REPRESENTATION THEORY EXERCISES 9

HENNING KRAUSE JAN GEUENICH

Let k be a commutative ring and let $n, d \in \mathbb{N}$. We begin with some notations:

- For compositions λ in $\Lambda = \Lambda(n, d)$ denote by λ_* the corresponding partition.
- The symmetric group \mathfrak{S}_d acts from the right on the set $I = \underline{n}^{\underline{d}}$ where $\underline{m} = \{1, \ldots, m\}$.
- Let $\Omega = (I \times I)/\mathfrak{S}_d$ be the set of orbits under the induced diagonal action.
- For $\omega \in \Omega$ let $s(\omega), t(\omega)$ be the elements in Λ with $j^* = s(\omega)$ and $i^* = t(\omega)$ for $(i, j) \in \omega$.
- For $\lambda \in \Lambda$ let $\omega_{\lambda} \in \Omega$ be the orbit $\{(i, i) \in I \times I : i^* = \lambda\}$.
- Let $e \in V^{\underline{n}}$ be the standard basis of the free k-module $V = k^{\underline{n}}$.
- Let $(e_i)_{i \in I}$ with $e_i := e_{i_1} \otimes \cdots \otimes e_{i_d}$ be the induced k-basis of $V^{\otimes d}$.
- Let $(e_{ij})_{(i,j)\in I\times I}$ be the induced k-basis of $\operatorname{End}_k(V^{\otimes d})$ determined by $e_{ij}(e_\ell) = \delta_{\ell j} e_i$.
- For $\lambda \in \Lambda$ let V^{λ} be the $k\mathfrak{S}_d$ -submodule of $V^{\otimes d}$ with k-basis $(e_i)_{i \in I, i^* = \lambda}$.
- For $\omega \in \Omega$ set $e_{\omega} := \sum_{(i,j)\in\omega} e_{ij}$ and for $\lambda \in \Lambda$ set $e_{\lambda} := e_{\omega_{\lambda}}$.

1. Verify the following facts:

- (a) $(e_{\omega})_{\omega \in \Omega}$ is a k-basis of the Schur algebra $S_k(n, d)$.
- (b) $(e_{\lambda})_{\lambda \in \Lambda}$ is a complete set of orthogonal idempotents of $S_k(n, d)$.
- (c) $V^{\otimes d} = \bigoplus_{\lambda \in \Lambda} V^{\lambda}$ and $V^{\lambda} \cong k \otimes_{k\mathfrak{S}_{\lambda}} k\mathfrak{S}_{d}$ as $k\mathfrak{S}_{d}$ -modules.
- (d) $e_{\omega}(V^{s(\omega)}) \subseteq V^{t(\omega)}$ and $e_{\omega}(V^{\lambda}) = 0$ for $\lambda \neq s(\omega)$.
- (e) $V^{s(\omega)} \xrightarrow{e_{\omega}} V^{t(\omega)}$ is invertible iff $s(\omega)_* = t(\omega)_*$.
- (f) $V^{\lambda} \cong V^{\mu}$ iff $\lambda_* = \mu_*$.

The power sums p_i and elementary symmetric polynomials $s_i \in k[x_1, \ldots, x_d]$ are defined by

$$p_i = \sum_{j=1}^d x_j^i$$
 and $\prod_{j=1}^d (T+x_j) = \sum_{i=0}^d s_i T^{d-i}$

2. Let \mathfrak{S}_d act on the polynomial ring $k[x_1, \ldots, x_d]$ by k-algebra automorphisms via $\sigma x_i = x_{\sigma(i)}$.

(a) Prove the *fundamental theorem of symmetric polynomials*, i.e. verify that the morphism

$$k[y_1,\ldots,y_d] \longrightarrow k[x_1,\ldots,x_d]^{\mathfrak{S}_d}$$

of k-algebras induced by $y_i \mapsto s_i$ is an isomorphism.

To be handed in by December 19, 2019, 2 p.m. into post box 30.

(b) Verify Newton's identity

$$d \cdot s_d = \sum_{j=1}^d (-1)^{j-1} s_{d-j} p_j$$

Hint for (a): Use induction on the lexicographic order on the set of monomials.

From now on let k be a field of characteristic p such that p is not a prime less than or equal to d.

3. Show that the symmetric power S^dV is generated by elements of the form $v^{\otimes d}$ with $v \in V$. *Hint:* Use the identity

$$d! \cdot s_d = \sum_{J \subseteq \underline{d}} (-1)^{d-|J|} \left(\sum_{j \in J} x_j \right)^d$$

4. Verify the following version of *Schur-Weyl duality*: The image of the *k*-linear map

$$\operatorname{End}_k(V) \longrightarrow \operatorname{End}_k(V^{\otimes d})$$
$$f \longmapsto \partial f^{\otimes d}$$

which is defined on pure tensors as

$$\partial f^{\otimes d}(v_1 \otimes \cdots \otimes v_d) = \sum_{i=1}^d v_1 \otimes \cdots \otimes v_{i-1} \otimes f(v_i) \otimes v_{i+1} \otimes \cdots \otimes v_d$$

generates the Schur algebra $S_k(n, d) = \operatorname{End}_{k\mathfrak{S}_d}(V^{\otimes d})$ as a k-algebra.

If k is infinite, deduce the surjectivity of the canonical k-algebra homomorphism

$$k \operatorname{GL}(n,k) \xrightarrow{\phi} S_k(n,d)$$
.

Hint: $\Gamma^d \operatorname{End}_k(V)$ is spanned over k by elements of the form $f^{\otimes d}$ with $f \in \operatorname{End}_k(V)$.