity ideal in Λ/I .

Convince yourself of the following facts:

- (a) The vertices of $\mathfrak{H}(\Lambda)$ correspond to the Serre subcategories of mod Λ . There are $2^{n(\Lambda)}$.
- (b) The paths from 0 to Λ in $\mathfrak{H}(\Lambda)$ correspond to the heredity chains of Λ . Therefore the global dimension of Λ is at most $2(\ell-1)$ where ℓ is the minimal length of such a path.
- (c) There is an arrow $I \to J$ between two vertices I, J in $\mathfrak{H}(\Lambda)$ iff $I \subseteq J$ and the embedding $\operatorname{mod} \Lambda/J \to \operatorname{mod} \Lambda/I$ of Serre subcategories is homological with semisimple quotient.

Choose any of the algebras $\Lambda = \mathbb{C}Q/R$ below for which you compute the quiver $\mathfrak{H}(\Lambda)$ and then compare the value of the global dimension of Λ with the bounds implied by 1. (b) and 2. (b):

1

(i)
$$Q = a \subset 1 \xrightarrow{b} 2$$

$$R = (a^2)$$

(iii)
$$Q = 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

 $R = 0 \text{ or } R = (ab)$

(ii)
$$Q = 1 \xrightarrow{b} 2 \xrightarrow{c} 3$$

 $R = (ab - cd, dc)$

(iv)
$$Q = 1 \xrightarrow{b} 2$$

$$R = (ab, db)$$

To be handed in by November 28, 2019, 2 p.m. into post box 30.

- **3.** Prove that every semiprimary ring Λ of global dimension at most two is quasi-hereditary. Hint: Consider a local idempotent e in Λ minimizing the Loewy length of the module $e\Lambda$.
- **4.** Consider the regular module $X=\Lambda_{\Lambda}$ over the algebra $\Lambda=\mathbb{C}Q/(ba,ab-cd,dc)$ defined by $Q=\ 1 \xrightarrow[]{b} 2 \xrightarrow[]{c} 3 \,.$

Determine its *Iyama complement* $X' = \bigoplus_{t>0} \mathfrak{r}^t X$ and compute $\operatorname{gldim} \operatorname{End}_{\Lambda}(X \oplus X')$.