REPRESENTATION THEORY EXERCISES 7

HENNING KRAUSE JAN GEUENICH

Let Λ be an artin algebra.

For a full additive subcategory \mathcal{C} of $\operatorname{mod} \Lambda$ a morphism $X \xrightarrow{p} M$ in $\operatorname{mod} \Lambda$ is said to be a *right* \mathcal{C} -approximation of M if $X \in \mathcal{C}$ and any other morphism $X' \to M$ with $X' \in \mathcal{C}$ factors through p.

A C-resolution of M of length n is by definition an exact sequence in $mod \Lambda$

 $0 \to X_n \xrightarrow{p_n} X_{n-1} \to \dots \to X_1 \xrightarrow{p_1} X_0 \xrightarrow{p_0} M \to 0$

such that the induced maps $X_i \to \operatorname{Im}(p_i)$ are right C-approximations. For $\mathcal{D} \subseteq \operatorname{mod} \Lambda$ define

 $\operatorname{res.dim}_{\mathcal{C}} \mathcal{D} := \sup_{M \in \mathcal{D}} \inf\{n \in \mathbb{N} : M \text{ admits a } \mathcal{C}\text{-resolution of length } n\}.$

1. Prove the following:

(a) For all objects M and generators C of $mod \Lambda$ we have

res.dim_{add C} add $M = \text{proj.dim Hom}_{\Lambda}(C, M)_{\text{End}_{\Lambda}(C)}$.

(b) If Λ is not semisimple and C is a generating-cogenerating object in mod Λ , then

gldim $\operatorname{End}_{\Lambda}(C) = \operatorname{res.dim}_{\operatorname{add} C} \operatorname{mod} \Lambda + 2.$

- (c) rep.dim $\Lambda = 0$ iff Λ is semisimple.
- (d) rep.dim $\Lambda \neq 1$.
- (e) rep.dim $\Lambda = 2$ iff Λ is representation-finite and not semisimple.

Submodules of projective Λ -modules are called *torsionless*. The algebra Λ is *torsionless-finite* if there are only finitely many isomorphism classes of indecomposable torsionless modules in mod Λ .

2. Show the following:

- (a) If Λ is hereditary, then Λ is torsionless-finite.
- (b) If $J(\Lambda)^2 = 0$, then Λ is torsionless-finite.
- (c) If Λ is torsionless-finite, then rep.dim $(\Lambda) \leq 3$.

3. Recall that $qA = q_A(A)$ where by definition for objects A, X in an abelian category A we have

$$\mathfrak{q}_A(X) = \operatorname{Coker}\left(\operatorname{Ker}\left(X \xrightarrow{\mu} A^{\operatorname{Rad}_\mathcal{A}(X,A)}\right) \hookrightarrow X\right) \text{ with } \mu_\phi = \phi.$$

Assume now that $\mathcal{A} = \operatorname{Mod} A$ for a semiprimary ring A. Show $\mathfrak{q}^n A_A = 0$ for sufficiently large n.

To be handed in by December 5, 2019, 2 p.m. into post box 30.

4. Let k be a commutative ring and E the injective envelope of the k-module $\bigoplus_{\mathfrak{m}\in \mathrm{mSpec}(k)} k/\mathfrak{m}$, where $\mathrm{mSpec}(k)$ denotes the set of maximal ideals of k.

The contravariant endofunctor $D = \text{Hom}_k(-, E)$ of Mod k is known as *Matlis duality*. Verify the following facts:

(a) There are natural isomorphisms for all k-modules X and Y:

 $\operatorname{Hom}_k(X, DY) \cong D(X \otimes_k Y) \cong \operatorname{Hom}_k(Y, DX)$

- (b) The canonical map $X \to D^2 X$ given by evaluation is injective for each k-module X.
- (c) $\operatorname{Ann}(X) = \operatorname{Ann}(DX)$, so in particular $X = 0 \Leftrightarrow DX = 0$, for all k-modules X
- (d) D is faithful and exact.
- (e) D induces a contravariant autoequivalence of the category fl k of finite-length modules.