REPRESENTATION THEORY EXERCISES 9

HENNING KRAUSE
JAN GEUENICH

Let k be a commutative ring and let $n, d \in \mathbb{N}$. We begin with some notations:

- For compositions λ in $\Lambda=\Lambda(n, d)$ denote by λ_{*} the corresponding partition.
- The symmetric group \mathfrak{S}_{d} acts from the right on the set $I=\underline{n}^{\underline{d}}$ where $\underline{m}=\{1, \ldots, m\}$.
- Let $\Omega=(I \times I) / \mathfrak{S}_{d}$ be the set of orbits under the induced diagonal action.
- For $\omega \in \Omega$ let $s(\omega), t(\omega)$ be the elements in Λ with $j^{*}=s(\omega)$ and $i^{*}=t(\omega)$ for $(i, j) \in \omega$.
- For $\lambda \in \Lambda$ let $\omega_{\lambda} \in \Omega$ be the orbit $\left\{(i, i) \in I \times I: i^{*}=\lambda\right\}$.
- Let $e \in V^{\underline{n}}$ be the standard basis of the free k-module $V=k^{\underline{n}}$.
- Let $\left(e_{i}\right)_{i \in I}$ with $e_{i}:=e_{i_{1}} \otimes \cdots \otimes e_{i_{d}}$ be the induced k-basis of $V^{\otimes d}$.
- Let $\left(e_{i j}\right)_{(i, j) \in I \times I}$ be the induced k-basis of $\operatorname{End}_{k}\left(V^{\otimes d}\right)$ determined by $e_{i j}\left(e_{\ell}\right)=\delta_{\ell j} e_{i}$.
- For $\lambda \in \Lambda$ let V^{λ} be the $k \mathfrak{S}_{d^{\prime}}$-submodule of $V^{\otimes d}$ with k-basis $\left(e_{i}\right)_{i \in I, i^{*}=\lambda}$.
- For $\omega \in \Omega$ set $e_{\omega}:=\sum_{(i, j) \in \omega} e_{i j}$ and for $\lambda \in \Lambda$ set $e_{\lambda}:=e_{\omega_{\lambda}}$.

1. Verify the following facts:
(a) $\left(e_{\omega}\right)_{\omega \in \Omega}$ is a k-basis of the Schur algebra $S_{k}(n, d)$.
(b) $\left(e_{\lambda}\right)_{\lambda \in \Lambda}$ is a complete set of orthogonal idempotents of $S_{k}(n, d)$.
(c) $V^{\otimes d}=\bigoplus_{\lambda \in \Lambda} V^{\lambda}$ and $V^{\lambda} \cong k \otimes_{k \mathfrak{S}_{\lambda}} k \mathfrak{S}_{d}$ as $k \mathfrak{S}_{d}$-modules.
(d) $e_{\omega}\left(V^{s(\omega)}\right) \subseteq V^{t(\omega)}$ and $e_{\omega}\left(V^{\lambda}\right)=0$ for $\lambda \neq s(\omega)$.
(e) $V^{s(\omega)} \xrightarrow{e_{\omega}} V^{t(\omega)}$ is invertible iff $s(\omega)_{*}=t(\omega)_{*}$.
(f) $V^{\lambda} \cong V^{\mu}$ iff $\lambda_{*}=\mu_{*}$.

The power sums p_{i} and elementary symmetric polynomials $s_{i} \in k\left[x_{1}, \ldots, x_{d}\right]$ are defined by

$$
p_{i}=\sum_{j=1}^{d} x_{j}^{i} \quad \text { and } \quad \prod_{j=1}^{d}\left(T+x_{j}\right)=\sum_{i=0}^{d} s_{i} T^{d-i} .
$$

2. Let \mathfrak{S}_{d} act on the polynomial ring $k\left[x_{1}, \ldots, x_{d}\right]$ by k-algebra automorphisms via $\sigma x_{i}=x_{\sigma(i)}$.
(a) Prove the fundamental theorem of symmetric polynomials, i.e. verify that the morphism

$$
k\left[y_{1}, \ldots, y_{d}\right] \longrightarrow k\left[x_{1}, \ldots, x_{d}\right]^{\mathfrak{G}_{d}}
$$

of k-algebras induced by $y_{i} \mapsto s_{i}$ is an isomorphism.
To be handed in by December 19, 2019, 2 p.m. into post box 30 .
(b) Verify Newton's identity

$$
d \cdot s_{d}=\sum_{j=1}^{d}(-1)^{j-1} s_{d-j} p_{j} .
$$

Hint for (a): Use induction on the lexicographic order on the set of monomials.

From now on let k be a field of characteristic p such that p is not a prime less than or equal to d.
3. Show that the symmetric power $S^{d} V$ is generated by elements of the form $v^{\otimes d}$ with $v \in V$.

Hint: Use the identity

$$
d!\cdot s_{d}=\sum_{J \subseteq \underline{d}}(-1)^{d-|J|}\left(\sum_{j \in J} x_{j}\right)^{d} .
$$

4. Verify the following version of Schur-Weyl duality: The image of the k-linear map

$$
\begin{aligned}
\operatorname{End}_{k}(V) & \longrightarrow \operatorname{End}_{k}\left(V^{\otimes d}\right) \\
f & \longmapsto \partial f^{\otimes d}
\end{aligned}
$$

which is defined on pure tensors as

$$
\partial f^{\otimes d}\left(v_{1} \otimes \cdots \otimes v_{d}\right)=\sum_{i=1}^{d} v_{1} \otimes \cdots \otimes v_{i-1} \otimes f\left(v_{i}\right) \otimes v_{i+1} \otimes \cdots \otimes v_{d}
$$

generates the Schur algebra $S_{k}(n, d)=\operatorname{End}_{k \mathfrak{S}_{d}}\left(V^{\otimes d}\right)$ as a k-algebra.
If k is infinite, deduce the surjectivity of the canonical k-algebra homomorphism

$$
k \mathrm{GL}(n, k) \xrightarrow{\phi} S_{k}(n, d) .
$$

Hint: $\Gamma^{d} \operatorname{End}_{k}(V)$ is spanned over k by elements of the form $f^{\otimes d}$ with $f \in \operatorname{End}_{k}(V)$.

