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SOLVABILITY OF GROUPS OF ODD ORDER
WALTER FEIT AND JOHN G. THOMPSON

CHAPTER 1

1. Introduction

The purpose of this paper is to prove the following result:
THEOREM. All finite groups of odd order are solvable.

Some consequences of this theorem and a discussion of the proof
may be found in [11].

The paper contains six chapters, the first three being of a general
nature. The first section in each of Chapters IV and V summarizes
the results proved in that chapter. These results provide the starting
point of the succeeding chapter. Other than this, there is no cross
reference between Chapters IV, Vand VI. The methods used in Chapter
IV are purely group theoretical. The work in Chapter V relies heavily
on the theory of group characters. Chapter VI consists primarily of
a study of generators and relations of a special sort.

2. Notation and Definitions

Most of the following lengthy notation is familiar. Some comes
from a less familiar set of notes of P. Hall [20], while some has arisen
from the present paper. In general, groups and subsets of groups are
denoted by German capitals, while group elements are denoted by
ordinary capitals. Other sets of various kinds are denoted by English
seript capitals. All groups considered in this paper are finite, except
when explicitly stated otherwise.

Ordinary lower case letters denote numbers or sometimes elements
of sets other than subsets of the group under consideration. Greek
letters usually denote complex valued functions on groups. However,
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776 SOLVABILITY OF GROUPS OF ODD ORDER

o and 7 are reserved for field automorphisms, permutations or other
mappings, and € is used with or without subsecripts to denote a root of
unity. Bold faced letters are used to denote operators on subsets of

groups.

The rational numbers are denoted by & while & denotes the
field of nth roots of unity over &

Set theoretic union is denoted by U. If A and B are sets, A — B
denotes the elements of 2 which are not in 8. A B means that A

is a proper subset of B.

oD
{ | ...}
gp<... | ...>
| %]

I’

T

7rl
m-number
n,
T-group
m-element

S,-subgroup of %
S-subgroup of X
Hall subgroup of %
X

& char X

SF(X mod N)

0.(%)

O.,....r, (%)
m-closed group
F(%)

D(%)

Z,(%)

the group generated by .- such that ---
{1> will be identified with 1.

the set of .-- such that ---.

the group defined by the generators - - - with
the relations ---

the number of elements in the set X.

the set of non identity elements in the set X.
a set of primes. If = = {p}, we customarily
identify = with p.

the complementary set of primes.

a non zero integer all of whose prime factors
are in 7.

the largest m-number dividing the non zero
integer n.

a group X with |X| = |%X|..

a group element X such that (X is a m-group.
a subgroup & of X with |&| = |%|,.

a S,-subgroup of X for suitable 7.

a S-subgroup of X.

& is a normal subgroup of X.

® is a characteristic subgroup of X.

the inverse image in X of f(X/N). Here
N X%, and f is a function from groups to
subgroups.

the maximal normal 7-subgroup of X.

0, (Xmod O, ... . _ (%)).

we say that X is w-closed if and only if ¥ has
a normal S,-subgroup.

the Fitting subgroup of %, the maximal normal
nilpotent subgroup of %.

the Frattini subgroup of ¥, the intersection
of all maximal subgroups of X%.

the nth term in the ascending central series
of X, defined inductively by: Z,(X) =1, Z,(X) =



[X, Y]
[Xu ) Xn]
[, B]

[211, %y E,'[»]
x¥9

%I
C.(%)

2.(%)
€

m(X)
m (%)
cl (%)

Cyp()

Ng)

ker (X = 9)

cel (A)
V(eel, (A); B)

(%)
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Z(X) = center of %, Z,,,(%X) = Z (X mod Z,(%X)).
the smallest normal subgroup ¥ of X such
that X/ is a m-group.

XY XY = X' X*¥,

[[le ) Xu—l]: Xn]’ n 2 3.

{[A, B]|Ae¥, BeB), A and B being subsets
of a group.

[[9111 T S*)1»—1]’ QIn]’ n 2 3.

(XT|XecX, Yedd. If 29, %Y is called
the normal closure of X in 9.

[%X, X], the commutator subgroup of X%.

the nth term of the descending central series
of X, defined inductively by: C,(X) = X,
Cn+1(x) = [Cn(i)y %]-

the subgroup of the p-group X generated by
the elements of order at most p~.

the subgroup of the p-group X generated by
the p*th powers of elements of X.

the minimal number of generators of X%.
m(P), P being a S,-subgroup of X.

the class of nilpotency of the nilpotent group
X, that is, the smallest integer n such that
X = Z,(%).

the largest subset of B commuting element-
wise with A, A and B being subsets of a
group X. In case there is no danger of
confusion, we set C(UA) = Cx(A).

the largest subset of B which normalizes 2, A
and B being subsets of a group X. In case
there is no danger of confusion, we set N(A)=
N ).

the kernel of the homomorphism a of the
group X into the group ¥. a will often be
suppressed.

{A* | X e X}, A being a subset of X,

QA | XeX, UA*X = B), the weak closure of
cely(A) in B with respect to the group X.
Here A and B are subgroups of X. If A =
V(cel, (A); B), we say that A is weakly closed
in B with respect to X.

the set of primes which divide | %|.

the » by » matrix with 1 in positions (¢, 7)
and(J;J+1)’1§i§n’1§9§n—1, Zero
elsewhere.
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SL(2, p)

special p-group

extra special p-group

self centralizing sub-
group of X
self normalizing sub-
group of X
Pz ()

GFEN (%)
M (20)

Mg(%; )
section

factor

chief factor

the group of 2 by 2 matrices of determinant
one with coefficients in GF(p), the field of
P elements.

an elementary abelian p-group, or a non
abelian p-group whose center, commutator
subgroup and Frattini subgroup coincide and
are elementary.

a non abelian special p-group whose center
is of order p.

a subgroup U of X such that A = C(A). Notice
that self centralizing subgroups are abelian.
a subgroup A of ¥ such that A = N().

the set of self centralizing normal subgroups
of X.

{A| A e Az 1 (%), m(A) = m}.

the set of subgroups of X which 2 normalizes
and which intersect U in the identity only.
In case there is no danger of confusion, we
set U (A) =U®RA). If UA) contains only the
identity subgroup, we say that U() is trivial.
the m-subgroups in U).

if  and & are subgroups of the group %,
and < &, then /9 is called a section.

if © and & are normal subgroups of ¥ and
H & R, then &9 is called a factor of X.

if 8/9 is a factor of X and a minimal normal
subgroup of %X/9, it is called a chief factor
of X.

If /R and /M are sections of X, and if each coset of & in H has

a non empty intersection with precisely one coset of M in € and each
coset of M in £ has a non empty intersection with precisely one coset
of & in O, then H/K and /M are incident sections.

If /R is a section of X and 8 is a subgroup of ¥ which contains
at least one element from each coset of & in O, we say that £ covers
HI®. We say that & dominates the subgroup & provided 2 covers the
section Vy(R)/C,(R). The idea to consider such objects stems from [17].

If ¥ =9/R is a factor of X, we let C(F) denote the kernel of
the homomorphism of X into Aut % induced by conjugation. Similarly,
we say that X in X centralizes § (or acts trivially on ) provided
X e C().

We say that X has a Sylow series if ¥ possesses a unique S, ... 5,
subgroup foreach: =1, .-+, n, where 7(¥) = »,, +-+, »,}. The ordered
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n-tuple (p,, - -+, ».) is called the complexion of the series [18].

A set of pairwise permutable Sylow subgroups of X, one for each
prime dividing | %[, is called a Sylow system for X. This definition
differs only superficially from that given in [16].

P. Hall [18] introduced and studied the following propositions:

E, X contains at least one S,-subgroup.

C, X satisfies E,, and any two S,-subgroups of X are conjugate
in X,

D, X satisfies C,, and any m-subgroup of %X is contained in a
S.-subgroup of X.

E? X contains a nilpotent S,-subgroup.

In [19], P. Hall studied the stability group A of the chain z: % =
¥, 2% 2 --- 2%, =1, that is, the group of all automorphisms « of
% such that (£,X)* = %,X for all X in %,_, and eacht =1, ---, n. If
B and X are subgroups of a larger group, and if B normalizes X, we
say that B stabilizes & provided B/Cy(¥) is a subgroup of the stability
group of &.

By a character of ¥ we always mean a complex character of %
unless this is precluded by the context. A linear character is a
character of degree one. An integral linear combination of characters
is a linear combination of characters whose coefficients are rational
integers. Such an integral linear combination is called a generalized
character. If &7 is a collection of generalized characters of a group,
let #(5°)(Z(5”)) be respectively the set of all integral (complex)
linear combinations of elements in &#. Let _#(%”), % (5”) be the
subsets of _#(5”), () respectively consisting of all elements & with
a(l) = 0.

If @« and B are complex valued class functions on ¥, then the
inner product and weight are denoted by

—

(@, 8 = 7 5, (B,

lellz = (a, @) .

The subscript X is dropped in cases where it is clear from the context
which group is involved.

The principal character of X is denoted by 1 the character of
the regular representation of % is denoted by p;. If a is a complex
valued class function of a subgroup  of %, then a* denotes the class
function of X induced by «.

The kernel of a character is the kernel of the representation with

the given character.
A generalized character is n-rational if the field of its values is
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linearly disjoint from &,.
A subset U of the group X is said to be a trivial intersection set
in X, or a T.I. set in X if and only if for every X in X, either

XAXNYCS {1}
or
X9AX = .

If © is a normal subgroup of the group X and 6 is a character
of O, J(0) denotes the inertial group of 6, that is

S(0) = {X| X%, 6(XHX) = 6(H) for all He9}.

Clearly, $ = J3(8) for all characters 6 of .

A group ¥ is a Frobenius group with Frobenius kernel  if and
only if $ is a proper normal subgroup of X which contains the centralizer
of every element in $*. It is well known (see 3.16) that the Frobe-
nius kernel  of X is also characterized by the conditions

1. 9<% 1cCcHCk.

2. J(0) = $ for every non principal irreducible character 6 of 9.

We say that X is of F'robenius type if and only if the following
conditions are satisfied:

(i) If © is the maximal normal nilpotent S-subgroup of %, then
1cHCX.

(ii) If € is a complement for  in X, then € contains a normal
abelian subgroup 2 such that J(@) N E = A for every non principal
irreducible character 6 of 9.

(iii) € contains a subgroup &, of the same exponent as & such
that €, is a Frobenius group with Frobenius kernel 9.

In case X is of Frobenius type, the maximal normal nilpotent
S-subgroup of X will be called the Frobenius kernmel of %.

A group & is a three step group if and only if

(i) & =@&'Q*, where Q* is a cyclic S-subgroup of &, Q* %1,
and &' NQ* = 1.

(ii) & contains a non cyclic normal S-subgroup 9 such that
S" = HC(D) = &, HDC(D) is nilpotent and $ is the maximal normal
nilpotent S-subgroup of &.

(iii) $ contains a cyclic subgroup $* # 1 such that for Q in
0%, Ce(@) = 9.

3. Quoted Results

For convenience we single out various published results which are
of use.
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3.1. ([19] Lemma 1, Three subgroups lemma). If 9,8, ¢ are
subgroups of the group X and

5, 9,8] = [2,2,9] =1, then [8,9, %] =1.

3.2. [20] F(%) = NCLD), the intersection being taken over all
chief factors D of the group X.

3.3. [20] If % is solvable, then C(F(%)) = Z(F(%)).

3.4. Let p be an odd prime and X a p-group. If every normal
abelian subgroup of X is cyclic, then % is cyclic. If every mnormal
abelian subgroup of ¥ is generated by two elements, then X is isomorphic

to one of the following groups:
(i) a central product of a cyclic group and the non abelian group

of order p* and exponent p.

(i) @ metacyclic group.

(i) gp <4, B|[B, A]=C,[C,A]=B""",C*=[B,C]=A*=B"=
1,n>1,(r,p) =1

(iv) a 3-group.
A proof of this result, together with a complete determination of the
relevant 8-groups, can be found in the interesting papers [1] and [2].

3.5. [20] If % is a mon abelian p-group, p is odd, and if every
characteristic abelian subgroup of X is cyclic, then % is a central
product of a cyclic group and an extra special group of exponent p.

3.6. ([22] Hilfssatz 1.5). If o is a p'-automorphism of the p-group
X, p is odd, and o acts trivially on 2,(X), then ¢ = 1.

8.7. [20] If A and B are subgroups of a larger group, then
[2L, B] <1 <, B).

3.8. If the S,-subgroup B of the group X is metacyclic, and if
p s odd, then B N O°(X) is abelian.

This result is a consequence of ([23] Satz 1.5) and the well known
fact that subgroups of metacyclic groups are metacyclic.

3.9. [28] If A is a normal abelian subgroup of the mnilpotent
group X and A is not a proper subgroup of any normal abelian subgroup
of X, then A is self centralizing.

8.10. If P is a S,-subgroup of the group %, and A € S& 1" (P),
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then C(A) = A X D where D 1s a p'-group. The proof of Lemma 5.7
in [27] is valid for all finite groups, and yields the preceding statement.

3.11, Let A and B be subgroups of a group X, where A is a
p-group and B is a p'-group normalized by A. Suppose A, 18 a subgroup
of A which does mot centralize B. If B, is a subgroup of B of least
order subject to being normalized by A and not centralized by U, then
B, 18 a special q-group for some prime q, A, acts trivially on D(B,)
and A acts irreducibly on B,/D(B,). This statement is a paraphrase
of Theorem C of Hall and Higman [21].

3.12. ([3] Lemma 1). Let A be a momsingular matriz and let o
be a permutation of the elements of A. Suppose that o(A) can be
derived from A by permuting the colummns of A and g(A) can also be
derived from A by permuting the rows of A. Then the number of
rows left fixed by o is equal to the number of colummns left fixed by o.

The next two results follow from applying 3.12 to the character
table of a group X.

3.13 (Burnside). A group of odd order has no non principal real
valued irreducible characters.

3.14. If o is an automorphism of the group X then the number
of trreducible characters fixed by o is equal to the number of conjugate
classes fived by o.

3.15. ([8] Lemma 2.1). Let B be a p-group for some prime P
and let 6 be an irreducible character of P with 6(1) > 1. Then
20,(1)* = 0 (mod 6(1)*), where the summation ranges over all irreducible
characters 6; of B with 6,(1) < 6(1).

Let & be a Frobenius group with Frobenius kernel . Then

3.16. (i). ([7], [26]). D s a milpotent S-subgroup of L qnd g
OC for some subgroup € of & with S NE = 1.

8.16. (ii). ([4] p. 834). If p,q are primes then every subgroup
of & of order pq is cyclic. If p + 2 then a S,-subgroup of € is cyclic.

8.16. (iii). ([7] Lemma 2.1 or [10] Lemma 2.1). A mon principal
irreducible character of $ induces an irreducible character of L.
Furthermore every irreducible character of £ which does not have
D in its kernel is induced by a character of ©. Thus in particular
any complex representation of L, which does not have O in its kernel,
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contains the regular representation of € as a constituent when
restricted to €.

We will often use the fact that the last sentence of 8.16 (iii) is
valid if “complex representation of {” is replaced by “representation
of € over a field of characteristic prime to |2|”.

4. Elementary Results

LEMMA 4.1, Let X be a group with center 8 and let N be an
irreducible character of X. Then M1 < |X: B].

Proof. For Ze 3, |MZ)| = N(Q1). Therefore
2] 2 Z3IM2) P = | 3L

LEMMA 4.2. Let a be a generalized character of the group ¥%.
Suppose that R, X are commuting elements of X and the order of R
18 a power of a prime r. Let & be an algebraic number field which
contains the |X|th roots of unity and let t be a prime ideal in the
ring of integers of F which divides r. Then

a(RX) = a(X)(mod 1) .

Proof. It is clearly sufficient to prove the result for a generalized
character, and thus for every irreducible character, of the abelian
group {R, X). If a is an irreducible character of (R, X) then a(RX)=
a(R)a(X) and a(R) = 1 (mod x). This implies the required congruence.

LEMMA 4.3. Let © be a normal subgroup of the group X and let
N\ be an irreducible character of X which does not contain O in its
kernel. If XeX and C(X)N 9 =<1), then M(X) = 0.

Proof. Let t, tt., -+ be all the irreducible characters of %/ =%.
Let X\, \,, -+ be all the remaining irreducible characters of X. If
C(X) N = <1, then C(X) is mapped isomorphically into C(X) where
X is the image of X in %. Consequently

SiX) P =10X)| 2 | CX)| = Zi| (X)) ! + Z: (X)) [
This yields the required result.

Lemma 4.3 is of fundamental importance in this paper.

LEMMA 4.4. Let  be a normal subgroup of the group X, Assume
that if 6 is any nonprincipal irreducible character of © then 6* 1s
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a sum of irreducible characters of %, all of which have the same
degree and occur with the same multiplicity in 6*. For any integer
d let &, be the sum of all the irreducible characters of X of degree d
whick do not have © in their kermel. Then &, = av*, where a 18 a
rational number and v 18 a generalized character of 9.

Proof. Let 0F, 6F, --- be all the distinct characters of X which
are induced by non principal irreducible characters of $ and which are
sums of irreducible characters of X of degree d. Suppose that 6} =
a;3 ;\;;, where \,; is an irreducible character of X for all values of j.
It is easily seen that 6F, 6F, --- form a set of pairwise orthogonal
characters. Hence &, = 2;(1/a;,)0¥. This proves the lemma.

If © is a normal subgroup of the group X, X € %, and ® is a character
of , then @* is defined by @*(H) = (X 'HX), He D.

LEMMA 4.5. Let © be a normal subgroup of the group X and let
6 be an irreducible character of . Suppose X contains a mormal
subgroup X, such that J(0) S X, and such that %,/ 18 abelian. Then
6* 18 a sum of irreducible characters of ¥ which have the same degree
and occur with the same multiplicity in 6*. This common degree
18 a multiple of |X:(0)|. If furthermore O is a S-subgroup of %,
then 6* 18 a sum of | Y(0) : ©| distinct irreducible characters of degree

|Z: 3(6) 10(1).

Proof. Let 6, be the character of J(f) = ¥ induced by 6. Let
X be an irreducible €onstituent of 6, and let g, t4, «--, &£, be all the
irreducible characters of J/9. Choose the notation so that Ay, =\
if and only if 1 <7 <n. Since 0,5 =|J:9|0, we get that Mg = al
for some integer a. Thus, ’

4.1) S My = ab,

Hence, every irreducible constituent of a8, is of the form \g;, so all
irreducible constituents of 6, have the same degree. The characters
ty May -+ form a group M which permutes the irreducible constituents
of af, transitively by multiplication. Hence for every value of j there
are exactly n values of ¢ such that ag;e; = Ag;. If now A, N\, -+ -, are
the distinct irreducible characters which are constituents of af,, then
(4.1) implies that ad, = n\,.

Suppose 2 is a complement to 9 in J, H being a S-subgroup of J.
We must show that 6, is a sum of |2 | distinct irreducible characters
of . For any subgroups &, & of ¥ with $ S &, = &, and any character
@ of &, let ¥ denote the character of £ induced by o.
. “Suppose. & hds the property that 6% is a sum of |R: 9| distinct



4. ELEMENTARY RESULTS 785

irreducible characters of 8, where $ S R & J. Let My be the multi-
plicative group of linear characters of & which have 9 in their kernel,
and let Ao be an irreducible constituent of 6%. Then (1) = 6(1) is
prime to |A N &|, and it follows from Lemma 4.2 that \g does not
vanish on any element of AN & of prime power order. This in turn
implies that
6% = S gt
P-G?DZQ

If 8 =, we are done. Otherwise, let £ contain & as a subgroup
of prime index. It suffices to show that xﬂ is reducible, or equivalently,
that A\ = g for every L in 8. This is 1mmed1ate since (6%)" = 6%,
so that \§ = Aot for some ¢ in M. Since A is abelian, it follows
that ¢ = 1, as required.

To complete the proof of the lemma (now that the necessary
properties of I have been established), it suffices to show that if

6, = b\,

where the )\, are distinct irreducible characters of &, then each A% is
irreducible, and A\¥ = 3% for \; # ;. For if this is proved, the normality
of %, in X implies the lemma. 'The definition of ¥ implies that xﬁ% is
a sum of |%,: | distinet irreducible characters of J. Furthermore, \;
is the only irreducible constituent of )»ﬁos whose restriction to  is not
orthogonal to 6. Thus, if A% = \%, then \; = \;. Since \¥ vanishes
outside &, a simple computation yields that ||A\¥|* =1, Therefore
A\¥o ig irreducible. The proof is complete.

LEMMA 4.6. Let p be an odd prime and let P be a mormal S,-
subgroup of the group POHE. Assume that HE is a Frobenius group with
Frobenius kernel 9, D€ is a p'-group and SNE =1,

(i) If Cy(@) =1, then $ < C(P).

(ii) If Cgx(E) 18 cyclic for all elements E € G*, then | € | 18 a prime
or & C(P).

(i) If 1+ Cg(® & ng((&), then either P is cyclic or Cyx(C) is not
cyclic.

Proof. € is represented on P/D(P). Suppose that H & C(P).
By 3.16 (iii) ¢ has a fixed point on P/D(P), and thus on P. This
proves (i). If |&| is not a prime, let 1 & c & Then 3.16 (iii) implies
that &, has a non-cyclic ﬁxed point set on P/D(P), and thus on ‘B
This proves (ii).

As for (iii), let k be the largest integer such that $ has a non
trivial fixed point on Z,(P)/Z,_(P). It follows that  has a non trivial
fixed point on Z,(P)/D(Z,(P)).. If Z.(P) is not cyclic then since HE-is
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completely reducible on Z.(B)/D(Z.(PB)) (i) implies (iii) by 3.16 (iii).
Suppose that Z, (%) is cyclic. If £k = 2, then by [10] Lemma 1.4, B is
cyclic. Since Z,(%P) is of class 1 or 2, 2,(Z,(B)) is of exponent p. As
Z,(*P) is not cyclic neither is 2,(Z,(*B)). Thus it may be assumed that
B = 2.(Z,(P)) is non cyclic of exponent p and class at most 2. If B
is abelian then (iii) follows from (i). If B is of class 2 then by (i) €
has a fixed point on P/’ and on P'. As B has exponent p this implies
that C;B((E) is not cyclic as required.

5. Numerical Results

In this section we state some elementary number theoretical results
and some inequalities. The inequalities can all be proved by the methods
of elementary calculus and their proof is left to the reader.

LEMMA 5.1. If p,q are primes and
p=1(modg), ¢' = 1(modp)
then p =1+ q + ¢

Proof. Let p=1+ nq. Since p > q,q % 1(mod p). Hence
1+qg+ ¢ =mp.
Reading (mod q) yields m =1 4+ rq. Therefore
1+qg+¢ =1+ (r+ n)g + rng*.

If » #+ 0 then the right hand side of the previous equation is strictly
larger than the left hand side. Thus » = 0 as required.

The first statement of the following lemma is proved in [5]. The
second can be proved in a similar manner.

LEMMA 5.2. Let p, q be odd primes and let n = 1.
(i) If q™ divides (p* — 1)(p~*—1)-++ (p — 1) then q™ < p*.
(i) If q™ divides (p* — 1) (™™ — 1) «+. (p* — 1) then q™ < p*™1.

If x =5, then

(5.1) 351 > o?

(5.2) 5*71 > 80z ,

(5.3) 3z > 2022 + 1) .
If =7, then

(5.4) 3> 22,
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(5.5) 3* — 3 > 28x*,
(5.6) 75> 4.8 + 1 .
(5.7) 5* > 4273 + 1 for ¢ = 13.

(5.8) (m"—l)—(x—l)y—(x';l)s>0 for #,y = 3.

(5.9) ®' —1>4y* forx =3, y=5,orx=5,y=3.

(5.10) >y forx=3, y=borax=x10, y=3.
y-—1 -1 for s >3

(5.11) p— > p— orx>y=3.

(5.12) p W=D S @7 sy 23,
y—1 x — 1

787



CHAPTER II

6. Preliminary Lemmas of Lie Type

Hypothesis 6.1,

(i) » 18 a prime, P is a normal S,-subgroup of PN, and U is
a non identity cyclic p'-group.

(il) Cy(®) = 1.

(iii) B’ 18 elementary abelian and ‘B’ c Z(*B).

(iv) |PU| s odd.
Let U =<U), (U] =wu, and |PB: D(P)| = p*. Let & be the Lie ring
associated to P ([12] p. 328). Then ¥ = HK*P & where &£* and
<5 correspond to P/P’ and P’ respectively. Let <= L */p£*. For
1=1,2, let U, be the linear transformation induced by U on .&.

LEMMA 6.1. Assume that Hypothesis 6.1 is satisfied. Let ¢, ---,
€, be the characteristic roots of U,. Then the characteristic roots of
U, are found among the elements g;; with 1 <1< j<mn.

Proof. Suppose the field is extended so as to include ¢, - -, ¢,.
Since U1 is a p’-group, it is possible to find a basis 2, ---, 2, of &
such that 2;U, = e;x;,, 1 <1 < n. Therefore, z,U,-2,;U, = ¢¢,;2;-2;. As
U induces an automorphism of .&2, this yields that

(@;-2,)U, = 2,U,2;U, = €,6;%;-; .
Since the vectors x;-x; with 7 < j span %, the lemma follows.

By using a method which differs from that used below, M. Hall
proved a variant of Lemma 6.2. We are indebted to him for showing
us his proof.

LEMMA 6.2. Assume that Hypothesis 6.1 is satisfied, and that
U, acts irreducibly on . Assume further that n = q 8 an odd
prime and that U, and U, have the same characteristic polynomial.
Then q >3 and
u < 30/2

Proof. Let ¢ be the characteristic roots of U,, 0 <1 <n. By
Lemma 6.1 there exist integers 1, j, k such that erier’ = e#*, Raising
this equation to a suitable power yields the existence of integers a
and b with 0 < a < b < q such that g1 = 1, By Hypothesis 6.1 (ii),
the preceding equality implies p® + p* — 1 = 0(mod ). Since U, acts
irreducibly, we also have p? — 1 = 0(mod u). Since U is a p'-group,

720
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ab # 0. Consequently,

4+ p*—1=0(mod u),

6.1
(6.1) p—1=0modu), 0<a<b<gq.

Let d be the resultant of the polynomials f=2*+ 2> —1 and g =
2 — 1. Since ¢ is a prime, the two polynomials are relatively prime,
so d is a nonzero integer. Also, by a basic property of resultants,

(6.2) d=hf+ kg

for suitable integral polynomials 2 and k.
Let ¢, be a primitive gqth root of unity over &, so that we also
have

o 3 3 v —ia -4
@ =TlEr+e - DI+ = 1)
(6.3) —1 - 3 3 3

L]

For q = 3, this yields that d*= (8 — 1 + 1+1)* = 4%, so that d = +4.
Since % is odd (6.1) and (6.2) imply that v = 1. This is not the case,
so ¢ > 3.

Each term on the right hand side of (6.3) is non negative. As
the geometric mean of non negative numbers is at most the arith-
metic mean, (6.3) implies that

—1
dﬂ/q é %_ "Z 0{3 + 8;(0—5) + sz(b—a) _ e;ﬂ — sq—‘la — 8:5 — e'q-ib} .
=

The algebraic trace of a primitive gth root of unity is —1, hence
d’* < 3.
Now (6.1) and (6.2) imply that
uw<|d| =8,

Since 37? is irrational, equality cannot hold.

LEMMA 6.3. If P i3 a p-group and P = D(B), then Co(P)/C.+(By
18 elementary abelian for all m.

Proof. The assertion follows from the congruence
[Aly R A”]p = [AI’ "ty An-—lr Aﬁ] (mOd Cﬂ+1($B)) ’
valid for all A4,, ---, A, in B,

LEMMA 6.4. Suppose that o is a fixed point free p'-automorphism-
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of the p-group B, P’ = D(P) and A” = A*(mod P') for some integer
2 independent of A. Then P is of exponent p.

Proof. Let A= A®.A°* so that A¢ is in P’ for all A in P.
Then

[4,, e A= [Ag, ---, AT] = [A;.Af, ---,A,’i-Aﬁ]
= [Afy % A:] = [Ah * Y An]z” (mOd Cu+1(S‘B)) .

Since ¢ is regular on P, o is also regular on each C,/C,.,. As the
order of ¢ divides p — 1 the above congruences now imply that cl(P) =
p —1 and so P is a regular p-group. If J(P) # 1, then the mapping
A —— A? induces a non zero linear map of B/D(P) to C,(B)/Cr:+:(P)
for suitable n. Namely, choose n so that J'(B) S C.(P) but J'(P) &
C...(P), and use the regularity of P to guarantee linearity. Notice
that #» = 2, since by hypothesis &(B) S P'. We find that z = 2" (mod p),
and so 2*' = 1(mod p) and ¢ has a fixed point on C,_,/C,, contrary to
assumption. Hence, J'(B) = 1.

7. Preliminary Lemmas of Hall-Higman Type

Theorem B of Hall and Higman [21] is used frequently and will
be referred to as (B).

LEMMA 7.1. If X is a p-solvable linear group of odd order over
a field of characteristic p, then O,(%) contains every element whose
minimal polynomial is (x — 1)°.

Proof. Let 2" be the space on which X acts. The hypotheses
of the lemma, together with (B), guarantee that either O,(¥) + 1 or
¥ contains no element whose minimal polynomial is (x — 1)

Let X be an element of ¥ with minimal polynomial (x — 1)>. Then
0,(%¥) # 1, and the subspace 2% which is elementwise fixed by 0,(%)
is proper and is X-invariant. Since 0,(¥) is a p-group, 7% #+ 0. Let

& = ker (¥ — Aut 7%), R=ker—Aut (71 #)) .
By induction on dim #°, X€ 0,(Xmod &), ¢ =0,1. Since
0,(X¥ mod &) N 0,(X mod &,)

is a p-group, the lemma follows.

LEMMA 7.2. Let X be a p-solvable droup of odd order, and A a
p-subgroup of X. Any ome of the following conditions guarantees
that A S 0,.,,(X):
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A is abelian and |X: N(N)| is prime to p.

p=5and [B, A, A A Al =1 for some S,-subgroup P of X.
[B, A, Al =1 for some S,-subgroup P of X.

A acts trivially on the factor 0, , ,(%)/0, (%).

Ll s

Proof. Conditions 1, 2, or 8 imply that each element of 2 has a
minimal polynomial dividing (x — 1)** on O, ,(¥)/D, where D =
D(0, ,(¥) mod O,.(x)). Thus (B) and the oddness of |%| yield 1, 2, and
3. Lemma 1.2.3 of [21] implies 4.

LEMMA 7.3. If X s p-solvable, and P is a S,-subgroup of %,
then U(P) is a lattice whose maximal element is 0,.(x).

Proof. Since 0,(%X) <% and PN O0,(%) =1, 0,(%) is in UP).
Thus it suffices to show that if e MU(P), then S 0,.(%). Since PH
is a group of order |PB|-|9| and P is a S,-subgroup of %, O is a p'-
group, as is 90,.(X). In proving the lemma, we can therefore assume
that 0,.(X) =1, and try to show that © = 1. In this case, 9 is faith-
fully represented as automorphisms of 0,(X), by Lemma 1.2.3 of [21].
Since 0,(X) =%, we see that [D, 0,(X)]S O NP, and © =1 follows.

LEMMA 7.4. Suppose P is a S,-subgroup of X and A € ZZ.4 ().
Then U() contains only p'-groups. If in addition, X 18 p-solvable,
then U(A) is a lattice whose maximal element is O,.(%).

Proof. Suppose 2 normalizes $ and AN H = 1>. Let A* be a
S,-subgroup of AP containing A. By Sylow’s theorem, P, =A*N O
is a S,-subgroup of 9. It is clearly normalized by %, and A N B, ={1.
If B, # <1), a basic property of p-groups implies that 2 centralizes
some non identity element of %, contrary to 3.10. Thus, B, = 1>
and O is a p’-group. Hence we can assume that ¥ is p-solvable and
that O,.(%) = (1> and try to show that $ = (1.

Let %, = 0,(%)%%. Then 0,X*)XA is a S,-subgroup of %, and
Ae FAZ 1 (0,(%)N). If X, %, then by induction $<=0,.(X,) and so
[0,(%), D] S0,(%) N 0,(%) =1 and © =1. We can suppose that ¥, =
X.

If A centralizes 9, then clearly A <] %, and so ker (X — Aut A) =
Ax &, by 8.10 where $=9,. Hence, D, char A x 9, < %, and
. < %, so that , =1. We suppose that U does not centralize D,
and that  is an elementary ¢-group on which A acts irreducibly.
Let B = 0,(%)/D(0,(%)) = B, x B,, where B, = Cyx(9) and B, = [, 9.
Let Ve®B, and Xe V, so that [X, A =A. Hence, [X, A] maps into
B,, since [[X, A], D]ISHNO,(X) =1. But B, is X-invariant, so [X, A]
maps into B, N B, =1. Thus, A S ker (X — AutB,), and so [, D}
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centralizes B,. As U acts irreducibly on , we have $ = [, A], so
B, = 1. Thus,  centralizes B and so centralizes O,%), so $ =1, as
required.

LEMMA 7.5. Suppose © and 9, are S, ,subgroups of the solvable
group ©. If BSO0,D) N D, then BES0,9).

Proof. We proceed by induction on |&|. We can suppose that
© has no non identity normal subgroup of order prime to pg. Suppose
that & possesses a non identity normal p-subgroup . Then

JE0,(D) N 0,(D) .

Let & =83, B=83/Y, =9/, & =9/I. By induction, B S 0,(9),
so BSO0,(Dmod I) = 0,(9), and we are done. Hence, we can assume
that 0,(®) = (1>. In this case, F(®) is a g-group, and F (&)< ..
By hypothesis, B<0,(9,), and so B centralizes F(&). By 3.3, we
see that B = (1), so BS0,(D) as desired.

The next two lemmas deal with a S,-subgroup P of the p-solvable
group ¥ and with the set

& = {9]1. 9 is a subgroup of %X .

2. Po.
3. The p-length of  is at most two .
4. |9| is not divisible by three distinct primes .}

LEMMA 7.6. X =<9|De ).

Proof. Let %, =<{9|De s>. It suffices to show that |%,|, = |%|,
for every prime q. This is clear if ¢ = p, so suppose ¢q # p. Since
X is p-solvable, % satisfies E,, so we can suppose that X is a p,¢-
group. By induction, we can suppose that ¥, contains every proper
subgroup of ¥ which contains PB. Since PO(X)e &, we see that
0,(%)<%,. If N(BNO,,(X))C%, then N(PBNO,X)<%. Since ¥ =
0,%)-N(BNO,,%), we have ¥ =%,. Thus, we can assume that
0,(%) = BN O, ,(¥). Since TO,.(%)c.s”, we see that 0,,¥) &%, If
PO, (%) = X, we are done, so suppose not. Then N(P N 0,, »(¥)) C %,
so that ¥, contains N(PB N 0,, ,(¥))0, (%) = %, as required.

LEMMA 7.7. Suppose I}, N are subgroups of X which contain P
such that = (@ N NR) for all $ in ~ Then £ =MN.

Proof. It suffices to show that |MN|, = |%|, for every prime q.
This is clear if ¢ = p, so suppose ¢ # p. Let L, be a S,-subgroup of
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WM NN permutable with P, which exists by E,, in M NN. Since %
satisfies D,,, there is a S,-subgroup 2 of ¥ which contains Q, and
is permutable with B, Set R = PQ. We next show that

R=GRnNnMARNN) .

If Re o/ this is the case by hypothesis, so we can suppose the p-
length of R is at least 3. Let B, =P NO0,,.,(R), and & = Ny(B).
Then £ is a proper subgroup of R so by induction on |%X|, we have
L=@@NDYERNAN). Let & = B:0,,,(R) = PO, ,(R). Since K is in
& we have & = (R N MK N N). Furthermore, by Sylow’s theorem,
R=8L Let ReR. Then R= KL with Ke &, Le 8. Then K = PK,,
with Pin B, K, in 0,,R). Also, L= MN, Min 2NM, Nin& NN,
and so R = KL = PK,MN = PMK*N. Since K*ecO0,,R), we have
KX = M,N, with M, in N K, N, in RN K. Hence, R = PMM,-N,N
with PMM, in M N R, NN in N N R.
Since R = (R NWR NN), we have

_ _ RN RN N
% = |R| = | q <

By construction, [ RNMNR|, = | M NRN|,. Furthermore, |R N W|, <
||, and |RNN|, = [N, S0

— MR, S RO, |R NN, = ||, ,
I MAR], ~ [ RNnMAR|, !

| MR,

completing the proof.

LEMMA 7.8. Let X be a finite group and © a p'-subgroup of %
which 18 normalized by the p-subgroup U of X. Set A, = Cy(D).
Suppose & 18 a p-solvable subgroup of X containing AP and $ £ 0,.(2).
Then there is a p-solvable subgroup & of ACL(A,) which contains A
and O £ 0,.(R).

Proof. Let ¥ = 0, ,(2)/0,(¥). Then $ does not centralize .
Let B be a subgroup of % which is minimal with respect to being
AP-invariant and not centralized by ©. Then B = [B, ], and [B, A,| =
D(B), while [D(3B), 9] = 1. Hence, [B, A, 9] =[N, H, B] =1, and so
[©, B, A] =1. Since [, B] =B, A, centralizes B. Since B is a sub-
group of &, we have B = £/0,(%) for suitable £,. As 0, () is a
p’-group and B is a p-group, we can find an WA-invariant p-subgroup
B, of &, incident with B. Hence, A, centralizes P,. Set

K= B, D> S8,
As £ is p-solvable so is 8. If = 0,(R), then
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[Bo, O] S L N 0,/(8) S 0,(2)

and 9 centralizes B, contrary to construction. Thus, $Z 0,(R), as
required.

LEMMA 7.9. Let © be a p-solvable subgroup of the finite group
X, and let P be a S,-subgroup of . Assume that one of the follow-
wmg conditions holds:

(a) |X%| 78 odd.

(b) »=5.

(e¢) p»p=38 and a S,-subgroup of O 8 abelian.
Let Py, = 0, ,(9) NP and let P* be a p-subgroup of X containing P.
If B 18 a S,-subgroup of N, (%o), then B, contains every element of
FEN(PB*).

Proof. Let Ae Az _+(P*). By (B) and (a), (b), (c), it follows
that AN P=ANP, = Y, say. If A, A, then there is a Py-invariant
subgroup B such that A, B, |B:A| = p. Henece, [Ty, B]S A, S
PBoy 50 BE N (By) N P*. Hence, <{B, P> is a p-subgroup of N (B),
so BSP. Hence, B&SAN P = A, which is not the case, so A =,
as required.

8. Miscellaneous Preliminary Lemmas

LEMMA 8.1. If X i8 a m-group, and & 18 a chain X =%2
¥,2.--2%, =1, then the stability group A of & 18 a mw-group.

Proof. We proceed by induction on n. Let A€ 2. By induction,
there is a m-number m such that B = A™ centralizes X,. Let XeX%;
then X2 = XY with Y in %,, and by induction, X% = XY". It fol-
lows that B% =1,

LEMMA 8.2. If B i8 a p-group, then P possesses a characteristic
subgroup € such that

(i) el(©) =2, and €/Z(€) is elementary.

(ii) ker (Aut P—> Aut €) is a p-group. (res is the homomor-
phism induced by restricting A in Aut B to C.)

(iii)) [B,C€)] = Z(€) and CE€) = Z(€).

Proof. Suppose € can be found to satisfy (i) and (iii). Let
® = ker res. In commutator notation, [&, €] = 1, and so [, €, PB] = 1.
Since [€, B] =€, we also have [€, P, & = 1 and 3.1 implies [P, &, €] =
1, so that [P, ] & Z(€). Thus, & stabilizes the chain P2E€ =21 so
is a p-group by Lemma 8.1.
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If now some element of &+~ (P) is characteristic in P, then
(i) and (iii) are satisfied and we are done. Otherwise, let %A be a
maximal characteristic abelian subgroup of P, and let € be the group
generated by all subgroups ® of P such that AcCD, |D:A| = p,
DEZ (Pmod ), DS CA). By construction, A< Z(€), and € is seen
to be characteristic. The maximal nature of A implies that A = Z(G).
Also by construction [P, €] A = Z(€), so in particular, [€, €] < Z(C)
and cl(€) =2. By construction, €/Z(€) is elementary.

We next show that C(€) = Z(€). This statement is of course
equivalent to the statement that C(€)=€. Suppose by way of con-
tradiction that C(€)Z €. Let € be a subgroup of C(€) of minimal
order subject to (a) € < B, and (b) € £ €. Since C(C) satisfies (a)
and (b), € exists. By the minimality of &, we see that [P, E]=€
and D(@) S €. Since € centralizes €, so do [B, ] and D(E), so we
have [P, €]=SU and D(E)=A. The minimal nature of & guarantees
that G/ENE is of order p. Since ENE=CENA, EENA is of
order p, so GA/A is of order ». By construction of €, we find CAS
€, so =€, in conflict with (b). Hence, C(€) = Z(€), and (i) and
(iii) are proved.

LeMMA 8.3. Let X be a p-group, p odd, and among all elements
of L& (%), choose A to maximize m(A). Then 2,(C(2,(N))) = 2,(N).

REMARK. The oddness of p is required, as the dihedral group
of order 16 shows.

Proof. We must show that whenever an element of ¥ of order
p centralizes 2,(A), then the element lies in 2,(A).

If XeC(2,(YA)) and X? =1, let B(X) =B, = {2,A), XD, and let
BB, B, =<YU, X> be an ascending chain of subgroups, each
of index p in its successor. We wish to show that B, < B,. Suppose
B, <1B,, for some m =<n — 1. Then B, is generated by its normal
abelian subgroups B, and B, N A, so B, is of class at most two, so
is regular. Let Ze€®B,, Z of order p. Then Z= X*A, A in A, k an
integer. Since B, is regular, X *Z is of order 1 or p. Hence,
Ae2(U), and Z€B,. Hence, B, = 2,(B,.) char B,, <{ B, and B, < B,
follows. In particular, X stabilizes the chain %A 2 2,() =2 {1.

It follows that if © = 2,(C(2,(N))), then D' centralizes A. Since
Ne Fz v (%), DA We next show that ® is of exponent ».
Since [D, D)= A, we see that [D, D, D)= 2,(A), and so

99,9 =1,

and cl(®) <8. If p=5, then D is regular, and being generated by
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elements of order p, is of exponent p. It remains to treat the case
» = 3, and we must show that the elements of ® of order at most
3 form a subgroup. Suppose false, and that {X, Y is of minimal
order subject to X®*= Y*=1, (XY)»®+#1, X and Y being elements
of D. Since Y, Y*HcX, ), [Y,X]=Y"*' X 'YX is of order
three. Hence, [X, Y] is in £2,(2), and so [Y, X] is centralized by
both X and Y. It follows that (XY)'= X*Y¥YY,X]P =1, so D is of
exponent p in all cases.

If 2,A)cD, let E %, ESD, |E:2(A)| =p. Since 2,(A) S
Z(€), € is abelian. But m(€) = m(2) + 1 > m(A), in conflict with
the maximal nature of ¥, since € is contained in some element of
Fz.+(X) by 3.9.

LEMMA 8.4. Suppose p 18 an odd prime and X is a p-group.

(i) If SAZ 45 (%) is empty, then every abelian subgroup of %
18 generated by two elements.

(i) If &5 (X) 18 empty and A i3 an automorphism of % of
prime order q, p ¥+ q, then q divides p* — 1.

Proof. (i) Suppose A is chosen in accordance with Lemma 8.3.
Suppose also that X contains an elementary subgroup & of order p°.
Let €, = Cg(2,(Y)), so that €, is of order p* at least. But by Lemma
8.3, €, & 2,AN), a group of order at most p?, and so &, = 2,(A). But
now Lemma 8.3 is violated since € centralizes &,.

(ii) Among the A-invariant subgroups of X¥ on which A acts non
trivially, let © be minimal. By 3.11, $ is a special p-group. Since
p is odd,  is regular, so 3.6 implies that  is of exponent p. By
the first part of this lemma,  contains no elementary subgroup of
order p°. It follows readily that m(9) < 2, and (ii) follows from the
well known fact that ¢ divides |Aut $/D(D)]|.

LEMMA 8.5. If X is a group of odd order, p is the smallest
prime in w(X), and if in addition X contains no elementary subgroup
of order p°, then X has a mormal p-complement.

Proof. Let P be a S,-subgroup of X. By hypothesis, if  is a
subgroup of B, then FHAz _+;(9) is empty. Application of Lemma 8.4
(ii) shows that Ny(9)/Cx(D) is a p-group for every subgroup $ of P.
We apply Theorem 14.4.7 in [12] to complete the proof.

Application of Lemma 8.5 to a simple group ® of odd order im-
plies that if p is the smallest prime in 7(®), then & contains an
elementary subgroup of order °. In particular, if 3€n(®), then &
contains an elementary subgroup of order 27.
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LEMMA 8.6. Let R, N,, N; be subgroups of a group X and suppose
that for every permutation o of {1,2,3},

92,(1, g %a-(,)mc(s)

Then NN, is a subgroup of X.

Proof. TN, S (N NH(TLIL) € NIKN, & NNIR)N, & NN, as re-
quired.

LEMMA 8.7. If A is a p’-group of automorphisms of the p-group
B, if A has no fized points on P/D(P), and A acts trivially on D(P),
then D(P) =S Z(P).

Proof. In commutator notation, we are assuming [P, A] =B,
and [%, D(P)] = 1. Hence, [, D(P), B] = 1. Since [D(P), P] < D(P),
we also have [D(B), B, A] = 1. By the three subgroups lemma, we
have [, A, D(P)] = 1. Since [B, A] = B, the lemma follows.

LEMMA 8.8. Suppose Q 18 a q-group, ¢ is odd, A 18 an auto-
morphism of Q of prime order p, p =1 (mod q), and L contains a
subgroup Q, of index q such that FZ.N;5(,) is emplty. Then p=
1+ q+ @ and Q 18 elementary of order ¢°.

Proof. Since p = 1(mod ¢) and ¢ is odd, p does not divide ¢* — 1.
Since D(Q) S Q,, Lemma 8.4 (ii) implies that A acts trivially on D(Q).

Suppose that A has a non trivial fixed point on Q/D(X2). We can
then find an A-invariant subgroup It of index ¢ in Q such that A
acts trivially on Q/M. In this case, A does not act trivially on IR,
and so M = Q,, and M N Q, is of index ¢ in M. By induction, » =
1+q+ ¢* and M is elementary of order ¢°. Since A acts trivially
on /M, it follows that QO is abelian of order ¢* If O were elemen-
tary, Q, would not exist. But if {Q were not elementary, then A
would have a fixed point on 2,(Q) = M, which is not possible. Hence
A has no fixed points on Q/D(Q), so by Lemma 8.7, D(Q) S Z(X).

Next, suppose that A does not act irreducibly on Q/D(X). Let
N/D(Q) be an irreducible constituent of A on Q/D(X). By induction,
N is of order ¢ and p=1+ g+ ¢ Since DX)CN, D) is a
proper A-invariant subgroup of N. The only possibility is D(RQ) =1,
and |Q| = ¢ follows from the existence of Q,.

If |Q|=¢* then p =1+ ¢ + ¢* follows from Lemma 5.1. Thus,
we can suppose that | Q| > ¢°, and that A acts irreducibly on Q/D(R),
and try to derive a contradiction. We see that © must be non
abelian. This implies that D(Q) = Z(Q). Let |Q: D(R)| = ¢*. Since
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p=1(modgq), and ¢" = 1(mod p), » = 8. Since D)= Z(Q), n is
even, Q/Z(Q) possessing a non singular skew-symmetric inner product
over integers mod ¢ which admits A. Namely, let € be a subgroup
of order ¢ contained in Q' and let €, be a complement for € in L.
This ecomplement exists since L' is elementary. Then Z (P mod €,) is
A-invariant, proper, and contains D(L)). Since A acts irreducibly on
Q/D(Q), we must have D(Q) = Z (X mod €,), so a non singular skew-
symmetric inner product is available. Now Q is regular, since ¢l(Q) =
2, and ¢ is odd, so |2,(Q)| =[Q:0'(X)|, by [14]. Since cl(L) =2,
2,(2) is of exponent q. Since

12:0'(Q)| = |2: DR)| = ¢,

we see that |2,(Q)| = ¢*. Since Q, exists, 2,(Q) is non abelian, of
order exactly ¢*, since otherwise Q, N 2,(X) would contain an elemen-
tary subgroup of order ¢®. It follows readily that A centralizes 2,(X),
and so centralizes Q, by 8.6. This is the desired contradiction.

LEMMA 8.9. If P is a p-group, if & A5 (P) 18 non empty and
A i3 a normal abeltan subgroup of P of tyve (v, p), then A 18 con-
tatned in some element of & A;5(P).

Proof. Let G be a normal elementary subgroup of B of order 7°
and let G = Cz(N). Then € B, and A, € =F is abelian. If
|%| = »*, then A = ¢, = Fc & and we are done, since € is contained
in an element of & 4:(P). If |F| = p°, then again we are done,
since ¥ is contained in an element of A2 45(P).

If ¥ and 9 are groups, we say that 9 is involved in X provided
some section of X is isomorphic to 9 [18].

LeEMMA 8.10. Let P be a S,-subgroup of the group X. Suppose that
Z(P) is cyclic and that for each subgroup U in P of order » which
does not lie in Z(P), there s an element X = X(A) of P which
normalizes but does not centralize N, 2(Z(P))>. Then either SL(2, p)
18 1nvolved in X or Q2,(Z(P)) is weakly closed in P.

Proof. Let ® = 2,(Z(P)). Suppose € = D¢ is a conjugate of D
contained in P, but that € # D. Let D =<D), & =E). By hypo-
thesis, we can find an element X = X(€) in P such that X normalizes
(E,D> =%, and with respect to the basis (E, D) has the matrix

<(1) i) Enlarge § to a S,-subgroup P* of Cy(€). Since € = 9¥,

P¢ = Cx(€), so P* is a S,-subgroup of %, and €< Z(P*). Since Z(P*)
is cyclic by hypothesis, we have € = 2,(Z(P*)). By hypothesis, there
is an element Y = Y(®) in B* which normalizes ¥ and with respect
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to the basis (¥, D) has the matrix G 2) Now <é i) and G ?)
generate SL(2, p) [6, Sections 262 and 263], so SL(2, p) is involved in
N,(%), as desired.

LEeMMA 8.11. If U i3 a p-subgroup and B is a q-subgroup of %,
p # q, and A normalizes B then [B, A] = [B, A, A].

Proof. By 3.7, [¥,B] < AB, Since AB/[A, B] is nilpotent, we
can suppose that [2, B] is elementary. With this reduction, [B, 2, A] <«
AB, and we can assume that [B, A, A] = 1. In this case, A stabilizes
the chain B2 [B, A 21, so [B, A] =1 follows from Lemma 8.1 and

PFq.

LEMMA 8.12, Let p be an odd prime, and & an elementary sub-
group of the p-group P. Suppose A is a p’-automorphism of P which
centralizes 2,(Cy(C)). Then A =1.

Proof. Since €< 2,(Cy(€)), A centralizes €. Since € is A-invari-
ant, so is Cx(€). By 3.6 A centralizes Cqs(@)’ so if € = Z(%), we are done.

If C‘B(@) c B, then C‘B(@)D(SB) C %P, and by induction A centralizes
D(PB). Now [P, €]< D(P) and so [P, &, (AD] =1. Also, [E,{A] =1,
so that [E,<{A), P] =1. By the three subgroups lemma, we have
[<AD, B, €] =1, so that [P, <AD]S Cyx(€), and A stabilizes the chain
PB2Cy(€)D1. It follows from Lemma 8.1 that 4 =1,

LEMMA 8.13. Suppose P is a S,-subgroup of the solvable group
S, Sz (D) 18 empty and S 18 of odd order. Then &' centralizes
every chief p-factor of S.

Proof. We assume without loss of generality that 0,.(3) = 1.
We first show that P < S. Let © = 0,(8), and let € be a subgroup
of © chosen in accordance with Lemma 8.2, Let 2 = 2,(€). Since
p is odd and cl(€) < 2, W is of exponent p.

Since 0,(%) = 1, Lemma 8.2 implies that ker (& —— Aut®) is a
p-group. By 8.6, it now follows that ker (& —— Aut ) is a p-group.
Since P has no elementary subgroup of order 2% neither does 2B, and
so |W: D(W)| < p*. Hence no p-element of & has a minimal poly-
nomial (x — 1)* on W/D(W). Now (B) implies that P/ker a < S/ker «.
and so P < &, since kera S P.

Since P < S, the lemma is equivalent to the assertion that if &
is a S,-subgroup of &, then ¥ =1. If & # 1, we can suppose that
" centralizes every proper subgroup of 8 which is normal in &. Since
L is completely reducible on P/D(B), we can suppose that [P, &'] =B
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and [D(P), %] =1. By Lemma 8.7 we have D(P)SZ(P) and so
2,(B) = & is of exponent p and class at most 2. Since P has no
elementary subgroup of order p° neither does R. If & is of order p,
¥’ centralizes & and so centralizes P by 3.6, thus & = 1. Otherwise,
|®: D(®)| = p* and & is faithfully represented as automorphisms of
f/D(K). Since |8| is odd, ¥ = 1.

LEMMA 8.14. If & s a solvable group of odd order, and
SFEN;(PB) 18 empty for every S,-subgroup P of S and every prime
p, then &' i3 nilpotent.

Proof. By the preceding lemma, & centralizes every chief factor
of &, By 3.2, & < F(&), a nilpotent group.

LEMMA 8.15. Let & be a solvable group of odd order and suppose
that & does nmot contain an elementary subgroup of order p* for any
prime p. Let P be a S,-subgroup of S and let € be any character-
istic subgroup of P. Then CNP' 1 S.

Proof. We can suppose that €S P, since € NP char P. By
Lemma 8.14 F(&) normalizes €. Since F(&)P <1 S, we have & =
F(©G)N(P). The lemma follows.

The next two lemmas involve a non abelian p-group P with the
following properties:

(1) p is odd.

(2) P contains a subgroup P, of order p such that

CB) =% B,

where B3, is cyeclic.
Also, U is a p'-group of automorphisms of PP of odd order.

LEMMA 8.16. With the preceding mnotation,

(i) A 28 abelian.

(ii) No element of A centralizes 2,(C(Fy)).

(iii) If U s cyclic, then either |A| divides p 1J0r FZANL(P)
18 empty.

Proof. (ii) is an immediate consequence of Lemma 8.12.

Let B be a subgroup of P chosen in accordance with Lemma 8.2,
and let T = 2,(B) so that A is faithfully represented on W. If P, &
28, then B, is of maximal class, so that with B, = W, BW,,, = [T;, P,
we have |, : Bl =», 1=0,1,--+,n —1, |BW| =»*, and both (i)
and (iii) follow. If P, =W, then m(W) = 2. Since [BW, P] < Z(W),
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it follows that (P, Z(TW)> < P. By Lemma 8.9, & #;(P) is empty.
The lemma follows readily from 3.4.

LEMMA 8.17. In the preceding notation, assume in addition that
|A| =q is a prime, that q does not divide p — 1, that P =[P, A}
and that C;B(?I) 18 cyclic. Then |P| = p°.

Proof. Since gtp — 1, A centralizes Z(P), and so Z(P) <P
Since Cg(A) is eyelic, 2,(Z,(%P)) is not of type (p, »). Hence, B, &
2,(Z(PB)). Since every automorphism of 2,(Z,(P)) which is the identity
on 2,(Z,(P))/2(Z(P)) is inner, it follows that P = 2,(Z,(P)) - D, where
D = Cyp(2«(Z,(D))). Since P, is cyclie, so is D, and so DE 2,(Z,(D)),
by virtue of P =[P, A] and gt p» — 1.



CHAPTER III

9. Tamely Imbedded Subsets of a Group

The character ring of a group has a metric structure which is
derived from the inner product. Let £ be a subgroup of the group
X. The purpose of this chapter is to state conditions on £ and X which
ensure the existence of an isometry z that maps suitable subsets of
the character ring of € into the character ring of ¥ and has certain
additional properties. If a is in the character ring of € and a° is
defined then these additional properties will yield information con-
cerning «a*(L) for some elements L of ¥. Once the existence of 7 is
established it will enable us to derive information about certain
generalized characters of X provided we know something about the
character ring of €. In this way it is possible to get global infor-
mation about X from local information about .

There are two stages in establishing the existence of 7. First we
will require that £ is in some sense “nicely” imbedded in X. When
this requirement is fulfilled it is possible to define a* for certain
generalized characters « of € with a(1) = 0. In this situation a* is
explicitly defined in terms of induced characters of various subgroups
of X. Secondly it is necessary that the character ring of 2 have
certain special properties. These properties make it possible to extend
the definition of 7 to a wider domain. In particular it is then possible
to define a* for some generalized characters « of € with a(l) +# 0.
The precise conditions that the character ring of € needs to satisfy
will be stated later. In this section we are concerned with the
imbedding of £ in X, The following definition is appropriate.

DEFINITION 9.1. Let £ be a subset of the group X such that
(9.1) DSRSNE) =2.

Let 2, be the set of elements L in { such that C(L)SY%, and let
D= ¢,

We say that Q is tamely imbedded in % if the following conditions
are satisfied:

(i) If two elements of Q are conjugate in %, they are conjugate
n L.

(ii) If © is non empty, then there are non identity subgroups
D, ++, D, of X, n =1, with the following properties:

803
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@) (9, 19;)) =1 for ¢+ j;

(b) 9; is a S-subgroup of N; = N(D,);
) R=D2NN,) and H;N 8 = 1;
(d) (9:1,1C(L)]) =1 for Leg

(¢) For 1 <17 <mn, define

fu={ U cpn} -9t
He@’:
Then 9 is a non empty T. I. set in X and !, = N (‘52,-).

(iii) If L,e D, then there is a conjugate L of L, in € and an
index 7 such that

C(L) = Cg(L)-Co(L) SN; .

If € is a tamely imbedded subset of X then for 1 < ¢ < n, each of
the groups $; is called a supporting subgroup of 2. The collection
{9:11 <% < n} is called a system of supporting subgroups of L.

In one important special case, the definition of tamely imbedded
subset of X is fairly easy to master. Namely, if ® is empty, the
reader can check that & is a T. I. set.

If € is a tamely imbedded subset of % with € = N(@) then in
this section _# (@) denotes the set of generalized characters of £ which
vanish outside € and 'g(ﬁ) denotes the complex valued class functions
of 8 which vanish outside L. Similarly, 4 (@)( %(@)) is the subset of
F (é)(%(@)) vanishing at 1. R. Brauer and M. Suzuki noted that if

Qisa T. I set in ¥ then the mapping 7 from %(@) into the ring
of class functions of ¥ defined by

a’ = a*

is an isometry ([24], p. 662). They were then able to extend this

isometry to certain subsets of & (AS). Several authors have since then
used this technique and it has played an important role in recent
work in group theory.

In this chapter these results will be generalized in two ways.
First we will consider tamely imbedded subsets of X rather than T. I.
sets in X. Secondly we will show that under a variety of conditions
T can be extended to various large subsets of %(@). The results
proved in this chapter are important for the proof of the main theorem
of this paper. However it is unnecessary in general to assume that
X has odd order or that X is a minimal simple group.

The following notation will be used throughout this section.

For a tamely imbedded subset € of %X let € = N (%) and for
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1=<t=nlet ; and N; have the same meaning as in Definition 9.1.
Define $, =1 and

L ={L|LeD, C(L)=N;} for 11 n.
For Le&,,0<1=<n let
9.2) A, ={LH|LH= HL,He 9} = L{H: N C(L)} .

Since & is tamely imbedded in % it follows from (9.2) and Definition
9.1 that for Le&, 01 < n

(9.3) |CL)|=[CL)NL| | A .

For a e %(@) and 1 <1 < n define
a; = Algng, -

Let a;, be the class function of N,/H:; which satisfies
Ui lgng = i -

Let a;, be the class function of N; induced by «;. Define
(9.4) a=a* + 5:. (@ — an)* .

Ifae % (@) then (9.4) implies that a* is a generalized character of X.
It is an immediate consequence of the definition of induced characters
that for 1 <1< n

au(A) = a(L) fOI‘ L € 8,', A € QIL
(9.5) a,-,(A) = 0 fOl' L € 8", A € QIL, A #+ L
an(L) =|C(L) N 9:|a(L) for Leg;.

LEMMA 9.1. Suppose that Qisa tamely tmbedded subset of %.
If ac %(ﬁ) let a® be defined by (9.4). Then a’(X) =0 if X is not
conjugate to an element of U, for any Le _08,- , While

+=0

a'(4) = a(L) for Ae¥,LelJe,.

=0

Proof. If NeR; then a complement of ; in DN is solvable.
Thus ([28] p. 162) for 1 <7 < n every element of N; is conjugate to
an element of the form HL = LH with Le2NN;, He ;. Suppose
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that L is not conjugate to an element of f!‘; then since ae %(@),
(9.4) implies that a*(HL) = 0. This implies that a*(X) = 0 unless X

is conjugate to an element of 2, for some L eiL”Jo& .

Let Ae,, Le®; for some ¢ with 0<% =<n. Suppose that
X'LXe ‘?é,- for some XeX and some j§ with 1=<j7=<mn,7+# 5. Then
(19;l,|C(L)[) 1. Thus ¢ 0 and Le%®, Furthermore C(L)=
Co(L)Co(L). By assumption (|9:],[9;]) =1 and (|9;l, [Cx(L)[) = 1.
Thus (|C(L)|, | 9;]) = 1 contrary to the choice of L. Since a e % (),
a; — aj, vanishes on N; — S?E’,’-. Consequently (9.4) implies that

©.6) a'(A) = a*(4) for 1 =0

) Cat(A) = a*(A) + (@, —ay)*(4) forlsi=n.
Since N, is a T. I. set in ¥ with N (‘jt,-) =N, we get that

(@n — an)*(4) = (@, — a,)(4) .
Thus (9.6) yields that
9.7 a‘(A) = a*(4) + (@; —a)(4) for 1=<i1=mn.
Assume first that A = L. Then a*(L) = |C(L) N ;| a(L). Hence

(9.5), (9.6) and (9.7) yield that a*(4) = a(L). If A + L, then a*(4)=10

and 1<7=<mn. Thus (9.5) and (9.7) yield that also in this case
a’(A) = a(L). The proof is complete in all cases.

LEMMA 9.2. Suppose that Q is a tamely imbedded subset of X.
If ae %(@) let a be defined by (9.4). Then for 1=1=n

a’(N) = ay(N) for NeR, U 9; .

Furthermore o |y, is a linear combination of characters of N/P;.

Proof. If Ne9; then by Lemma 9.1 and the definition of «;,
a’(N) =0 = ay(1) = ay(N) .

If Ne S?t.-, and a’(N) # 0, then N is conjugate to an element A of
U, for some L €. Thus by (9.5) and Lemma 9.1 a*(N) = a,(N) as
required.

Let 6 be an irreducible character of N, which does not have 9;
in its kernel. Then
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9.8) (w@vw=T%T&MwNﬁﬁﬁ.

By Lemma 4.3 6 vanishes on N, — ‘32,- — 9; hence (9.8) and the first
part of the lemma yield that

T — 1 T A0 N\
(@ |gp,, 0) = Tﬁzm‘a (N)O(N)

1
| R |

th‘au(N )TJV) = (@, 0) .

Since «a;, is a linear combination of characters of N;/9: this yields
that (a” |y, ) = 0. The lemma is proved.

LEMMA 9.8. Suppose that 8 is a tamely tmbedded subset of X.
If ae &(8) and a* 1s defined by (9.4) then

(a7, 1;); = (a, 19,)53 .

Proof. Let €, €, --- be all the conjugate classes of ¥ which
contain elements of &. Let L,, L,, --- be elements in Cj £, such that
=0

L;e€; N ©. The number of elements in %X which are conjugate to
an element of 2, , is easily seen to be

@ % —_— ‘—I % .

Thus by Lemma 9.1 and (9.3)

1 | %]
3.

12| 77 |C(L;)|
1 |2]

= 2 a L_,'
2] TeTy n el

(9.9) (a7, 1)y = I ';‘)IL, | a(L;)

By assumption €, N ﬁ', ¢, N @‘, -+« are the conjugate classes of € which
contain elements of £, Since a e &({) this yields that

1, |2

& ey ne ")

(a’ 12)2 =

Therefore (9.9) implies the desired equality.

LEMMA 9.4. Suppose that Qs a tamely imbedded subset of X.
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Let 6 be a generalized character of X such that for Le 08,-, (X
=0

constant on U,. If a,,Bej,(f!) and if a7, B are defined by (9.4)
then

(a7, 0); = (a, 8,9)q

(a7, B)y = (a, B)q .

Proof. Since 6 is constant on U, for Leo&- it follows from
=0
Lemma 9.1 that

{aBg) = a6 .

Thus by Lemma 9.3

(@, 0); = (@6, 13); = (@B g, Lg)g = (@, 6,9)g

By Lemma 9.1 87 is a generalized character of ¥ which is constant
on A, for Le 0 L;,. If now € is replaced by B8 in the first equation
=0

of the lemma the second equation follows.

LEMMA 9.5. Suppose that f is a tamely imbedded subset of
X, Let 6 be a class function of X which 1is constant on A, for

Le 0 R:. Let %, be the set of all elements in X which are conjugate

=0

to some element of A, with Le 08,-. Then

=0

1

7 T8 = L suer).

|2

Proof. Define a e %(@) by

a(L)=6O(L) if Le®
a(L) = 0 if Le®— &,

By Lemma 9.1

a’'(X) =6(X) if XeX,
a'(X)=0 if XeX —%,.

Consequently Lemma 9.8 implie th t
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T%ET Sx8(X) = (ar, 1)y = (@, 1g)g = T%TZW(L)

=1 5,
= 78] S0(L) .

Lemma 9.5 is of great importance. Even the special case in
which 6 = 1; is of considerable interest and plays a role in section
26. In this special case, Lemma 9.5 asserts simply that |%,|/|X| =

12 |/121.

10. Coherent Sets of Characters

Throughout this section let ® be a tamely imbedded subset of the
group X. Let = N(®) and let _#(2) be the set of generalized char-
acters of & which vanish outside ¥. Let z be defined by (9.4).

DEFINITION 10.1. A set & of generalized characters of 2 is
coherent if and only if

(i) A(&)+0.

(ii) It is possible to extend = from _# (5°) to a linear isometry
mapping _# (<) into the set of generalized characters of X.

(iii) A£()s A®).

It is easily seen that if .&# is a coherent set and 7~ &.&¥ with
# () # 0 then also .7~ is a coherent set. It is more difficult to
decide whether the union of two coherent subsets of _# (f‘,) is coherent.
Examples are known in which .&” consists of irreducible characters of

A

€ and is not coherent though .%(5”) # 0 [25]. In these examples &
is even a T. I. set in . The main purpose of this section is to give

some sufficient conditions which ensure that a subset & of _# (@) is
coherent.

LEmMMA 10.1. Suppose that Qisa tamely imbedded subset of X.
Let & ={\|1 <1< m} with n=2. Assume that for 1 <1 = n, \,
is am irreducible character of L. Furthermore N(L) = \(L) for
LeQ — & Then S is coherent. Furthermore, if 7, and T, are
extensions of T to 57 then either 7, = T,0r | 7| = 2 and \j1 = —\j2,,
1=1, 2.

Proof. For 1=<t,j=n let a; =) —)\;, then a;;e_# ().
Thus _# (%) # 0 since » = 2. Furthermore a;; is defined. Since 7
is an isometry this yields that

(10.1) (a3, aij) = (a5, Ayj) = 050 — 0jir — Osr + 0jjr o
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In particular (10.1) implies that if 7+ j then ||af;||* = 2. By Lemma
9.1 a;(1) =0, therefore «;; is the difference of two irreducible charac-
ters of X.

If n > 2, then it follows from equation (10.1) that (af, ai;) =1
if 1<4,7 and © # J5. It is now a simple consequence of (10.1) that
there exists a unique irreducible character of ¥ which is not orthogonal
to any af; for 2 <1 < n. Furthermore if 4, is chosen to be plus or
minus this character then it may be assumed that

(a;, 4)=1 for 2=i1=<n.
Now define 4; by
aiy=4,— 4, 2=<1=mn.
This implies that
ai; = A, — 4; .

Hence (10.1) yields that the generalized characters 4;,1 <1 < n are
pairwise orthogonal and that they each have weight one. It is easily
shown that a rational integral linear combination of the characters
\; of degree zero is a rational integral linear combination of the
generalized characters «,;. Hence if .&“° is the set of generalized
characters 4,,1 < © < n, then the linear mapping sending \; into 4, is
an isometry. Thus, . is coherent and the extension of ¢ to &7 is
unique in this case.

If » =2, define 4; for 1 =1,2 by af, = 4, — 4,, where 4; has
weight one. Any rational integral linear combination of )\, and \, of
degree zero is a multiple of a,;,. Thus, if 7, is any extension of 7 to
S, M= 4, or M= —4,_; for 1 = 1,2, The proof is complete.

Before proving the main result of this section, another definition
is needed. The following notation is introduced temporarily.

Let & be a subset of _# (@) which consists of pairwise orthogonal
characters. If &4 S .97, let #(54) denote the smallest weight of any
character in $¢ of minimum degree. If ¢ and . &~ are coherent
subsets of . and 7, and 7, are extensions of 7 to .5 and .7 re-
spectively, define

K (HA, 1, T ,7) = {af

(i) ae Z(S).

(il) a® = 4, + 4,, where
(@) dezx (T M),
(b) 4, is not orthogonal to .7 (%),
) 4= x(s7)).
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DEFINITION 10.2. Let ¢ be a coherent subset of . and let z*
be an extension of 7 to .&4. The pair (%, t*) is subcoherent in &
if the following conditions are satisfied: If .7~ is any coherent sub-
set of .&¥ which is orthogonal to $¢ and if 7, and 7, are extensions
of 7 to .54 and .7~ respectively, then

(i) %47 is orthogonal to 7 2.

(ii) If ae (4, 03 7, 7)), then a® is a sum of two generalized
characters, one of which is orthogonal to 4% and the other is in
+.K.

If (&%, t*) is subcoherent in .57, we also say that .4 is subcoherent
in .&¥, which causes no confusion in case 7* has been designated.

Hypothesis 10.1.

(i) 28 is a tamely tmbedded subset of the group X.

(ii) For 11k, % ={\,|1=8=n} 18 a subset of _#(?).

(i) & = ij £ consists of pairwise orthogonal characters.
=1

(iv) For any i with 1 <1t < k, &4 18 coherent with isometry z,.
2 18 partitioned into sets 4; such that each ; either consists of
irreducible characters of the same degree and | &%;| = 2 or (S, Tis)
18 subcoherent in ¥ where T, = T; on ;.

(v) For 11k, 1= 8= m,, there exist integers 4, such that

1=/u§/21§ e =,
Kia(l) = /1':)"11(1)9 /o'l | /h .

(vi) A, 8 an irreducible character of L.
(vii) For any integer m with 1 < m =k,

> 2/

(10.2) "gl ;1

bia
[R¥A |y

THEOREM 10.1. Suppose that Hypothesis 10.1 is satisfied. Then
&7 18 coherent. There is an extension t* of T to _# (<) such that
either ©* agrees with 7, on % or &4 = {\, N} and N3 = —\;Z; for
j=1,2.

Proof. The proof is by induction on k. If k=1 the theorem
follows by assumption.

k—1
It is easily seen that |J .57 satisfies the assumption of the theorem.
=1

k—1
Hence by induction it may be assumed that | .54 is coherent. Let

i=1

k—1
7* denote an extension of 7 to | .54, with the property that for
=1
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1<i<k-—1,7* agrees with 7, on %4, or &5={\, N} and A= — )\,
i=1,2,

Choose the notation so that \,, has minimum weight among the
characters in .54 of degree 4,\,(1). Let .54 be the subset .5%; which
contains \,,. For 1 < s < n, define

B, = Gy — Ny o
Thus B,e . %4(%”) and B: is defined. Define the integer y by
(10.3) LB =4 —v.
If 5,t)+@1,1)and 1 <i1<k—1,1=<t=<n,;, then by (10.3)

(K::, Bl) - (4:7\'11, ) (/u)\' x-':.t‘., B:)

(10.4)
= li(ls — V) — bsbir = — Yl .

Since \,, is irreducible and z is an isometry on _% (%)

(10.5) 181 =48 + M| for 1ss<m,.
By (10.4)
(10.6) Bi=ari—¥ 3>, N+ 4

” 'h“

where (4,\;)=0 for 1=1=<k—-1,1=<s8=<n;. Equations (10.5)
and (10.6) now yield that

k—1 "4

2,
(10.7) — 249 + ¥ EZ_‘; ||7\, ”, + 1411 =43 + [l .

If y # 0 then since y is an integer (10.2) and (10.7) imply that
0= 24" — o) <Ml = 11411

Therefore

(10.8) N4 <|INal* if y#0.

We will show that y = 0. By Hypothesis 10.1 (iv), ¢ can be ex-
tended from .4 (%4) to a linear isometry 7, on .#(%4). Forl <s =<n,
let 4, be the image of \,, under this extension. If (%%;, 7.;) is sub-
coherent in .&¥, then .4*i is orthogonal to \J!-! $7*°. Suppose that
;i consists of irreducible characters of the same degree. If .o4%i
is not orthogonal to \J!=! 4™, then there exists A € .9%; and )\, €.,
for some 1and m with1 < 4 5 k — 1, such that (A%, \{") = 0. Assume
first that &4, consists of irreducible characters of the same degree.
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Then it may be assumed that A = N\, N € Hijy Mt F M and Ny =
Niyy MNigr € Fmy Mis = M. Thus AiF = eny, for suitable ¢ = £1. Hence

0= (AL — N, Mif — Nik) =€ 4+ (N, Mib)
Hence AL, = —e\.5. Therefore
0 = (AL — AL = el + M) = 2e04(1)

which is not the case as ||\"*/||? = 1. Suppose now that .&4, is sub-
coherent in .&“. Then 54" is orthogonal to .54 by definition. There-
fore, for 2 < 8 < n,,

109) (4, %4, - 4,) = (81, %24, ~ 4,) = = Zejn,p.

k1 k1 k1

Thus, 4 is not orthogonal to % (54)°. If 54 consists of irreducible
characters this yields that || 4|]*= 1. Hence, ¥ = 0 by (10.8). Suppose
that (.54, i) is subcoherent in & If y # 0, (10.8) implies that

(10.10) Bi =4+ 4

where 4e +.% ™ and 4, is orthogonal to .%4i*. By changing notation
if necessary it may be assumed that

(1011) A= iA1
by (10.9). Now (10.9), (10.10) and (10.11) yield that
(10.12) Il = 1(4, D" = | 411 Nea [

Hence, (10.8) and (10.12) imply that ¥y = 0 in all cases. Thus, (10.3)
becomes

(10.13) (M, BY) = 4

For 1 < s =n,,

B, =£B +(/k' >\vk1—7\'k->-

k1 k1l

Therefore, (10.13) implies that

(10.14) (A, BY) = 4, 1=s=mn,.
For 1 < s £ n,, define )}, by
(10.15) B: = 4 M1 — Ny

and extend the definition to _#(5°) by linearity. This implies that
A = Nk or A = {\, N} and Nj° = —Az%; for ¢ =1,2. Hence, S47 is
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orthogonal to U ™ and thus 7* is an isometry on #(5°). The

i=1

proof is complete.

If & is a coherent subset of _# (53), then 7 will be used to denote
an extension of 7 to _#(%°).

Hypothests 10.2.

(i) Q is a tamely 1mbedded subset of X and O; 18 a supporting
subgroup of L. N, = NO,).

(ii) If 6 is any non-principal irreducible character of ; and
6 is the character of N, induced by 6, then § is a sum of irreducible
characters of N;, all of which have the same degree and occur with
the same multiplicity in 6.

LEMMA 10.2. Suppose that Hypothests 10.2 is satisfied. For any
character o of ; let &, be the set of irreducible characters of N
whose restriction to ; coincides with «. If € 1is a generalized
character of X which 1is orthogonal to _%(S4)* for all a with
(@, 1z,) =0 then 6 is constant on the cosets of ©; which lie in

N, — D

Proof. We first remark that by Lemma 4.3 characters in .&
vanish on N; — 5.7?‘- — O;, and so generalized characters in _%(5%)
vanish on N; — 9.??‘-. Suppose that 6,, 8, are distinct characters in &
with (@, 1p,) = 0. By assumption (@, 0, — 6,)*) =0. Thus by the
Frobenius reciprocity theorem (@,m , 6,) = 0. Hence by Hypothesis
10.2 @.m =4 + B, where 7 is a class function of N; induced by a class

functlon v of ©; and B is a generalized character of N;/D;. Thus
€(N) = B(N) for Ne R, — ;. The proof is complete.

LeEMMA 10.8. Suppose that Hypothesis 10.2 is satisfied. Let &

be a coherent subset of _# (Q) which consists of pairwise orthogonal
characters of 8. Assume further that & contains at least two
irreducible characters. Then 1f M€ .S, \' 18 constant on the cosets
of O; which lie in N; — ..

Proof. Suppose that 6,, 6, are distinect irreducible characters of
N; which do not contain O; in their kernel such that 0% = 0%‘. We
will show that

(10.16) (Vi 01— 6) =0

By Lemma 4.3 6, and 6, vanish on N, — 52,- — ;. Since E?E,- is a
T. I. set in ¥ and N; = NO,) the mapping sending 6, — 6, into
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(6, — 6,)* defines an isometry on _%({f,, 6,})). By Lemma 10.1 this
can be extended to an isometry of _~# ({6, 6,})). Let 60, 6, be the
respective images of 6,, 6, under this isometry. By assumption .&*
contains two irreducible characters )\, and \,. Since

AN — MN; € A ()
for j = 1,2, Lemma 9.2 implies that if (10.16) is violated then
(x;m‘, 0,—0,) 0 for 7=1,2.
Thus by the Frobenius reciprocity theorem
N\, 0,—6,) =(\;, (0, — 0)*)#0 for j=1,2.

Thus by changing notation if necessary it may be assumed that
N = *+6; for j =1, 2, where the sign is independent of 5. Hence

(10.17) (M@ — XA, 0, — 0,) = (1) + ML) = 0.
Since N (L)X, — XA\ € A4 () Lemma 9.2 implies that
(DM — Xa(DM) g, 6, — 6,) = 0.
Thus by the Frobenius reciprocity theorem
DA — MM, 6, — 6,) = (DN — M(DN, (6, — 6,)*) = 0
contrary to (10.17). Therefore (10.16) must hold. The result now

follows from Lemma 10.2.

LEmMMA 10.4. Suppose that the assumptions of Lemma 10.3 are
satisfied. Let a be the least common multiple of all the orders of

elements in 8. I f N 18 an irreducible character in &, then &£,
contains all the values assumed by \°.

Proof. By assumption & contains another irreducible character
M. Let o be any automorphism of &5 whose fixed field contains &Z,.
Then since M)A — M1\, € A4 (&) it follows directly from (9.4) that
o[{Mm@ON — AMONF] = (MQ)o (V) — ML)a(\)}
= (DA — M)
Therefore
M(1)a(A7) — ML)a(A]) = MDA — MDA .

As [IAT|]* = |[Af||* =1, this implies that o(\") = A\*. As ¢ may be an
arbitrary automorphism of &5 whose fixed field contains &2, the result
is proved. '
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LeMMmA 10.5. Suppose that L isa tamely imbedded subset of %.
Let A, have the same meaning as in (9.2) and let & be a generalized

character of X which is constant on U, for Le 08,-. Let &7 be a
1:=0

coherent subset of _# (@) consisting of irreducible characters. Then
there exist rational numbers b, c, and generalized characters B, of

& which are orthogonal to .&¥ such that if Le@ then O(L) = bB(L)
if O 8 orthogonal to 577, and N (L) = ML) + ¢v(L) if & = \ € &7,

Proof. It is an immediate consequence of Lemma 9.4 that if €
is orthogonal to &#* and if & = I \(1)\;, where \; ranges over &7,
then

(10.18) O(L) = b&(L) + b,By(L) for Le &

where b,, b, are rational numbers and B, is a generalized character of
£ which is orthogonal to &2 If ® = \*, then Lemma 9.4 yields that

(19.19) ML) = ML) + ¢.&(L) + eyr(L) for Le &

where c,, ¢, are rational numbers and v, is a generalized character of
£ which is orthogonal to .2 There exists a generalized character &’
of £ which is orthogonal to . such that

§+ & =pg.
Since p,(L) = 0 for L e £ (10.18) and (10.19) imply respectively that

O(L) = —bs'(L) + bn/81(L)
A (L) = ML) — ef'(L) + emi(L) .

The lemma follows by a suitable change in notation.

It is worth noting that if the hypotheses of Lemma 10.3 are
satisfied for every subgroup in a system of supporting subgroups of
@, then that lemma implies that A" satisfies the hypotheses of Lemma
10.5. This fact will be used later in this paper.

11. Some Applications of Theorem 10.1

In this section we are concerned with the problem of finding
conditions under which it is possible to apply Theorem 10.1. That
theorem will then allow us to conclude that certain sets of characters
are coherent. To clarify matters the main Hypothesis is stated
separately. This also serves to introduce the notation.
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Hypothesis 11.1.

(i) 5§0 18 a tamely imbedded subset of the group X and %, =
N (@o) has odd order. 9, <1, and ﬁo 18 a union of cosets of ©,. Let
L = 8,/9, and let Q be the image of @o m L.

(ii)  and & are normal subgroups of & such that 9 18 nilpotent
and

(11.1) 9c U CH)NRcSLcRee.
HeH
(ili) ¥ 18 the set of all characters of & which are induced by
non principal irreducible characters of K, each of which vanishes

outside 8. Then & consists of patrwise orthogonal characters.

(iv) There exists an integer d such that d|Q:8||\M1) for v e &~.
Furthermore & contains an irreducible character of degree d|2: 8.

(v) Define an equivalence relation on & by the condition that
two characters in & are equivalent 1f and only tf they have the
same degree and the same weight. Then each equivalence class of
&’ 18 either subcoherent in & or comsists of irreductible characters.

(vi) For any subgroup U of © which is normal in L let ()
be the subset of & consisting of those characters which are equiva-
lent to some character in & that has U in its kernel.

In the application to the main theorem of this paper (11.1) will
always be augmented by one of the following conditions.

(11.2) H=L=RcCS.

(11.8) pcl=8ce.

(11.4) DS U*C(H)ns%:@gﬂgié.
EG@

THEOREM 11.1. Suppose that Hypothesis 11.1 18 satisfied. Let
D, be a normal subgroup of & which 8 contained in O such that

(11.5) |D: 9| >4d* |8+ 1.

If (D, 8 coherent and contains an irreducible character of degree
d|2:8| then & 18 coherent.

Proof. Let 9, be a normal subgroup of £ which is contained in
9, and is minimal with the property that .57(9,) is coherent. Suppose
that ©, # <1). Choose 9, C 9, such that ,/9; is a chief factor of L.
Let () =%%={\,|1=8=mn}, where )\, is irreducible and
M) =d|8:R|. Let &4, --- .5 be the subsets of S7(D:) — (D)
consisting of all characters of a given weight and a given degree. For
2=<1 =k let 42\i(l) be the common degree of the characters in .&4.
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By Hypothesis 11.1 all the assumptions of Theorem 10.1, except possibly
inequality (10.2), are satisfied for &7(9;). We will now verify that
also inequality (10.2) is satisfied.

Let 6,, 6,, --- be all the irreducible characters of & which do not
have 9 in their kernel. Let #; denote the character of € induced by
6;. Then each §; is in & by Lemma 4.3. Furthermore if 8, ranges
only over characters of £/9, then

20,1)0; = Py, — Ogip -
Therefore

(11.6) 360;(1)6; = Pgip, — Pgg -

If §; # 6, then (4;,8;) = 0. Suppose that for a given j there are a;
values of 7 such that §; = §,. Then (11.6) implies that

(11.7) 20,Da} [|6; 1" = [2:9,] — |2:9|

where the summation in (11.7) ranges over the distinct ones among
the 6;. Since

(0,00, 117;17 = 0,0 18: %10 = 3,06,0a, = T4
(11.7) yields that

Ml 3 120 |2
S 2 180 - 18:01,

where &4 = {\,,} or equivalently

* .
11.8 " As > |8$al_|8©|.
(11.8) 2P = @lear

Since O is nilpotent 9,/D, is in the center of 9/$,. Every irreducible
character of R is a constituent of a character induced by an irreducible
character of . Thus for 2 < m < k, Lemma 4.1 implies that

mld |8 =VI[9:9:]8:9],

or equivalently

[R:9[V]9:9,]
y .

A

(11.9) -
Suppose now that inequality (10.2) is violated for some value of m.
Then (11.8) and (11.9) yield that

[8:9,] — [8:9] _ 2[R:D[V[D: 9]
@e:RF d
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Thus
{19: %, -1} =24 |2: R VTD: %1,

or
|9: 9, —2|9:9,| +1=<4d*|L: K| 9:9.] .

Since every term is an integer this implies that

(11.10) |9:9:| —1 =544 |L: 8.

However 9, £ 9,, thus |9:9.| = [9:9,|. Now (11.5) and (11.10) are
incompatible. Therefore inequality (10.2), and thus all the assumptions
of Theorem 10.1, are satisfied. Hence by that theorem .&#(9,) is co-
herent contrary to the minimal nature of ©,. This finally implies
that 9, = {(1>. Therefore & = .$7(9,) is coherent. The proof is
complete.

The remainder of this section consists of applications of Theorem
11.1. Lemmas 11.1 and 11.2 are closely related to Theorem 2 of [8].
By using the argument of that theorem the assumption that | 2| is
odd in the following lemmas can be replaced by suitable weaker as-
sumptions. However the stronger results are not relevant to this
paper and will not be proved here.

Hypothesis 11.2,

(1) Hypothesis 11.1 and equation (11.2) are satisfied. Thus
d=1.

(ii) || 28 odd and 2/9" 18 a Frobenius group with Frobenius
kernel /9.

LEMMA 11.1. Suppose that Hypothesis 11.2 is satisfied. If

|9:9'[ > 48: 9 +1

then & 18 coherent.

Proof. By Lemma 10.1 and 3.16 (iii) .&7(9') is coherent. The
result now follows from Theorem 11.1.

LemMMA 11.2. Suppose that Hypothesis 11.2 s satisfied. Then
&” 18 coherent except possibly if O is a non abelian p-group for some
prime p and

|9:9' | =4|2:9'+ 1.
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Proof. If =9, x 9,, where 9, and 9, are proper normal sub-
groups of £, then

|9::9:| =1 (mod [R:D]) fort=1,2,
Since | 2| is odd, this implies that
19::9:11=22|2:9|+1 fori=1,2.

Hence [D:9'| > 4|2:9’+ 1 and .&” is coherent by Lemma 11.1. As
» is nilpotent this implies that . is coherent if © is not a p-group
for any prime p. Since | 8| is odd

|9:9'|—1
F|=>1RR =259
|| = 2ol 2

Thus by Lemma 10.1 .&” is coherent if © is abelian. The result now
follows directly from Lemma 11.1. '

LEMMA 11.3. Suppose that Hypothesis 11.2 is satisfied and L is
a Frobenius group with Frobenius kernel . Assume that O is a
p-group for some prime p and | O:D(D)| = p’. Then & 18 coherent.

Proof. If © is abelian Lemma 11.2 implies that .&¥ is coherent.
If  is not abelian then the second term of the descending central
series modulo the third is cyeclic. Thus

p=1(mod|2:9]).
Therefore (p — 1) = 2|8:9| as || is odd. Hence
|9:9' | =2p*>4|2:9*+ 1

and the result follows from Lemma 11.1.

LEMMA 11.4. Suppose that Hypothesis 11.2 is satisfied and L is
a Frobenius group with Frobenius kernel O, Assume that O is a
p-group for some prime p and |H:D(D)| = p°. If

(11.11) PP—1>2p|8:9]

them & s coherent.

Proof. If  is abelian Lemma 11.2 implies that .&” is coherent.
If © is non-abelian let , be a subgroup of D(D) such that D(D)/D,
is a chief factor of . As 9 is nilpotent D(9)/9, is in the center of
$/9.. Thus by Lemma 4.1 the degree of any irreducible character of
/D, is either 1 or p. Hence the degree of any character in .&7(9,)
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is either |2:9| or |2:9|». Let &4, &4 be the subsets of &(9,) con-
sisting of all the characters of degree |2:9|,|8:9|p respectively.
Let 4 =1,4=p. By (11.11)

a—
AR it

> " - >o9p=24.
|8:9|

Thus by Theorem 10.1 .5°(9,) is coherent.
If |D(©):9.| =p or p* then p=1 (mod|2:9]) or

p’—1=0 (mod[8:9]).
As (»* — 1, p* — 1) = p — 1 this yields that in either case
p=1 (mod|8:9]).
Therefore p —1=2|2:9|. Hence
19:9'12|9:D®)| =0 >4|2:9]"+1

and .5 is coherent by Lemma 11.1. Suppose that |D(9):9.| = 2’
Then by (11.11)

|9: 0. =9 >4|2:9+1.

Since S7(9,) is coherent the result now follows from Theorem 11.1.
The next two lemmas involve the following situation:

Hypothesis 11.3.

(i) Hypothesis 11.2 is satisfied.

(ii) There exist primes p, ¢ and positive integers a, b such that
|12:9|=2%19: 9| =19:D(®)| =¢*. Thus || 18 a power of q.

LEMMA 11.5. Suppose that Hypothesis 11.3 18 satisfied and a = 2¢
4s even. Then & 18 coherent except possibly if q¢° + 1 = 2p°, ¢° 18
the smallest degree of any mon linear irreducible character of O whose
kernel contains [D, D] and for no subgroup 9, of © with O, + 9,
9, <1 2 is Y9, a Frobenius group.

Proof. Suppose that .o is not coherent. Then by Lemma 11.1
4p* +1=>¢* As (¢°+1,¢°—1)=2 it follows that 2p°|¢°+ 1 or
2p° | q° — 1. If 2p*®+# ¢°+ 1 this implies that 4p™ + 1 < ¢* contrary
to what has been proved above. Therefore ¢° + 1 = 2p°.

Let .7; = {6;;} be the set of non principal irreducible characters
of D/[D, D] of degree ¢*. Lemma 4.1 implies that 7 is empty for
4>c¢. Let &% ={\;} be the set of characters in .& of degree ¢‘p’.
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Since |.&| = 2(¢° — 1) > 2¢°, it follows from Hypdthesis 11.1 and

c—1

Theorem 10.1 that clj & is coherent. Suppose that | .Z; is non

=0 =1

empty. Then 3.15 implies that

> 501 2 g%
Therefore
Sy & _1$s MO _ o 8.(1y > 2
s‘go; Al P ‘.=0; TR = | | + ZZ ii(1) q°

Thus by Theorem 10.1

U 2709 9

is coherent. Since
412:0P+1=4p"+ 1< ¢*" < |9:[D, 911,

Theorem 11.1 implies that & is coherent. Thus it may be assumed
that ¢° is the smallest degree of any non linear irreducible character
of /[, §'].

Suppose now that ' contains a subgroup 9, # ' such that /9,
is a Frobenius group. Then , may be chosen so that £'/9, is a chief
factor of 8. Thus [, D'1S D, and by the earlier part of the lemma
every irreducible character of /9, has degree either 1 or ¢°. As
¢°+ 1 = 2p’, ¢” is the smallest power of ¢ which satisfies ¢* = 1 (mod p*).
Since $'/9, is a chief factor of € this implies that /9, is in the
center of 9/9, and |D: .| = ¢*. If 6 is an irreducible character of
/9, of degree ¢°, then the orthogonality relations yield that 6(H) =
for He /9, — ©'/9,. As every non linear character of /9, has degree
¢° the orthogonality relations may once again be used. They imply
that

(11.13) |C(H)| = q* for He /9, — 99, .
However
<H, Y19 S C(H)

which contradicts (11.13). Thus ' contains no subgroup 9, # 9’ such
that /9, is a Frobenius group. All statements in the lemma are
proved.

LEMMA 11.6. Suppose that Hypothesis 11.3 is satisfied. Assume
Sfurther that a is odd and p =3. Then & is coherent.
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Proof. Asaisodd and ¢* = 1 (mod 3), it follows that ¢ = 1 (mod 3).
Define the integer ¢ = 1 by

=1 (mod 8°) , ¢ # 1 (mod 3°*) ,

If b<c, then ¢ 223"+ 1. Thusif ¢ #1,4.8%® 4+ 1< ¢* and & is
coherent by Lemma 11.1. If @ =1, then  is cyclic. Therefore .&¥

is coherent by Lemma 10.1.
Suppose now that b >c¢. Then since ¢* =1 (mod 3%) we must

have a = 3*~°x for some integer x. Therefore
¢ (g™

Since ¢! =1 (mod 3*%), this yields that

(11.14) =1+ 2-31),

If 4.3* + 1 < ¢® then &7 is coherent by Lemma 11.1. Thus if &7 is
not coherent (11.14) implies that

43" +12¢° 2 (1+ 2.3 > 880 4 1,

Therefore 3° > 2.3°. Hence b = 1or b = 2. In either case this implies
that ¢° <43 +1< 7. As a=0 (mod3) we get that ¢ < 7. How-
ever ¢ =1 (mod 3). This contradiction arose from assuming that &
is not coherent. The proof is complete.

12. Further Results about Tamely Imbedded Subsets

In this section a fairly special situation is studied. Our purpose
here is to get some information about certain sets of characters which

may not be coherent.

Hypothesis 12.1.
(i) Let q be a prime and let 2 be a S,-subgroup of the group

X, Assume that Q = 8 is tamely imbedded in % and € = N(Q) = Q
has odd order. Let 9, < 8, Q,CQ and let Q= Q/Q,L=2g/Qy.

(ii) &~ 18 the set of all characters of & which are induced by
non-principal irreducible characters of Q. Define an equivalence
relation on & by the condition that two characters are equivalent

1f and only if they have the same degree and the same weight., Then
each equivalence class of &© 18 either subcoherent im & or consists

of trreducible characters.
(iii) Let 1 =q’0 < gt +-+ be all the integers which are degrees

of irreducible characters of Q. Let m > 0 be a fixed integer. For
0<i1=nmn-—1 let & be the set of all characters in ¥ of degree
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v |Q:Q|. Assume that each & consists of irreducible characters.
Let &~ be an equivalence class inm & consisting of characters of
degree ¢’ |8:Q|. Let & = Ul S

In case Hypothesis 12.1 is satisfied the following notation will be
used.

(12.1) 19: 8| =¢*, |2:Q|=e>1.

Since || is odd, | S| =2 and 4(S4) # 0 for 0 <4 =<n. Thus by
Lemma 10.1 &4 is coherent for 0 <t <n — 1.
For 0 <% < n let a; be the number of non principal irreducible

characters of O of degree ¢’s. By Hypothesis 12.1 2/Q acts regularly
as a permutation group on the non principal irreducible characters of
degree ¢’s for 0 < % < m. Since | 2| is odd, no non principal irreducible
character of Q is real. Thus a; is even. Therefore

(12.2) a,-sO(m0d2¢3),|54|=% for0<is<n-—1.

Let j, = 0. Define j, inductively to be the largest integer not
Js—1

exceeding n + 1 such that U .54 is coherent. Suppose that

$=dg—1
0=5<*<J<Jn=n+1.

For 0 < s < t, define

Je+11

(12.3) J.= U A

=i
and let m, = f;. Define

(12.4) ¢, = a:0° ™ for 0=s=t,
where ¢ ranges from j, to j,+; — 1. Define

(12.5) d,=qm+1™ for0=s<t.
Then by Theorem 10.1 applied to .7, U %

§+1

(12.6) c,<2d, for 0=s<t.
By (12.2)

(12.7) c,=0 (mod2) for 0=s<t.
By 3.15

(12.8) 1+ ic,-q”"i =0 (mod¢g*™+) for 0 =s<t.
3=0
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LEMMA 12.1. Suppose that Hypothesis 12.1 is satisfied. Assume
that

|1Q:Q | =¢*<4e” + 1.
Then
dle

<e+1 for0s<t.

Furthermore if a is odd, ¢, < ¢* and ¢, Z 0 (mod q), then
dle

<e—1.

Proof. We will first prove that

8—1

(12.9) 1+ ?_‘, c;ig’™i < eg’™ for 0<s<t.
=0

This is true if s = 0 since 1 < e. Suppose that s > 0. Then by (12.5)
and (12.6)

s—1

8—1

14+ >eig™i =1+ 2e¢ 3, qnit™in
=0 =0

é 1 + 26(1 + q + e e + q’ﬂ'—l)

<1+ 23_(‘1:8___1). =1+ e(@g™s — 1) < eq'™,
(¢-1

Assume now that the lemma is false and choose s minimum to
violate the result. Let ¢ =¢, d =d,.
By (12.8) and (12.9)

qim‘+1 < eqim, + cq2m, .
Hence by (12.5)
(12.10) d’<e+ec.

Inequalities (12.6) and (12.10) yield that d* < e + 2¢d or d* — 2ed — ¢ < 0.
This implies that

e—Ve+e=d=e+Ve+te.

Consequently

(12.11) d<e+Ve+e<3e.

Suppose that
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1+ 3 cq™ = 3g™sn
=0
Then by (12.9)
3q2m,+1 < (e + c)q2m, .
Hence by (12.7) 3d*< e + ¢ < 3¢/2. Thus

since ¢ > 2. This contradicts the choice of s. Hence
1+ Jz;‘f)c,-q”“f < 3gimen,

As ¢, is even for 0 =< 5 < s, (12.8) implies that

(12.12) 1+ 3o = gme

The group £ contains a normal subgroup O, of index ¢*™++1, Every

irreducible character of Q/Q, has degree strictly less than ¢™s+: and
the sum of the squares of the degrees of these characters is equal

to ¢+, Hence (12.12) implies that every character of Q whose
degree is strictly less than g™+ has Q, in its kernel. Thus Q, is a
normal subgroup of £ and ¥/Q, is a Frobenius group with Frobenius
kernel Q/Q,. Therefore

(12.13) g™+ =d%™ =1 (mode),

and the center of Q/Q, has order at least ¢*. Thus by Lemma 4.1
g™ < ¢*™++17%, This yields that

(12.14) ¢ =d.
Define the integer k& by
(12.15) c+k=4d.
By (12.10) £ < e and by (12.12) 0 < k. Thus
(12.16) 0<k<e.
Define the integer b by
(12.17) @™ = q*® (mod e), 0<b=£a-—-1.
Equations (12.7), (12.13), (12.15) and (12.17) imply that
(12.18) k=d'=q"*=¢q® (mode).
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If b =0, then by (12.16) and (12.18) k¥ = 1. Thus by (12.15) ¢ =
d* — 1, hence by (12.7)

de¢ _ (c+ 1)e — e
c c

+%<e+1.

If ¢ < e® and a is odd, then
dd=c+1<e+1<q*.

Thus by (12.18) d* = ¢°. However this is impossible as a is odd.

Assume now that b #+ 0. As d?is a power of ¢, (12.14) and (12.18)
imply that either d* = ¢**® or d* = ¢****. Since b # 0, the latter case
leads to '

d? = @™ = g¥q® > 4e’q > 9¢® .
Hence d > 3e contrary to (12.11). Thus
(12.19) d=¢**, 2=<a-—->.

The inequality follows from (12.17) and the fact that @ + b is even.
Now (12.11) and (12.19) yield that

. qa+b . dz 962
q“ - qa—b - qa—b < qz S

Thus 1 < ¢* <e. (12.16) and (12.18) imply that

e!

(12.20) k=¢, b>0.
Equation (12.15) now becomes d? = ¢ + ¢*. Hence
¢c=0 (modgq).
Furthermore by (12.19)
c=d" —¢" =¢"@"—-1).

Consequently
| d’e qQ*te Q% e
= = =e + <e+1.
c ¢*(g* — 1) -1 -1

THEOREM 12.1. Suppose that Hypothesis 12.1 is satisfied. Assume
that for some j with 0 < j<n—1,M€.% and N, € 5y, Define

a = qTit1ITiN, — A, .
Suppose that &S .7, and
ar =4+ 4,
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where 4,€ _#(7.,%) and 4 is orthogonal to _#(F.%). Then
141 < e+l

Furthermore if a is odd, ¢ = ¢, < ¢! and ¢ % 0 (mod q) then
H4lP=e+ [|M]*—2.

Proof. Let 7 =7, If 5,7 then are_#(7) and
4 = 0. Thus the result is trivial in this case. Hence it may be assumed
that &5.,Z.7. In particular, .5/ is not coherent, hence & is not
coherent, so by Lemma 11.1 [Q: Q'| < 4¢* + 1. Consequently Lemma
12.1 may be applied. Furthermore f;,, = m,;, and s <t. Thus 7
consists of irreducible characters. Let .7~ = {\,;|1 <4 < n,}, where
the notation is chosen so that A, # \,; and A1) | N, ;1,(1) for 1 < 4 < n,.
Suppose that A, = \,,. Define the integer « by (a7, \;,) = —z. Then
since a € %4 (%) Lemma 9.4 implies that

(ar’ )\':s’) = - 7\'"(1) + 3 q"'s+1—f.1 for 1 < 7 < n,
01(1)
Then
mererie, g D)
4, = qmrett f.’k S 8 " .
’ WY
Therefore
“ 4 ”’ = ”a'r ”’ — H 4, ”2 = @*™s+1—17
22D m 8 grmnnners) 4 2o M) gmiers
e

.1(1)
where ¢ = ¢, is defined by (12.4). Let d =d, be defined by (12.5).
Since A,,(1) = g™ and A, (1) = ¢7F (12.21) yields that

(12.22) NAIP = [[ AP + 20d — 3’-;2

As a function of x,2xd — (x'c/e) assumes its maximum at & = edjec.
Thus (12.22) implies that

(12.28) NAIP < [P + 2& _ g‘l;_’ = 1 + ed

As ||4]] is an integer Lemma 12.1 and (12.23) imply that || 4| =
|| As|]* + e. Furthermore if a is odd, ¢ < ¢* and ¢ # 0 (mod g), then

4= 1M +e—2.
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The proof is complete.
13. Self Normalizing Cyclic Subgroups

Hypothesis 13.1.

(i) T is a cyclic subgroup of the group X with |T| = w odd.
Suppose that B = W, x B, where w; = | BV, | and w; # 1 for i =1, 2.
Let

A

W= — B, —BW,.

For any non empty subset A of w
(13.1) CA) =N =W.

(i) Let. Wy, O be faithful irreducible characters of TITZ,, T/,
respectively. Define

W5 = WO

for0sisw,—-1,0=j=w, — 1.
If w,, w, in Hypothesis 13.1 are both primes then (13.1) follows from

the assumption that N(T) = W. Thus the situation described above
is a generalization of this case.

LEMMA 13.1. Suppose that Hypothesis 13.1 is satisfied. Then
W is a T.1. set in X. There exists an orthonormal set {N;;|0 =1 =

wy—1,0<j<w,— 1} of generalized characters of X such that for
0<i<w,—10=<j<w,—1, the values assumed by 7;;, N, No; i€
M @y oy @y TE8PECLLVELY.  Too = 1; and
N W) = 0 (W) for WeD,
1 — wy— @ + ;) = 12 — Nio — Noi + Nij «
Furthermore every irreducible character of % distinct from all +7;
vanishes on L.

Proof. It follows directly from Hypothesis 13.1 that WisaT.I.
set in X. Define the generalized character «;; of W by
;i = (Wg — W)Wy — Wyj) .
Clearly «;; vanishes on T — . Thus
ax(W) = a,(W) for Wed,

(13.2)
(X, aX) =1+ 0;,, + 0;; + 0,0 j¢
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for 1<4,8<w,—1,1=<j,t<w,— 1. Therefore |a¥|'=4 and
(af,af) =2fori,7,t #0,5 #t. It follows directly from the definition
of a;; that the values of a lie in &,.

For any algebraic number field % and any generalized character
a of a group let .# (a) denote the field generated by & and all the
values assumed by a. Since «(a;;) = &(af;) we see that < (af) =
&, for some v with v|w. If 4,7 # 0 then v = v,v, where v, | w, and
v, >1 for s=1,2. By (18.2)

af=1,+6,+6,+6,,

where 6,, 6,, 0, are distinct irreducible characters of X.
Suppose that &) & &, for k=1,2,8. Let

F = @:(@1’ 92: 03) = @’(91, @2; @3) .

Let @ be the Galois group of & over &,. Fork=1,2 3let®, be
the subgroup of & whose fixed field is &, (61).

Assume first that 8 =G, U®, UG, By (13.2) 8,NG, =1 for
l=s<t=<38. If =@, for some k then £ (6, S &, contrary to
assumption. Let |G| =gand |®,| =g, for k=1,2,8. Then it may
be assumed that g > g,>g,>g,. Since g = 6i+9.+9,—1—1—-1+41
we must have g, = g/2. Therefore

1=16,N&|=0/2 1=|6,nNG|=g/2.
Hence
92=9—0,=9.+9;,— 2, 0,09, <2.

Therefore ¢ < 4. & is not cyclic as it is the union of proper sub-
groups. Hence & is the non eyclic group of order 4 and |G| =2
fork=1,2,3. Asw, is odd this implies that v, = 8. For k = 1,2 3
let ®, =<o0,>, where the notation is chosen so that < = &, (6),).
Therefore a,(a¥) = a}. Hence a,(6,) = 6,. Consequently &, (0,) =
&,(0;) as & is abelian. This implies that o, = g, which is not the
case. Thus & = &, U G, U G,.

If 66® —G,UG,U®G, then by (13.2) (a};, o(a¥)) = 2. Hence by
choosing the notation suitably it may be assumed that o6, =6, If
(a%;, 0,) # (a%;, 6(0,)) then replacing ¢ by ¢ and 6, by 0, if necessary
we get that

al =1z + {6, + 6, — 3(8,)} .

By (18.2) 0(0,) # 6,, .. Hence also d(h,) + d*®,). Therefore
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2 < (a(ar),at)=1—1+ (8, + 6, a(6,) — d%(6))
= (6, + 6,, 0(8,)) — (6, + 6,, 6%(6,))
=6, +6,006)=<1

" since 6,, 8,,0(0,) and 0%, are all characters. This contradiction
establishes that (a}, 6,) = (a};, 0(0,)). Since a}(1) = 0 we see that

(13.3) afy =1, + {6, + 0(6,) — 6.} .

Furthermore ®,=@®, and if ye® — G, U®, then 6, # v(®,. By
definition 6, # v(#,) for ye®, U®,. Therefore

6, + 70, for ve¢@.

Suppose that v(#,) = 6, for some automorphism v of #. Then
v0(0,) = d(,) and (13.3) implies that (af, v(a¥)) = 3. Thus by (13.2)
v(a¥) = a¥. Consequently v(0,) = 6, and so

(13.4) aS F = 0,).
If now ve®* v # 0,7 # 07!, then (18.8) yields that
2 < (afy, v(a) =1+ (6,,7(8))) .

Therefore 7(8,) = 0, and v€®,. Thus |®,| = |G| —2. Since®, =6
and |G,|||®| we get that |G| <4. If |@|=2then F S&,. Thus
(13.2) and (13.3) yield that 2 = (a¥, o(a})) = 3. Since |2 @, | is
even we get that |@| = 4. Thus either v, =5 and & S &, or v, = 3.
In the latter case (13.2), (13.3) and (13.4) imply that ¢(8,) = 6,. Thus
® = G, or equivalently «»(9,) S &, contrary to assumption.

Suppose now that v, = 5. Thus v, # 5 and the previous argument
with v, and v, interchanged yields that <2(8,) = &, fork=1or k =2,
Thus by (13.4) ()< «,,. By (13.2) and (13.3) @ = (¢)>. Thus
0%(#,) = 6, since (d*(al;), a¥) = 2. Let v be in the Galois group of &,
over &,. Then vo%(6,)) =6, and 7 can be chosen so that

@k, vo¥(ak)) =1.
Hence (13.3) yields that
©, + a(8,) — 6,,70%(O,) + 7% O,) — 6,) =0.
Since 6, is not conjugate to €, this implies that
(6: + 0(6,), 70°(6,) + 70°(6,) = —1

contrary to the fact that 6,, 6(0,), v6%(#,) and v6%(®,) are all characters.
Thus in an case there exists a non principal irreducible character
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@, of X such that (0, a})+#0 and &(6,)<«,. Suppose that
&0, = &. Since w is odd

(atn a?:i) = (ai:’v a—w) = 1 .
Therefore

1=>01,£6,£6,%6,1; +6,+6,+60,)=2+(0,+6,6,+6,).

Hence
(@2 + 93; gn + és) = —1

Since #, and 0, are characters this yields that &, # 6, for k. =2,3
Hence 0, = 6, and so &, = 6,. Consequently (8, + 6,,0, + 6,) = +2,
which is not the case. Therefore

(13.5) o+ o), .

Similarly there exists an irreducible character @, of X with (#,, a;) + 0
and & # &(0,)<«,,. Thus by (13.5) 6, + 6,. Now (13.2) yields
that

(13.6) al; =1y — Ny — Noj + Ni
for 1<t w, —1,1<j=w,—1. The +7;; are distinct irreducible

characters of ¥ whose values lie in the required field. Suppose now
that

Ny = 2 Xii®s; + AP
%)

with a4, = 0. Then by the Frobenius reciprocity theorem it follows
from (13.6) that

— Qi — Qoj + A5 = — 0, ,
01— w3—1 w1—1 w3—1
Neoigg = Zn Qi 0W; + ’Z{ Qo jWo; + Z‘i Qo }_:{ W;;
we—1 w1—1 wz—:
+ ,2-"{ Qy; ,Z‘lw"'_ ’_leu'_l_ap%

w1—1 wg—1 wg—1 w1—1 wg—1

Za.onu-l- Zao; Z(D,, ’};{w,,-+ap

=1

Consequently for We DiL
W) = = 3, 0,(W) = 0 W).

In a similar way it can be shown that 7,(W) = w,(W). Then it
follows from (13.6) that 7,,(W) = 0, (W) for We 2.
This implies that if We I then
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w1—1 we—1 w1—1 wg—1

S S (NP =3 3 oW =w=|cW).

1=0 j5=0 1=
The orthogonality relations for the irreducible characters of ¥ now
yield that every irreducible character of X distinet from all =+7%,;

vanishes on T. This completes the proof of the lemma.

LeEMMA 13.2. Suppose that Hypothesis 13.1 is satisfied. If 4 1is
a generalized character of X which vanishes on L& then
w1—1 wy—1
4=axl; + Y a; 2 T

=1
wy—1 wi1—1 w1—1 wa—1

+j§aoj ‘g&’?u_aoo, 2. M + 4,

=1 1

[
»

<
I

where (4, ;) =0for 0t =w,— 1,07 < w,— 1.

Proof. Let

w1—1 wy—1

d=4y+ 3 > &,

= S
where (4,,7;;)=0for0 <t =w,—1,0=<j < w, — 1. By Lemma 13.1
(4,1 — i — Nos + 7i5) = 0 for0st1=w,—1,0=j5w,—1.
Hence
Qoo — Qg — o; + A;; =0 for0s+1=sw,—-1,0=75w,—1.
This implies the desired result.
Hypothesis 13.2.

(i) The group & = X satisfies Hypothesis 13.1.
(ii) L contains a mormal subgroup K such that

L=8BW, NBW, =<1
and if WA 18 a non empty subset of T — LB, then
CA)=NA)=2.
Since 2B, is a S-subgroup of W, Hypothesis 13.2 (ii) implies that
W, is a S-subgroup of 8. Also, if We B, then C(W)N & = B,.

LEMMA 13.8. Suppose that L satisfies Hypothesis 13.2. Then
W—-—W,isaT.l.setinl, For0=i1=w —1,0=7=<w,—1 there
exist irreducible characters t,; of £ such that
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wy—1 w1—1

Lineg=Tw;+ > a, > o,,
E t=0 8=0

where {a,} 18 a set of integers depending on j and the sign depends
only on j.

Proof. Hypothesis 13.2 implies that I — B, is a T. 1. set in L.
For0<4,ksw, —1,05j5<w,— 1, w;; — w,; vanishes on BW,. Define

S={w;l0=1=w,—1} for0=j=w,—1.

Then by Lemma 10.1 .54 is coherent for 0 < 5 < w, — 1. Let g&,; =
+w};, where the sign is chosen so that y¢;;(1) > 0. Then

(@5 — W) = (W5 — ©)* = (Ui — M5)
for 0, k<w,—-1,0<j<w,~1.

The Frobenius reciprocity theorem now implies the required result
since (w;; — w,;)* vanishes on %,.

LEMMA 13.4. Suppose that £ satisfies Hypothesis 13.2. Let \ be
an irreducible character of L. Then there exists an integer a such
that

)\.;'%1 == apsml ’

or

Xl%l = iw”"%l + apml
for some 1,5 with 0 <1=<w,—1,0=j = w,— 1.

Proof. Let p;; be the characters defined in Lemma 13.3. If
A= p;; for some ¢,7 with 07w, —1, 0<j < w,— 1 then the
result follows from Lemma 18.3. Furthermore Lemma 18.3 implies
that

w1—1 w3—1

> 5_;. | (W) =w =|C(W)| for WeBt.

= =

Hence if )\ # p;; for all 7, 5 we have that M(W) = 0 for We B!. This
completes the proof of the lemma.

We will use the fact that Lemma 13.4 is valid over fields of
characteristic prime to |2|, provided that \ is absolutely irreducible.

LEMMA 18.5. Suppose that 2 satisfies Hypothesis 13.2. For
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0<is=w,—-1,0<j<w,—1 let p; be the characters defined by
Lemma 13.3. Define

w1—1

§; = Z})ﬂn‘ for0sj=sw,—1.

Then &; is induced by an irreducible character (; of K. Further-
more

Ling = Mosig=1f; for 0=i=w,—-1,0=sj=sw,—1.

Proof. By Lemma 13.4 the characters (;;,0<=t=w, —1,0=
7 <w,—1 are the only irreducible characters of & which do not
vanish on . Since each ;,, agrees on 2B, with a suitable linear
character of 2/f it follows from Lemma 13.1 that {¢, [0 = ¢ < w, — 1}
is the set of irreducible characters of &/®. Therefore p;,/; agrees

with ¢;; on 9. Hence Lemma 18.1 implies that f,ft; = f%;. Con-
sequently if g¢; = f4;gq then

Kisip = Hojip = K4 for0si=w,—1,0=j=w,—1.

Thus the Frobenius reciprocity theorem implies that y;; is a constituent
of pf for all values of ¢,j. Since

1) = wypi(l) = Zé ;1) = §5(1)
the lemma is proved.

LEMMA 13.6. Suppose that 8 satisfies Hypothesis 13.2, p 18 a
prime, and & s an extra special p-group with & =W, Let
|R:8'| = p**. Then w, divides either p" + 1 or p" — 1.

Proof. It is easily seen that a faithful irreducible character of
R has degree p*. Thus by Lemmas 13.4 and 13.5

p* = (1) =aw, = 1.

This proves the result.

LEMMA 13.7. Suppose that & satisfies Hypothesis 13.2. Let p;, &;
be defined by Lemma 13.5. Then an irreducible character of &
either induces an irreducible character of L or it induces &; for some
J with 0<j<w,—1.

Proof. The group T, acts as a permutation group on the conjugate
classes of R If We T, and W leaves some conjugate class of & fixed,
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then since B, is a Hall subgroup of €, W must centralize. some element
of this conjugate class, Hence by assumption the. only  conjugate
classes of & which are fixed by any We %! are those containing an
element of 2B,. There are at most w, of these. The group T, also
acts as a permutation group on the irreducible characters of & There-
fore by 38.14 there are at most w, irreducible characters of & which
are fixed by any element We %! By Lemma 13.5 the w, distinct
characters /;, 0 < j < w, are fixed by every We 2B, and these induce
£;,0 =< j < w, Thus every other irreducible character of ® induces
an irreducible character of 8. The proof is complete.

Hypothesis 13.8.

(i) Qisa tamely imbedded subset of the group X and & = N (SA!)
has odd order.

(ii) & satisfies Hypothesis 18.2, and X satisfies Hypothesis 13.1
with the same group W,

(iii) 8 contains a normal nilpotent subgroup O such that

B, U C(H)ﬂRCSCRCS!

Heb
g =28U UL“‘QBL .
LEQ
(iv) There exist subgroups 9,, +-+, 9, such that {D,|1 < s < n}
18 a system of supporting subgroups of L and él. Let R, = N(D,)
for 1 <s=<n.
(v) For 012w, —1,0=73=<w,—1 let n;, 1, &; be defined
respectively by Lemmas 13.1, 13.3 and 13.5.
(vi) Let & be the set of characters of & which are induced by
non principal irreducible characters of £, each of which vanishes

outside fﬂ

LEmMMA 13.8. Suppose that Hypothesis 13.3 is satisfied. Assume
that for some 4,5,k with 0 <i<w, —1,1<j,k=<sw,—1, (1) =
ta(1). Then p; — i vanishes in & — 2 and

(5 — Ma)" = £ — M) .

Proof. By Lemma 13.3 r;;, t;, do not contain LB, in their kernel,
thus they do not contain $ in their kernel. Hence by Lemma 4.3

Miiy M vanish on & — L. By Lemma 13.3 Piigs, = Mirigs - Thus
M:; — M vanishes on & — 8’ Hence || (¢4:; — )" || = 2. By Lemmas
9.1 and 13.3
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{(t2; — )" 205 — D) (W) = 0. -for We DI

¥

Thus the result follows from Lemma 13.1. '

LEMMA 18.9. Suppose that Hypothesis 13.8 is satisfied. Choose‘
k withl1<k<w,—1. Let '

%={$5|1§j§w2—1,$5(1)=$k(1)}-

Then &4 is coherent and
. w1—1
§5=¢ ‘5;% Nij
18 an extension of T to &4 where either € =1 or ¢ = —1,

Proof. Since || is odd &; # &;. Hence %4 (%4) # 0. By Lemma
13.5

wi—1

i — & = % (25 — M) -

Hence Lemma 13.8 yields that

w1 -1

(5:’ - ‘Sk)r = Z * (7761‘ - 7]¢k) .

=0

By Lemma 9.1 (¢, — £,)° vanishes on i’i&l. Thus Lemma 18.2 implies
that

w;—1

(18.7) €= &) =% 3% 0 —Ta).

Now define

w1—1

$§-=i§m;

where the sign is the same as in (13.7). It is easily seen that risa
linear isometry on .&4. Thus .4 is coherent.

LEMMA 13.10. Suppose that Hypothesis 13.3 is satisfied. Let &%
have the same meaning as in Lemma 13.9. Then (%4, 7) is sub-
coherent in & where t 18 defined on &4 as in Lemma 13.9.

Proof. By Lemma 18.9 &4 is coherent. Let .~ be a coherent
subset of . which is orthogonal to .&4. Let 7, be an extension of
T to 7.

Every generalized character in .&¥ vanishes on ®. Thus by Lemma
9.1 every generalized character in _%(5”)° vanishes on ®. If ) is
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an irreducible character in .7, then » # \ as |8] is odd. Further-
more (A — A’ €. _%4(S5”)" and thus vanishes on 0. Hence \? # +7;;
for 01w, —1,0<j5 Zw,— 1. Therefore A2 is orthogonal to
At. If&,e. 7, thensince (£33, (&, — {.)°) = w,, £32is a linear combination
of 7;, and %;, with 0 < ¢ < w, — 1. Hence £ is orthogonal to .%4°.
Consequently .7~ "2 is orthogonal to .&4".

Suppose now that a € _% (&) with a* = 4, 4 4,, where 4,€ (.7 ™),
4, is not orthogonal to % (%4°) and |4, | < w,. Let a* =TI + 4,
where 4 is a linear combination of the generalized characters 7;; and
C,n)=0for01=w,—1,0=7=<w,—1. Let o be the set of
integers s such that £, €. 2. Lemma 13.8 implies that every gener-
alized character in .7 "2 is orthogonal to 7;; for0 =<:=w, —1,5¢o0.
Let 4 = 4, + 4], where 4, is a linear combination of 7;,, with s€ o and
4, 7,)=0for 0=1=<w,—1,s€0. Then

(18.8) 4] = w, .

By changing notation it may be assumed that §£,&,€.%4 and
(4;, 61 — &) > 0. By Lemma 9.4

(Aiy EI - Sg)g = (at’ Elr - 6‘5)}2 = (ay 51 - 52)9 .
Hence (4;, &7 — £;) is a non zero integral multiple of w,. By (13.8)

(45, 6 =&Y =P l&F — &5 |1' = 2wt .
Therefore

(13.9) (4,6 — &) =w,.
By Lemma 13.2

wi1—1 w1—1

(13.10) 4=¢ ?;:u, A0 + € g{:} {(@io + @)V + (@i, + )i} + 47,

where ¢ is as in Lemma 138.9 and where (47,7;,) =0for0 <1 = w, — 1,
t=0,1,2. Now (13.9) yields that a, — a, =1. Thus (13.8) and
(13.10) imply

wi—1 w1—1

% ai, + % {(as + an)’ + (a5 + @y — D= w,.

Every term in the second summation is non zero. Thus a;,, = 0 for
0<t<w, —1. Hence a,=1 or a, =0. Hence (13.8) and (13.10)
yield that 4] = & or 4] = —&;. This shows that (%%, 7) is subcoherent
in & and completes the proof of the lemma.

In the proof of the main theorem of this paper we will reserve
the letter 7 to denote the extension of 7 to %4 defined by Lemma.
13.9. Thus (%4, ¢ will always be subcoherent in &~
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DEFINITION. A Z-group is a group all of whose Sylow subgroups
are cyclic.

Hypothests 13.4.

(i) L=BRwith BN =1, R L and K solvable., Furthermore
B 18 a cyclic S-subgroup of & and |L| is odd.

(ii) For Be®Bt, Co(B) = Co(B). Furthermore Cy(B) 18 a Z-group
and & # Cg(B).

(iii) 8 s faithfully and 1rreducibly represented on a vector space
7" over a field of characteristic not dividing |R|. &~ contains a
vector space ¥, of dimemsion at most 1 such that if BeB! ve
then vB = v if and only if ve Z,.

LEMMA 18.11. Suppose that Hypothesis 13.4 is satisfied. Then
R is nilpotent. Furthermore |B| 1s a prime and the representation
of & on ¥~ 18 absolutely irreducible.

Proof. Let \ be the character of the representation of € on 7
Let P be a S,-subgroup of & which is normalized but not centralized
by 8. Then either Cﬂs(iB) =1 or PB satisfies Hypothesis 13.2. Thus
by Lemma 13.4 only one absolutely irreducible constituent of Mg is
not linear. Hence \ is absolutely irreducible. Furthermore Lemma
13.4 and 3.16 (iii) imply that A\ has o4 as a constituent. Thus |B|
is a prime.

The nilpotence of & is proved by induction on [®|. We assume
without loss of generality that the underlying field is algebraically
closed. If B<S F(8) then & S C(B) contrary to assumption. Thus by
3.3 BZC(F(R). Let ¥ be a minimal nilpotent normal subgroup of
L which is not centralized by B. Then § is a p-group for some prime
p. Furthermore ¥’ = D(F) and BES C(D(F)). By Lemma 13.4 there
is exactly one non linear irreducible constituent of M\ gq. Let

ngqs:éﬂa'i‘ﬂ,

where each g; is a linear character of FB. Assume first that n # 0.
If v is an irreducible constituent of 015 then (v, 0,%) = 1. Since
Y # o for 1= © =n, we have (Mg, tt:g) = 1. Since A5 is a sum of
conjugate characters this implies that § is abelian and the y; are
distinct. Thus §B = &, X FB, where | F,| = p and F,B is a Frobenius
group. For Lelet #i(X) = p(L'XL). If Le@ such that pf = y;
for some ¢, j then L e N(%,) since ¥, is the kernel of each ;4. Since
£ permutes the constituents of \ g transitively this implies that N(gF.)
acts transitively on {z, +-+, ¢£,}. Hence % is odd. Thus A1) = n + |B|
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is éven contradicting the absolute irreducibility of A. Therefore n = 0
and Mgy is irreducible.

By Lemma 13.4 this implies that A1) = [B]| or M1) =2|8]| — 1.
If M1) = [B]| then \, is reducible since (|B|,[®])=1. As |B| is a
prime this implies that A\ is a sum of linear characters and & is
abelian. Thus we can suppose that AM(1) = 2|8| — 1. By Lemma 13.4
X,% is irreducible. Thus if © is any proper B-invariant subgroup of
! with FS O then BH satisfies the induction assumption and O is
nilpotent. If © =P x O, with FE P then since Mg 18 irreducible,
.S Z(®Q). If ¥ is not a S,-subgroup of 2 then FTR, is a proper sub-
group of & where & is a B-invariant p-complement in K. Thus
&S Z(®) and & is nilpotent. Suppose now that §F is a S,-subgroup
of L.

Since D(F) S C(B), D(F) is cyclic. Let %, be the subgroup of
index p in D(F). Then $/F, is a p-group of class 2 and hence is a
regular p-group. If /¥, does not have exponent p then there exists
a characteristic subgroup of {§ of index p which is normal in £ but
is not centralized by B contrary to the minimality of §. Thus F/H:
has exponent p. Therefore B acts without fixed points on &/D(F) as
C4(B) is cyclic and D(F) S C(B).

Let &/ be a chief factor of & with & 9. Suppose first that
B does not centralize &/9. Then BR/H is a Frobenius group which
is represented on &/D(%). As B has no fixed points on &/D(F) Lemma
4.6 implies that ®/9 acts trivially on F/D(F). Thus & = FCo(F) is
nilpotent. Assume now that /9 is abelian. Then |[:9|= ¢ for
some prime g # p. If BR/D is represented faithfully on F/D(F), the
minimal nature of % implies that BRK/Y is represented irreducibly on
S/ID(F). Let &9 =<Q9%>. Then @ acts without fixed points on
F/D(F). Since N is irreducible, Z(F) S Z(8). Thus Q € C(2,(D(F))).
Hence Q € C(D(%)). We will now reach a contradiction from the fact
that Q¢ C(F). Let 9 =F X ©.. Then $, S Z(¥). Thus &/F is abelian.
Let £ be the linear character of ¥/% such that M(H) = M1)p(H) for
He®,. Let »y=x¢g*. Then \(1)=2M1)=2|B|—1 and ), is an
irreducible character of £/9,. The group £/9, satisfies Hypothesis 13.2
where $9,/9, is the normal subgroup. Thus by Lemma 13.4 no
irreducible character of £/9, has degree 2|8| — 1. This completes
the proof of the lemma in all cases.

. HDEFINITION. Let U and B be subgrbups'of a group € with BS
N®). We say that B is prime on 2 if

Lt Cy(B)=Cy(B) for Be® .

.
, 7 ! oy,

i If |B| is a prime ‘then B is necessarily prime on A, e e
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LEMMA 13.12. Let =UAB with A q L, A solvable, B ecyclic,
(AL, IB)=1 and |AB| odd. Suppose that. B s prime on A and
Cy(B) 18 a Z-group. If Cy(B)SA' then A[F(A) is nilpotent. If
furthermore |B| 18 not a prime then U is nilpotent.

Proof. Let & be a counter example to the result for which |2 |
has minimum order. Since (||, |B|) = 1 the hypotheses are satisfied
by all B-invariant factor groups of 2.

Suppose that |B| is not a prime. Let 9 be a minimal normal
subgroup of €. Then M is a p-group for some prime p and W= A.
By induction /M is nilpotent. If QO is a B-invariant S,-group of A
for qe mw(N), ¢ # p, then MY ¢ AB and B has no fixed points on
Q — Q'. If Ais not nilpotent then it is possible to choose ¢ so that
ML, is not nilpotent. Let O, = C(M). Then B/, is faithfully
represented on M. Hypothesis 13.4 is satisfied with I in the role
of 2. Thus by Lemma 138.11 |B]| is a prime contrary to assumption.

Assume now that |®B| is a prime. Suprose that £ contains two
distinct minimal normal subgroups MM, and M,. For 2 =1, 2 let F;
be the inverse image of F(A/M,) in A. By induction A/F; is nilpotent
for ¢ =1,2. The result now follows from the fact that F() =
F: N F. Thus it may be assumed that € contains a unique minimal
normal subgroup M. Then M S 0,(NA) = F(A) for some prime p. Let
D = D(0,(NA)). Then FU/D) is a p-group. Thus the result follows
by induction if ® # 1. Assume now that ® = 1. Then Cy(IM) = 0,(A).

Let U, be a B-invariant S, -subgroup of A. Then AB is faith-
fully represented of M. Hypothesis 13.4 is satisfied with I in place
of 7" unless A, S Cy(B). Thus by Lemma 13.11 2, is nilpotent or
A, S Cy(B).

Let %, = A/0,(Y) and let P, be a B-invariant S,-group of A,. If
B, S F(YU,) then A/PB, is nilpotent since it is a p’-group and the result
is proved. Assume that & F(2,). By induction %,/F (,) is nilpotent.
Hence B does not centralize P, by assumption. '

Let ¥ be a p-group in A, which is minimal with the property
that B normalizes P but does not centralize L. Since F(U,) is a p'-
group there is a prime ¢ # p such that P contains no normal p-sub-
group, where Q is a S,group of F(2,). Thus BYP acts faithfully on
Q. Let M, = Cqy(B). As OB is faithfully represented on M Lemmas
4.6 and 138.4 imply that I, + 1. Let Q, = Cy(B). As BB is rep-
resented faithfully on Q/D(Q), Lemmas 4.6 and 13.4 imply- that
Q # 1. Thus Cy(B) is a Z-group, P, < Cy(B) and pq || Co(B) |.
Therefore B ‘ | T S

(13.11) .= 1 (mod q)-.
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By 3.11 P is a special p-group and D(P) S Cyx(B). Thus D(P) is
cyelic. By Lemma 13.11 the representation of P8 on Q/D(Q) has a
unique faithful irreducible constituent and this constituent is absolutely
irreducible. Let ¢ be the character of this constituent. If D(B) # 1
then by Lemma 13.4 fs remains absolutely irreducible. Hence
¢ =1 (mod p) contrary to (13.11). Therefore P is an elementary
abelian group and BYP is a Frobenius group. Thus (1) = |B| is a
prime. If P is not ecyeclic then P reducible in the field of ¢
elements as (t,g is faithful. Thus ¢ =1 (mod p) contrary to (13.11).
Therefore P is a cyclic group of order p and BP is a Frobenius group.
Hence

(13.12) p=1(mod|B)|.

Let Q, be a BYP invariant subgroup of X which is minimal sub-
ject to ‘B%C%(Do). Thus the representation of BP on L)/D(L,) is
irreducible. Therefore ,S (2,B). Since 0,(A) is elementary and
Cy(B) #1 we get that the hypotheses of the lemma are satisfied.
Thus the minimal nature of U implies that A, = QP and Q = L.
Therefore the representation of BLQP on WM is irreducible. Let L,
be a minimal normal subgroup of BLYP which is not centralized by
B. Thus Q,=Q. Then Q= D(X,) and BES C(D(L,)). Hence D(L)
is eyclic. Let )\ be the character of the representation of B, on M.
By Lemma 13.4 A has exactly one irreducible constituent which does
not have (BLY,) in its kernel. Let 6 be this constituent and let

A = 21 N+ 6.
Since each )\; is a character of a group of exponent ¢ |B| it follows
from (13.11) and (18.12) that each \; is absolutely irreducible. Thus
(1) =1 for 1 <¢=<n By Lemma 13.11 6 is absolutely irreducible
in the field of » elements. By Lemma 13.4 (1) < 2|8B| — 1. Since
|B|p is odd (B) and (13.12) yield that

(13.13) || = p? = p"B!,

Thus n # 0. Let O\n, = 251 Vs, Where each v; is an irreducible char-
acter of Q,. Thus

(13.14) o= S Mg F Y

=1 1 j=1
Since Q, < L, BF, {k‘lnl’ y;} is a set of conjugate characters. Since
n #+ 0 they are all linear. Thus Q[ =1. Hence ;8 = Q, X OB,
where Q8 is a Frobenius group and |X,| = ¢. Furthermore
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(13.15) m=6(1) =|B

Since Q, S kern, = Q, for 1 < ¢ <n we see that X‘Ial # v; for all
i,7. Since v; # v; for 1 # j we get that no constituent of A g, Occurs
with multiplicity greater than one. Since {x,-lnz} is a set of distinct
linear characters of O, we get that n < ¢. Now (13.13), (13.14) and

(18.15) yield that
pEMD=m+n=|B|+q.

This contradicts (13.11) and (18.12) since |B|pg is odd. The proof is
complete.
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~ CHAPTER IV

14. Statement of Results Proved in Chapter IV |

In this chapter, we begin the proof of the main theorem of this
paper. The proof is by contradiction. If the theorem is false, a
minimal counterexample is seen to be a non cyclic simple group all
of whose proper subgroups are solvable. Such a group is called a
minimal simple group. Throughout the remainder of this chapter,
® is a minimal simple group of odd order. We will eventually derive
a contradiction from the assumed existence of ©.

In this section, the results to be proved in this chapter are summar-
ized. Several definitions are required.

Let 7* be the subset of 7(®) consisting of all primes p such that
if P is a S,-subgroup of &, then either Sz _+;(P) is empty or P
contains a subgroup 2 of order p such that C (?I) A x B where B .
is eyelic. Let 7} be the subset of 7* consnstmg of those p such that
if P is a S,-subgroup of & and a is the order of a cyclic subgroup
of N(P)/PC(P), then one of the following possibilities occurs:

(i) a divides p — 1,

(ii) ‘B is abelian and a divides p + 1.

(iii) |P| = »* and a divides p + 1.

We now define five types of subgroups of @. The basic property
shared by these five types is that they are all maximal subgroups of
®. Thus, for # = I,II, III, IV, V, any group of type « is by definition
a maximal subgroup of ®. The remaining properties are more detailed.

We say that I is of type I provided
(i) M is of Frobenius type with Frobenius kernel 9.
(ii) One of the following conditions is satisfied:
(@) HisaT. I setin ©.
(b) =(9) &=t
(¢) o is abelian and m(%) = 2, ’
(i) If pe n(iUE/@), then m,(iIR) < 2 and a . S,-subgroup of M is
abelian.

The remaining four types are by definition three step groups. If
S is a three step group, we use the followmg notatlon o

\

&= om,, onm =1, C@(QBI) B, .

Furthérmore, § denotes the maxithal normal nilpotent S-subgroup of
&. By definition, & &' so we let 11 be a complement for  in &,

845
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In addition to being a three step group, each of the remaining four
types has the property that if %, is any non empty subset of
VW, — [, — W, then Ny(W,) = W, W,, by definition. The remaining
properties are more detailed.

We say that & is of type II provided

(1) U =+#1and U is abelian.

(i) Ng() £ .

(iii)) NgA) &S for every non empty subset A of &'* such that
Co(2) #+ 1.

(iv) |W,| is a prime.

(v) For every prime p, if 2%, A, are cyeclic p-subgroups of U
which are conjugate in @ but are not conjugate in &, then either
CQ(EJIO) =1 or Cy(N) = 1.

(vi) 9C(®) is a T. I. set in .

We say that & is of type III provided (11) in the preceding defi-
nition is replaced by

(il NeW) S &,
and the remaining conditions hold.

We say that & is of type IV provided (i) and (ii) in the definition
of type II are replaced by

(1 )rr W+ 1’

(i) Ng(l) S &

and the remaining conditions hold.

We say that & is of type V provided
(i) u=1,
(ii) One of the following statements is true:
(a) @ isaT. I set in G.
(b) & =P x &, where &, is cyclic and 5 is a S,-subgroup of
® with per*.

THEOREM 14.1. Let ® be a minimal simple group of odd order.
Two elements of a milpotent S-subgroup O of & are conjugate in &
if and only if they are conjugate in N(D). Either (i) or (it) i8 true:

(i) Ewvery maximal subgroup of & 18 of type I.

(i) (@) ® contains a cyclic subgroup W = W, x W, with the
property that N(T)=T for every mon empty subset Ly, of W— T, —W,.
Also, B; =1, 1 =1, 2.

(b) & contains maximal subgroups S and I mot of type I
such that

S BE, T =07, N/, =1, TNW,=1,
SNT=W.
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(¢) Ewvery maximal subgroup of ® is either conjugate to © or
T or 18 of type I.
(d) Either & or ¥ 18 of type II.
() Both & and T are of type II, III, IV, or V. (They are
not mecessarily of the same type.)
In order to state the next theorem we need further notation. If
Q is of type I, let

=8 = U Cy(H),

meHt

where  is the Frobenius kernel of 2.

If  is of type II, III, IV, or V, we write & = 8’%1, ¥NW, =1.
Let © be the maximal normal nilpotent S-subgroup of £, let U be a
complement for $ in £ and set W = Cx(B), W, = BN, B==B —
W, — BW,.

If & is of type II, let

If 8 is of type III, IV, or V, let

~

L=g .
If Q is of type II, III, IV, or V, let
e =8UUL'BL.

LEQ

We next define a set .o~ = %7 (2) of subgroups associated to 2.
Namely, Me o if and only if M is a maximal subgroup of & and

there is an element L in 2 such that C(L) £ & and C(L) S M. Let
R, -+, N,} be a subset of o7 which is maximal with the property
that 0N, and N, are not conjugate if ¢ +#j. For 1 <1 =< n, let H; be
the maximal normal nilpotent S-subgroup of N..

THEOREM 14.2. If R s of type I, II, III, IV, or V, then L and @1
are tamely imbedded subsets of & with

NE®) = N&) =

If o7 (R) is empty, Qand & are T. L. sets in ®. If (R is non
empty, the subgroups 9, «--, O, are a system of supporting subgroups
for & and for 2.

The purpose of Chapter IV is to provide proofs for these two
theorems.
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15. A Partition of 7w(Q®)

We partition 7(®) into four subsets, some of which may be empty:
7w, = {p|A S,-subgroup of @ is a non identity cyclic group.}
7, ={p|1l. A S,-subgroup of & is non cyclic.
2. ® does not contain an elementary subgroup of order .}
7, = {p|1l. & contains an elementary subgroup of order p°.
2. If Pis a S,-subgroup of &, then U(P) contains a non
identity subgroup.}
7, = {p|1l. & contains an elementary subgroup of order »°.
2, If P is a S,-subgroup of &, then U(P) contains only
<.}
It is immediate that the sets partition 7(®). The purpose of Lemma
8.4 (i) is that condition 2 defining =, is equivalent to the statement
that =z 4,(P) is empty if P is a S,-subgroup of &. Lemma 8.5
implies that 3¢ w, U m,.

16. Lemmas about Commutators

Following P. Hall [19], we adopt the notation YAB = [¥, B],
AP = [y AB, B, v =1,2, ---, and YVABE = [, B, €].

If X is a group, +#7(X) denotes the set of normal abelian
subgroups of ¥%.

The following lemmas parallel Lemma 5.6 of [27] and in the
presence of (B) absorb much of the difficulty of the proof of Theorem
14.1.

LEMMA 16.1. Let B be a S,-subgroup of ® and A an element of
A (P). If § 18 a subgroup of & such that

(i) <%, B 8 a p-group,

(i) § centralizes some element of Z(P) N A¥,
then Y'FA* = .

Proof. Let Ze C(F) N Z(P) N A*, and let € = C(Z). By Lemma
7.2 (1) we have A S 0, ,(€) = 9. As P is a S,-subgroup of €, P, =
BNHis a S,-subgroup of . Since A < P, so also A < P,, and since
A is abelian, we see that Y9’ < 0,.(C). Since $ < €, we have
YIA S H and so V*FA* S 0,.(C). Since (U, F) is assumed to be a p-
group, the lemma follows.

If P is a non cyclic p-group, we define 7/ (P) as follows: in case
Z(P) is non cyclic, Z (P) consists of all subgroups of Z(P) of type
(p, p); in case Z(P) is cyclic, Z7(P) consists of all normal abelian

subgroups of P of type (p, D).
LEMMA 16.2. Let P be a non cyclic S,-subgroup of ®, A e A427(P),
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and let ¥ be a subgroup such that .. SN E

(i) <%, ) s a p-group,

. (i) - A contains a subgroup B of - -?/(SB) such that 58 C,B(%)qﬁ(l}
If p =5, then Y'FUA* = (1>, while if p = 3, then T'FA = (1) Also,
if W =ANZDP) and p =5, then ¥FAX =D, -

Proof. If B, S Z(P), the lemma follows from Lemma 16.1. If
B, £ Z(P), then P, = CSB(EBO) is of index p in P so is of index at most
p in a suitable S,-subgroup P* of C(B,) = €. In particular, B, < P*.

Let = 0, ,©), Bt =P*NH, and B, = BN . Since P, < P*,
so also P, < Br. Hence YPr*A S P,N H S By, and so V*PrA =1, A
being in A4X7(B,). If p =5, we conclude from (B) that A & H, and

o V'O < 0,(€). Since YFA S O, the lemma follows in this case.
(Since P, centralizes UA,, we have V’FA = {1D.)

Suppose now that p = 3. If P* = PB,, then V*PFA* = (1), and so
by (B), A =  and the lemma follows. If Pr + B, then P* = PPF,
since | P*:P,| = p. In this case, letting A = AQ/H, P* = P*H/O, we
see that A e #77(P*) and so A S 0, ,(€/D), that is, AS 0, ;.. ,(€) =
K. Hence, YFAS K and since A < P*, we see that Y'FA* S 0,..,.,(C),
and so YA < . Continuing, we see that *'FA' S 0,.(C)P, and so
TFA S 0,.(€), from which the lemma follows.

LEMMA 16.8. Let ‘ be a S,-subgroup of & and let €e Z/(P).
Let ¥ be a subgroup of & such that

(i) <&, > is a 3-group.
(i) €, = Cg(@) # <.
If v%6* £ (1>, then ¥FC* = €,, and €, = 2(Z(P)).

Proof. First suppose €, S Z(P). Let © = C(€) 2 {PB, F). Since
P is a S;-subgroup of 9, (B) implies that € S 0, (D). Setting P, =
0, (D) N P, we have 0, 4(D) = 0,(D)PB.. If € & Z(P), then € = Z(P)
and so V'FC? S 0,(D) N <, € = (1D, since <{F, €) is a 3-group. If
€ & Z(P), then the definition of Z/(P) implies that V'FE* S €,0,(9),
so if Y'FE? # (1>, we must have FE*= H'C.H for suitable H in
0,(9). By definition of o it follows that H-'€,H = €,.

We can suppose now that €, & Z(P). In this case, the deﬁmtlon
of 7/(P) implies that € = (D, >, where D = 2,(Z(P)). Let B, =
Cx(€,) and let P* be a S,-subgroup of ® = C(€,) containing P, and
let PBr = P* N0, 4(D). Since P, is of index at most 3 in P* and since
P, centralizes €, we have Y*B*C* = (1), and so € S PF. If PF &P,
it follows that *3E* < 0,(9) N (€, F> = 1) and we are done. Hence,
we can suppose that T & PB,. In this case, it follows that P* = 530‘130 ,
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since | B*: B, | = 8. We also have D(P}) S B, and so €S Cox(D(B})) =
E. If €= Py, we have € = Z(F), and since Z(€) char € char Py, it
follows that V*FC* S 0,(9) N €€, F> = (1> and we are done. We can
therefore suppose that € & Z(€). Choose E in & — Cg(€). Since PB*
centralizes €, it follows that E does not centralize ® = (D). Consider
[D,El]=F+1. Now €< Z(%B) < P*, and so FeZ(H). On the
other hand, F lies in D(Py) since both £ and D are in PF. Since
Ec @, it follows that E centralizes F. Since {3, E)> = P*, it follows
that F' is in Z(PB*). But F is of order 3 and €, = 2,(Z(P*)), since
Z(P*) is cyclic. It follows that { F) = €,, and so E normalizes € and

with respect to the basis (D, F') of € has the matrix <(1) %) On the

other hand, P possesses an element which normalizes € and with

respect to the basis (D, F') has the matrix G (1)> Since these two

matrices generate a group of even order, we have the desired con-
tradiction which completes the proof of this lemma.

17. A Domination Theorem and Some Consequences

In view of other applications, Theorem 17.1 is proved in greater
generality than is required for this paper.

Let P be a S,-subgroup of the minimal simple group ¥ and let
A be an element of .+ (P). Let q be a prime different from p.

THEOREM 17.1. Let Q,Q, be maximal elements of W, q).

(i) Suppose that O is not conjugate to Q, by any element of Cx().
Then for each element A in U*, either C(4) =1 or Cp(4) = 1.

(i) If e A& A5(P), then Q and Q, are conjugate by an
element of C().

Proof. The proof of (i) proceeds by a series of reductions. If
9 = 1, the theorem is vacuously true, so we may assume A + 1.

Choose Z in Z(P), and let O* be any element of M(YU; q) which
is centralized by Z. By Lemmas 7.4 and 7.8, if £ is any proper
subgroup of ¥ containing AQ*, then {* S 0,.(Y).

Now let Q* denote any element of MU(2; q) and let £ be a proper
subgroup of % containing AV*. We will show that Q* & 0,(2). First,
suppose Z(P) is non cyclic. Then Q* ={Cp(Z)|Z¢€ Z(P)*>, so by
the preceding paragraph, Q* < 0,(8). We can suppose that Z(¥) is
cyclic. Let Z be an element of Z(P) of order p. We only need to
show that [Q*, Z] < 0,(8), by the preceding paragraph. Replacing
Q* by [Q*, Z], we may suppose that Q* =[Q*, Z]. Furthermore,
we may suppose that U acts irreducibly on Q*/D(Q*).

Suppose Z€0, ,(®). Then Q* =[Q*, Z] S 0, ,(3) N L* E 0,(2)
and we are done. If % is cyclic, then Z is necessarily in 0, (%),



17. A DOMINATION THEOREM AND SOME CONSEQUENCES 851

since A N 0, ,(¥) #1. Thus, we can suppose that 2 is non cyeclic.

Let A, = Cy(V*) = Cy(V*/D(L*)), so that A/A, is cyclic and
Z¢A,. We now choose W of order p in ¥, such that {Z, W) .

Suppose by way of contradiction that Q* £ 0,.(2). Then by Lemma
7.8, we can find a subgroup £ of AC(A,) which contains AL* and
such that Q* £ 0,.(8). In particular, Q* £ 0,(C(W)). Thus, we
suppose without loss of generality that & = C(W). Let P* be a S,-
subgroup of € which contains P = PN C(W). If P* =% then
Z€ 0, ,(2), by Lemma 1.2.3 of [21], which is not the case. Hence,
P is of index p in P*. Clearly, A S P and Ze Z(‘B). Hence,
[B*, Z]1 < Z(P) = A. Let Pr =PB* N 0, () so that P is a Sp-subgroup
of 0, ,(%). Then [P}, (Z), 0*] & [¥, Q*] N0, ,(8) S V* N O, ,(R), s0
that [, <ZD, 0*] S 0,(8). Let B =0, ,(2)/0,(2) and let T, = Cx(Q*).
The preceding containment implies that [8,<{(Z>] < ®B,. Let B,=
Ng(B,). Then Z acts trivially on the Q*U-admissible group B,/B,.
Hence, so does [{Z), Q*] = Q*, that is, B, S B,. This implies that
L =B, is centralized by L* so L* S 0,(%). We have succeeded in
showing that if C* is in U(Y; ¢) and L is any proper subgroup of %
containing ALV*, then Q* S 0,.(2).

Now let &3, -+, &, be the orbits under conjugation by C(X) of
the maximal elements of WU(;q). We next show that if Qe &,
£,€«; and 1 # j, then QN Q, =1. Suppose false and 1, 7, Q, Q, are
chosen so that |Q N Q| is maximal. Let Q* = Np(Q N Q) and QF =
Np, (2 NL,). Since O and Q, are distinct maximal elements of U(¥; q),
QN L, is a proper subgroup of both O* and QF. Let € = N(Q N Q).
By the previous argument, {Q*, Q> S 0,.(8). Let R be a S,-subgroup
of 0,(%) containing * and permutable with 2 and let R, be a S,-
subgroup of 0,.(%) containing Q} and permutable with 2. The groups
R and R, are available by D,, in %0,.(8). By the conjugacy of Sylow
systems, there is an element C in 0,.(2)2A such that 2A° = A and
R =R,. As U has a normal complement in 0,.(2), it follows that
C centralizes . Let O be a maximal element of HU(; q) containing
R. Then QN2 DQANY, and so Qe Also, ONQ’ 2
Q* 5 (QN Q) so that Qe and i = j.

To complete the proof of (i), let Q, Q, be maximal elements of
U; q) with Qe &, 0, € &;. Suppose A € A* and C(A)+#1, Cp (A)#1.
Let € = C(4), let R be a S,-subgroup of 0,(2) containing C(A) and
permutable with 2, and let R, be a S,-subgroup of 0,.(2) containing
Cp (A) and permutable with 2. Then R’ = R, for suitable C in C().
Let Q* be a maximal element of WM(2; q) containing R,. Then
QN 20C(4) #1 so Q*ea;. Also, Q*NQYI2(C(4))’ #1 so
Q*e &, and 7 = 3. This completes the proof of (i).

As for (ii), if A e & _+;(P), then there is an element A in A
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such that Cy(4) # 1 and Cp(4) # 1. By (i), Q and Q, are conjugate
under C().

COROLLARY 17.1. If pemUm, P 18 a S,-subgroup of & and
N e A& _15(P), then for each prime q + p and each maximal element
Q of U, q), there is a S,-subgroup of N(A) which normalizes L.

Proof. Let Ge N(Y). Then Q¢ is a maximal element of U(; q),
since any two maximal elements of U(2; ¢) have the same order, so
Q¢ = QF for suitable C = C(G) in C(A). Hence, GC* normalizes Q.
Setting ¥ = N(Q) N N(A), we see that & covers N®)/C ), that
is, N(Q) dominates 2. Now we have JC () = N(Y) and I contains
A. Since CA) = A x D where D is a p'-group, we have N(A) =
ICRA) =JAD=ID, and I contains a S,-subgroup of N () as required.

COROLLARY 17.2, If pen,Um, P 8 a S,-subgroup of
S, Ae A= 14:(PB) and q 18 a prime different from p, then P
normalizes some maximal element Q of UW(U; q). Furthermore if G
18 an element of & such that A = P, then A = A¥ for some N in
NX).

Proof. Applying Corollary 17.1, some S,-subgroup PB* of N()
normalizes Q,, a maximal element of U(; q). Since B is a S,-subgroup
of N, P = P** for suitable X in N(A), and so P normalizes L =
F, a maximal element of U(X; q).

Suppose Ge® and A? = P. Then A normalizes O since P does,
so 2 normalizes Qf'. Now Q¢ ' is a maximal element of WU(¥; q)
since any two such have the same order. Hence, Q¢ ' = Q° for some
C in C (), by Theorem 17.1 and so CG = N is in N(Q). Since A* =
A% = A¢, the corollary follows.

COROLLARY 17.8. If pex, P 18 a S,subgroup of & and
N e & (), then UN) is trivial.

Proof., Otherwise, U(Y; q) is non trivial for some prime ¢ #* p,
by Lemma 7.4, and so U($PB; q) is non trivial, contrary to the definition
of =«,.

Hypothesis 17.1.

(i) pem, P is a S,-subgroup of & and Ae F&Z 1;5(P).

(i) q 18 a prime different from p, W(; q) is non trivial and Q
18 a maximal element of U(U; q@) normalized by B.
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REMARK. Most of Hypothesis 17.1 is notation. The hypothesis
is that pem, for in this case a prime ¢ is available such that (ii) is
satisfied. Furthermore, we let

B = Vicly(A);P), N=NK), and N, = N(Z(B)).

LEMMA 17.1. Under Hypothesis 17.1 if Ge® and A S P, then
A¢ = A¥ for some element N in N(Q) N N(B).

Proof. By Corollary 17.2, A¢ = A* for some element X in N.
Since N is solvable, Lemma 7.2 (1) and Corollary 17.2 imply that
N = 0,,(N) - Ny(BV), so we can write X = N,N where N, €0, (N) and
Ne Ny(B). Now ¥ is in B, so in particular is in P. Also AM¥ = Y=
is in . Hence, if A is in A, then A~7. A" =[A, NJ* is in P,
and in particular is a p-element. Since [A4, N,] is a p’-element, we
see that N,e C(2A). Hence A"¥ = A¥, and the lemma follows.

LEMMA 17.2. Under Hypothesis 17.1, N, = 0*(N,).

Proof. Since Z(LB) char B, and BV is weakly closed in P, RN,
contains N (), so Theorem 14.4.1 of [12] applies. We consider the
double cosets 3, XP distinet from N,. Denote by K(X) the kernel of
the homomorphism of P onto the permutation representation of % on
the cosets of N, in N, XP. Let P= P(X) be an element of P such
that &(X)P is of order p in Z(P/K(X)).

Suppose we are able to show that P can always be taken to lie
in A. In this case, we have [U, P,P]=1 for all U in P. Since
p =3 and @ is simple we conclude from Theorem 14.4.1 in [12] that
N, = 0°(N).

We now proceed to show that P can always be taken to lie in 9.
The only restriction on the element X is that X¢R, that is, we
must have R(X) # L.

Now A S B, so Z(B) centralizes A, Since WAe A% 4+ (P), we
have Z(B) & A. It follows that N, contains C(N).

It suffices to show that A £ K(X). For if A £ K(X), choose A
in A so that (R(X) N A)A is of order p in Z(P/RK(X) N A). It follows
that K(X)A is of order p in Z(P/K(X)).

Suppose by way of contradiction that A & R(X). Then A S N
so A S P** for P* a suitable S,-subgroup of N,. But P* = P*¥ for
some Y in N,. Setting X, = YX, we have N, XP=N,X,P and A = P*1,
Hence, A1 =P, so by Lemma 17.1, A% = A¥ for some W in
NN NEB). Since N(B) =N, we have A = A*T1and WeNNN,. Let
WX, = X,. Since WeNR, we have N, X, P = N, X,P.

Since X, normalizes 2, % normalizes Q%:'. By Theorem 17.1,
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QF: = QO for some C in C(). Hence X;'C* = X, (this defines X,)
normalizes Q. Since X, and C normalize 2, we see that X; et N NX).
Since C centralizes 2 and C(A) & N,, we have N, X;P = N, X, P.

We now write X; = X;X,, where X;eN N N(B) and X,€0,(N).
Such a representation is possible since X, eN. Consider the equation
X, = X;7'X,. Since N®B) =N, we have RXPL =NXPB. If Ae¥,
then [A, X["] is a p'-element since X,€0,(N). But [4, X;'X;] =
[A4, X!][4, X;"]%s, an identity holding in all groups. Since X! e N(D),.
[4, X/]eB. Since X,e N), [4, X;1eAS DB, so [4, X5 DB, a
p-group. Hence

[4, X/ =[4, X' X!]=1.

Since A is an arbitrary element of %, we have X,c C(¥) = N,. Now,
however, we have

mlxs’B = Snr’ﬂ% = mlxsz = m1Xs§B = gthf‘B = 921 ’

so XeMN, contrary to assumption.

LEMMA 17.3. Under Hypothesis 17.1, R, = 0,,(N) - (R N N), and
N = 0*(N).

Proof. We must show that N contains at least one element from
each coset €=0,(N) W, We R, from which the lemma follows directly.

Let 9 =P N0, ,(N), & = Ny (D), and CA) =A X D, D being
a p’-group. Notice that © = 0,(N,) by Lemma 7.4 together with
C) &N,. (This was the point in taking Z(B) in place of V.)

By Sylow’s theorem, & contains some element of €, so suppose
We&. Since U is contained in $ by Lemma 7.2 (1), we have
A" = H S B, and A¥ normalizes Q. Hence, A normalizes ¥ ' and
by Theorem 17.1, Q% ' = QS for some S in C(A). Write S=AD
where Ae U, DeD, so that QF = QO2?, since A normalizes Q. Hence,
DW normalizes Q. But DWeG€, since De€0,(N), so DWeRNRNN,
and N contains an element of €.

LEMMA 17.4. Under Hypothesis 17.1, if © 18 a subgroup of P
which contains A, then N(D) S N,.

Proof. Let Ge N(9). Since P normalizes Q, so does . Hence,
$? normalizes Q¢ But $% = O and 9 contains A, so A normalizes.
¢ By Theorem 17.1, Qf = QF for some C in C(A). Let GC'=
NeR. Now N = N,N, where N,€0,(%) and N,eRNN,. Consider
the equation GC'N;* = N,. Let Ze Z(B).

We have GC'N;'ZN,CG™ = GZ,G™*, where Z, = Z"¥ is in Z(DB);
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hence, Z'GC'N,;ZN,CG* = [Z, N,CG™] = Z7'GZ,G* is a p-element
of O, since Z,eZB)SA<S D, so that GZ,G'eGHG = 9. But
Z'N,ZN'€0,(N). Hence, [Z, N,CG™] =[Z, Ni']=1. Since Z is
an arbitrary element of Z(8), it follows that N, centralizes Z(8), so

N, is contained in N,. But now the elements N,, N, and C normalize
Z(B). Since G = N,N,C, the lemma follows.

LEMMA 17.5. Under Hypothesis 17.1, +f & 18 a proper subgroup
of & which contains P, then B & 0, ,(R).

Proof. If P, =P N0, ,(R), and &, = Ng(P), it suffices to show
that B8 = P,. By Lemma 7.2 (1), we have A & B,, and so by Lemma
17.4, 8 & N,. Thus it suffices to show that L € 0,. ,(N,). By Lemma
17.3, it suffices to show that B & 0, ,(N). However, this last contain-
ment follows from Lemma 7.2 (1) and Corollary 17.1.

LEMMA 17.6. Under Hypothesis 17.1, if & i8 a proper subgroup
of ®, and P, i3 a S,-subgroup of &, then V(ccly(N); By) S 0,,,(R).

Proof. Suppose false, and that & is chosen to maximize |&|, and
with this restriction to minimize ||, Let P = B, N0, ,(R). By
minimality of |&|,, we have ¥, < R By maximality of |[®[,, B, is a
S,-subgroup of N(P5,). We assume without loss of generality that
P & B. In this case, Lemma 7.9 implies that A = PB,. Since A = PB,,
by Lemma 17.4 we have & & N,; by Lemma 17.5, 8 < 0, ,(R,), so in
particular, V(cclgy(); B,) S B, as required.

18. Configurations

The necessary E-theorems emerge from a study of the following
objects:

1. A proper subgroup & of ®.

2. A S,-subgroup P of K.
(C)

3. A p-subgroup A of G.

4, B = V(CCl@(%I); PB), M = [0,,5 »(R), B], B = 0,,,,(R)/0,(KR).

DEFINITION 18.1. A configuration is any 6-tuple (R, B, 2; L, W, W)
satisfying (C). The semi-colon indicates that B, I, T are determined
when &, P, A are given.

DEFINITION 18.2.

& (p) = {A|
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(i) A is a p-subgroup of .
(i) for every configuration (R, P, UA; B, M, W),
(a) M centralizes Z ().
(b) If Z(W) is cyclic, then M centralizes Z,(W)/Z(W).}

DEFINITION 18.3.
FEN(D) = USZAN. (B, Z@®=U%®D,

B ranging over all S,-subgroups of & in both unions.

LEmMmA 18.1. If p = 5, then Z7(p) U & 4,:(p) S € (p).

Proof. Let e 7/ (p) U SZA,;(p), and let (], B, A; B, M, B) be
a configuration. Suppose by way of contradiction that either 9t fails
to centralize Z(TW) or Z(W) is cyclic and WM fails to centralize
Z(BW)|Z(B). Since 0,.,,(®) centralizes both Z(W) and Z,(W)/Z(W), it
follows that some element of I induces a non identity p’-automorphism
of either Z(W) or Z,(W)/Z(W), so in both cases, some non identity
p’-automorphism is induced on Z,(BW) by some element of M. By 3.6,
some non identity p’-automorphism is induced on 2,(Z(W)) = W, by
some element of M. Let W, = 2,(Z(W)) = W, and let W_, = 1.

Let M, = ker (0,/,5,,(R)—AutTy,), M, =ker (0,,,.,(R)—Aut (B,/T,)).
By definition of MM, M is contained in W, if and only if B acts trivially
on 0, ,,(R)/M,;,7=0 or 1. Suppose that B does not act trivially on
0,0, o (R)/IM;. Let B = A be a conjugate of A which lies in BV and
does not centralize 0,., ,(8)/MM; (B depends on 2). In accordance with
3.11, we find a subgroup R; of 0, , ,(R) such that N,/M, is a special
q-group, is B-admissible, and such that B acts trivially on D,/In;,
irreducibly and non trivially on R,/9®;, where D; = D(R; mod M,). Let
B; = ker (B — Aut (R;/M,)), so that B, acts trivially on N,/M; and
B[B; is cyelic.

Let %; be a subgroup of ,/TW;_, of minimal order subject to being
BN;-admissible and not centralized by N;. The minimal nature of %;
guarantees that B, acts trivially on %;,, If B,B; is a generator for
B/B;, then (B) guarantees that the minimal polynomial of B; on %, is
(x — 1) where r=1r, = |8:9%;]|.

Suppose ¢ = 0. Since %, is a p-group, while 0,.(R) is a p’-group,
we can find a p-subgroup 9, of & such that 9, and %, are incident,
and such that 9, is B-admissible. In particular, B, centralizes 9,.
Let B* be a S,-subgroup of N(B), so that P* is a S,-subgroup of ©.
If B, N Z(P*)* is non empty, we apply Lemma 16.1 and have a contra-
diction. Otherwise, Lemma 16.2 gives the contradiction.

We can now suppose that Z() is cyclic. In particular, T, is of
order p. Since %, is of the form %)/, where ), is a suitable subgroup
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of ®,, we can find a p-subgroup 9, of K incident with P, and B-
admissible.

Choose B in B,. Since B, centralizes 9),/T, and since T, is of
order p, it follows that $, = Cy(B) is of index 1 or » in . If
B, N Z(P*)* is non empty, application of Lemma 16.1 gives v*9,B° =1,
and so v'9.8* = (1), the desired contradiction. Otherwise, we apply
Lemma 16.2 and conclude that 9,8 = (1>, and so 7*'$,8° = 1), from
which we conclude that |B:%8,| =5. In this case, however, setting
3=ZP*)NB, we have B =B, 8>, and so the extra push comes
from Lemma 16.2 which asserts that v*9,8° = (1), and so 7'9,8* = {1),
completing the proof of the lemma.

19. An E-theorem

It is convenient to assume Burnside’s theorem that groups of
order p°¢® are solvable. The interested reader can reword certain of
the lemmas to yield a proof of the main theorem of this paper with-
out using the theorem of Burnside.

If p,gem,Um, we write p ~ q provided & contains elementary
subgroups & and § of orders p* and ¢° respectively such that {€, F>C®.
Clearly, ~ is reflexive and symmetric.

Hypothesis 19.1.
(i) pem,UT,qen(®) and p + q.
(ii) A S,-subgroup P of © centralizes every element of WU(P; q).

LEMMA 19.1. Under Hypothesis 19.1, if B € Z/(p), then B central-
1zes every element of WU(B; q).

Proof. Suppose false, and that Q is an element of U(B; ¢) minimal
with respect to Y8Q # {1>. From 3.11 we conclude that B centralizes
D(Q) and acts irreducibly and non trivially on Q/D(L), so in particular,
Q = vOB and B, = ker (B — Aut Q) # {1). Let € = C(B,), let P be
a S,-subgroup of N(B), and let P, = C(B)N P. Since Be Z(p), Py
is of index at most p in a S,-subgroup %, of €, and so P, < B,. Hence
YBB S P,. Since P, centralizes B, we have ¥VPB = 1), so
B0, ,6) =R Let €=0,(C). Since BSRJE, ¥OBCS K, so
YOB S RNQES L Since Q = vQB, we have O S L.

By Lemma 8.9, B is contained in an element A of A& 4:(P).
Since A centralizes B, we have A = PB,. Let D = AR, and observe
that € is a normal p-complement for 2 in ®. By Hypothesis 19.1
(i), Theorem 17.1, Corollary 17.2, and D,, in D, U centralizes a S
subgroup of D, so D satisfies E;, and every p, g-subgroup of ®
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18 nilpotent. But QB S D, and Q= vOB = 1>, so OB is not
nilpotent. This contradiction completes the proof of this lemma.

Hypothesis 19.2.

(i) p,gen,Um, and p # q.

(i) p~aq.

(i) A S,-subgroup P of @ centralizes every element of WU(P; q)
and a S;-subgroup Q of ® centralizes every element of U(Q; p).

THEOREM 19.1. Under Hypothesis 19.2, ® satisfies E,.

We proceed by way of contradiction, proving the theorem by a
sequence of lemmas. Lemmas 19.2 through 19.14 all assume Hypothesis
19.2, We remark that Hypothesis 19.2 is symmetric in p and q.

LEMMA 19.2. <, B> O, whenever A ez (p) and Be z(q).

Proof. Suppose <, B) = 8 G, where Ae z(p), Bez(q), and
£ is minimal. By D,, in &, it follows that & is a p, g-group.

By the previous lemma A® centralizes O, (R) and B® centralizes
O,(R). Since B and A are abelian, K/A* and K/B® are abelian, so &
centralizes 0,(R) X O0,(8®) = F(R). Hence & = Z(F(R)) by 3.3.

Let & be a chief series for &, one of whose terms is &, and
let €/ be a chief factor of . If & & D, then €/D is obviously a
central factor. If € & &, and €/D is a p-group, then B centralizes
€/, and since €/D is a chief factor, A must also centralize €/D, so
€/ is a central factor. The situation being symmetric in » and g,
every chief factor of & is central, and so & is nilpotent, and & =
A X B,

Let N = N(Y), let M be a S, ,-subgroup of N with Sylow system
B, Q, P being a S,-subgroup of ®, since A e z/(p). By D,,in N, B, =
B" = QO for suitable N in N. Let M, be a maximal p, g-subgroup of
® containing M, with Sylow system P, O, where Q= Q,. Let Q,
be a S;-subgroup of ® containing Q.. Finally, let B = V(cclx(B); Q,),
and observe that B, & ¥. By Hypothesis 19.2, P centralizes 0,(I,).
By the previous lemma, B centralizes 0,(I).

We next show that 8 & F(IM,). Consider 0, ,(M,), and let P, =
BN O,,,(D). Since P centralizes 0,(M,), so does B, so O, (M) =
P, X O,(I,) is nilpotent. But now B centralizes P,, and so Lemma
1.2.3 of [21] implies that B = 0,(M,). It follows that B  M,. Since
B i3 weakly closed in a S,-subgroup of I, it follows that M, is a
S,..-subgroup of ®,

Again, B centralizes 0,(IM,), and now Q, centralizes 0,(M,) both
assertions being a consequence of Hypothesis 19.2 (iii). It follows
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readily that every chief factor of I, is central, and so Ik, is nilpotent.
Since we are advancing by way of contradiction, we accept this lemma.

LeMMA 19.3. If e z(p), then either C(A) is a ¢'-group or a
S,-subgroup € of C(N) is of order q, and & has the property that it
does not centralize any B € Z/(q).

Proof. Let G be a S,-subgroup of C(N), and suppose & # {1D.
By Lemma 19.2, no element of G* centralizes any Be Z/(q). Let Q
be a S,-subgroup of ® containing € and let Be Z/ (). Then Cy(B)
is of index 1 or ¢ in Q and is disjoint from €. |E| = q follows.

Lemmas 19.2 and 19.8 remain valid if p and ¢ are interchanged
throughout. In Lemmas 19.4 through 19.14 this symmetry is destroyed
by the assumption that » > ¢ (which is not an assumption but a choice
of notation).

We now define a family of subgroups of &, # = & (p). First,
Z is the set theoretic union of the subfamilies # (), where PP
ranges over the S,-subgroups of . Next, & (P) is the set theoretic
union of the subfamilies & (A; L), where A ranges through the
elements of & _4;(PB). We proceed to build up & (A; P). Form
V() = V(eclg(A); B). Consider the collection 7" = " (A) = 2" (A, 9)
of all p, g-subgroups & of @ which have the following properties:

1. P& K.

(K) 2. V) S 0O, ,(R).

8. Every characteristic abelian subgroup of P N 0O, ,(!) is cyclic.

If (Y, q) is empty, we define Z# (A; P) to consist of all
subgroups of A of type (p, p). If #°(¥, q) is non empty, we define
Z (U; P) to consist of all subgroups of A of type (p, p) together with
all subgroups of BN O, ,(K]) of type (p, p) which contain 2,(Z(P N O, ,(R))),
and R ranges over . (¥, q).

Notice that .&# (p) depends on ¢, too, but we write & (p) to
emphasize that its elements are p-subgroups of &. The nature of
Z is somewhat limited by

LEMMA 19.4. If U, Ay e FSZA5(P), B 8 a S,-subgroup of
S, () and % (A,) are non empty, and if K;€ % (A),+=1,2,
then 1}’ N qu(Rl) = EB N Oq.p(gz)-

Proof. Let B,=PNO,,(R:),t=1,2. Then B, PB,2=1,2.
From 8.5 and the definition of # (p), we have cl(B;) =2,t =1, 2,
Hence VPP =<1> and ¥*B.P; = 1). From (B), we conclude that
B,S B, and P, S P, as required.

Using Lemma 8.9 and Lemma 19.4, we arrive at an alternative
definition of # (), B being a S,-subgroup of &. If 27 (A) is empty
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for all A e FAZ 14;(P), & (P) is the set of all subgroups B of P of
type (p, p) such that B® is abelian. If .27 (Y) is non empty for some
Ae FZ ,(P) and Ke % (A), then F (P) consists of all subgroups
of type (p, ») in O, ,(®) N P which contain 2,(Z(0,,,(R) N P)), together
with all subgroups B of 0, ,(® NP of type (p,p) such that B* is
abelian, Here we are also using (B) to conclude that O, ,(8) NP
contains every element of %+ (P).

LEMMA 19.5. Let 8¢ 27 (), where e FZ15(P) and P s a
S,-subgroup of @. Let P, = PN O, ,(]). If M is any proper subgroup
of & containing B, then PO, (W) < k.

Proof. Since V*PPi=1, it follows from (B) that BLEP N 0, (M) =
B, say. By Sylow’s theorem, I = 0, (M)Ny(B,), so it suffices to
show that P, < Ngp(PB,) = N. Choose N in N. Then [P, B, By, Bol=1.
Since B, S P, = P¥ < K7, it follows from (B) applied to K¥ that
B, S BY, so that P, = PF, as required.

LEMMA 19.6. Let R € 27 (N), A e A= 45(P), P being a S,-subgroup
of ®, and let  be a subgroup of index » in Py = 0, () N P. Then
B = Vicelg(R); B) S PN O, (B).

Proof. Since & _45(P) is non empty, (B) implies that L is non
abelian. Now 2,(Z(%P)) is of order p» and is contained in & By 3.5
2/2(Z(P)) is abelian,

Let ¢ = £, be a conjugate of & contained in P, Ge®. First,
suppose that (2,(Z(%)))® = B is contained in PB,. Then Cgp(8) =€, is
of index 1 or p in PB,. Set €, = C(8). By Lemma 19.5, with €, in
the role of M, B¢ in the role of B, PZ in the role of P, we see that
vE,8 = (1>, and it follows that vPB,& =<1, so by (B), & & B.
(Recall that p = 5.)

Thus, if &, & Py, but 8, & P, then 3L PB,. But £, normalizes B,
so PB,N L, L. Since &, is of index p in P, any non cyelic normal
subgroup of €, contains 8. Hence, 5, N &, is cyclic and disjoint from
B. If now 2,(B,) is extra special of order p”*', we see that 2,(¥,)
contains an extra special subgroup ¥ of order p™~' which is disjoint
from %,.

Consider now the configuration (&, B, &; B, WM, W), and observe
that W= PB,. T is disjoint from B, so is faithfully represented on
X=0,.5 (R)/0, (&), a ¢g-group. Furthermore, ¥ is faithfully represented
on 2,(BW)/2,(Z(LW)), which makes sense, since O, ,(®) acts trivially on
2,(B)/2(Z(T)). Let F, be the subgroup of F which acts trivially on
2.(Z(T)), which also makes sense, since 0, ,(®) acts trivially on
Q(Z(W)). Then F/F, is eyclic and T acts trivially on F/F, since p > gq.
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Since ¥ is a p-group, T acts faithfully on $,, so acts faithfully on
S/D(F). If |F: D@ | = ¢, then || divides (¢ —1)(¢*'—1)---(¢—1),
and so |¥| < ¢*, by Lemma 5.2,

On the other hand, ¥, acts faithfully on 2,(8)/2,(Z(T)), and trivially
on 2,(Z(W)), so F, is isomorphic to a subgroup of the symplectic group
Sp(2r, p). Hence, |F,| divides | Sp(2r, p) |, = (" — 1) --- (p* — 1) [6],
so by Lemma 5.2 (ii), |&: | < . Combining this with the previous
paragraph, we have |T|=p""'< ¢" = |%.| < »*!, a contradiction,
completing the proof of the lemma.

We can now translate this information about ¥ to the general
p, g-subgroup of &. To do this, we let <(p) be the set theoretic
union of sets (), P ranging over the S,-subgroups of &. _F(P)
is the set of all subgroups £ which can occur in the previous lemma.
Formally, <~ () is the set of all subgroups of index p in P N O, (R),
where € 7°(N), and A e = _7;(P).

LEMMA 19.7. If € &(p) and O 18 a p, q-subgroup of ®, then
B, = Vieclg(®); D) S 0,,,(9).

Proof. Let (9, B, &; B, M, W) be a configuration. The lemma is
clearly equivalent to the statement that L = 0,,(9). Let P, be a
S,-subgroup of & containing P, and let &, = £¢ be a conjugate of
contained in PB,. Since & e F(p), we have 8 e (B, for some S,-
subgroup P; of &. Now L, = BF for some X in &, and so F = ..
By Lemma 19.6, we have 7*Py(LF)' = 1), and so 7*PRE =<1); in
particular, ¥*B,& = <1), so (B) and p = 5 imply this lemma.

LEMMA 19.8. If e A& 1;(p), then B S 0, ,(R) for every con-
figuration (R, B, A; B, M, W) for which & is a p, g-group.

Proof. Suppose false, and that ® is chosen to maximize B, and,
with this restriction to minimize |[R],. It follows readily that O,(R)
is a S,-subgroup of O, ,(R) and that P is a S,-subgroup of every
D, g-subgroup of & which contains &.

By Lemma 18.1 and the isomorphism 0,(f) = 0, ,(R)/0,(8) = B,
we conclude that It centralizes Z(0,(f)). By minimality of |&|,, we
also have & = PIN.

If PB* is a S,-subgroup of & containing P, we see that Z(P*)
centralizes 0,(f), and so Z(P*) S Z(0,(R)), by maximality of P. It
now follows that & centralizes Z(P*), and maximality of P yields
EB = SB*: :

Since B does not act trivially on O, , (8)/0, (&), and since p > ¢,
it follows that 9 contains an elementary subgroup of order ¢°. But
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SN centralizes Z(0,(R)) = 8 and if J is non cyeclic, then 3 contains
an element of Z/(%P), in violation of Lemma 19.3. Hence, 3 is cyclic.
In this case, we conclude from Lemma 18.1 that a S,-subgroup of I
centralizes Z,(0,(®)) = R,. But 3, contains an element of Z/(P), so
once again Lemma 19.3 is violated. This contradiction completes the
proof of this lemma.

LEMMA 19.9. If fe £ (p) U & +;(p), then & S 0,(R) for every
P, q-subgroup & of & which contains L.

Proof. By Lemmas 19.7 and 19.8, it suffices to show that &
centralizes 0,(R). If e & _7;(p), Theorem 17.1, Corollary 17.2 and
Hypothesis 19.2 imply that £ centralizes O,(&). If e _&(p), then
L e Z(P) for some S,-subgroup P of G. In this case, if Ae F=_15(P),
the definition of &Z(P) implies that A N L = Y, is non cyclic. Hence,
0,(R) is generated by its subgroups C(4) N O,(8) as A ranges over
A¢, By the preceding argument, U is contained in 0,(®,) for every
D, g-subgroup &, of C(A) which contains 2[. Lemma 7.5 implies that
A, centralizes O,(8). In particular, 2,(Z(P)) centralizes O, (R).

Consider C(2,(Z(P))) 2 (B, 0,(R)). Since LS 0,(8,) for every
p, g-subgroup R, of (P, 0,(R)> which contains £ by (B) and Hypothesis
19.2, a second application of Lemma 7.5 shows that £ centralizes 0,(8),
as required.

LEMMA 19.10. If Be F (p), then B centralizes every element of
U(B; ).

Proof. Suppose false, and Q is chosen minimal subject to
LeWUB;q) and YOB # (1), so that we have Q =yOB and B, =
ker (B — Aut Q) # {1>. Let € = C(B,). Since Be F (p), we have
Be . # (P) for a suitable S,-subgroup P of . By definition of & (P),
either C(B) contains an element 2, of .&“Z._#;(P) or else C(B) contains
a subgroup B, of index pin PN 0, ,(R), e () and A e FZ_1:(P).
Let © be a S, ,-subgroup of € containing 2, in the first case, and %,
in the second case. Lemma 19.9 implies that 2, S 0,(9) in the first
case and B, S 0,(9) in the second case. In both cases, we have
B < 0,(0). Now let O, be a S, subgroup of € containing BL. By
Lemma 7.5, we have B < 0,(9,) and so 7YQB S 0,(9) N Q = K1),

contrary to assumption.
LEMMA 19.11. If Be 7 (p), Ae % (q), then G = (A, B).

Proof. Suppose <A, B> =K G, and A and B are chosen to
minimize &. By the minimal nature of &, & is a p, g-group. By the
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previous lemmas, UA® centralizes 0,(]), and B centralizes O,(R). It
follows readily that R is nilpotent, so £ = A x B. But now C(V)
contains B in violation of Lemma 19.3, with »p and ¢ interchanged.
This interchange is permissible since Lemma 19.8 was proved before
we discarded the symmetry in p and q.

LEMMA 19.12. If ® is a p, g-subgroup of & and if D possesses
an elementary subgroup of order p°, them a S,-subgroup of D is
normal in D.

Proof. Case 1. D contains a S,-subgroup P of . Let Q be a
S,subgroup of D, let O, = QN 0, (D), let Q be a S,-subgroup of &
containing Q, let Be %(Q), and O, = Cp(B). Then L, is of index
1or qin Q,.

Next, let & = 0,(D), and assume by way of contradiction that
fc PB. By the preceding lemmas, & contains V{(cclg(A); B) for every
Ae 22 4;(P). By the preceding lemma, no element of LQf centralizes
any element of & (p).

If R contains a non cyclic characteristic subgroup €, then every
subgroup of € of type (p, p) belongs to & (%), and so Cx(Q) is eyclic
for Q € Q,. This implies that & #;(X,) is empty, and if Q, possesses
a subgroup of type (q,q), then p =1 (modq). However, if & does
not contain any non cyeclic characteristic abelian subgroup, then every
subgroup of & of type (p, p) which contains 2,(Z(f)) lies in & (P),
and we again conclude that = #;(Q,) is empty, and if Q, is non
cyclic, then p =1 (mod g).

Now Q, = 0,,(D)/f® admits a non trivial p-automorphism since
R P, so FZ4;(,) is non empty, by Lemma 8.4 (ii) and p > q.
Hence, Q, is non cyclic, being of index at most ¢ in £, and this
yields p =1 (mod q). We apply Lemma 8.8 and conclude that p =
1+ g+ ¢° and Q, is elementary of order ¢°. This implies that any
two subgroups of Q, of the same order are conjugate in ®. Since
at least one subgroup of Q, of order ¢ centralizes B, every subgroup
of O, of order q centralizes some element of Z/(g). Since at least
one subgroup of L, of order ¢ centralizes some element of & (),
every subgroup of Q, of order ¢ centralizes some element of & (p).
This conflicts with Lemma 19.11.

Case 2. D does not contain a S,-subgroup of &. Among all D
which satisfy the hypotheses but not the conclusion of this lemma,
choose ® so that |D N 2,(A)| is a maximum, where U ranges over all
elements of S#&_4;(p), and with this restriction, maximize | |,.

Let ®, be a S,-subgroup of D, and let P be a S,-subgroup of &
containing 9,.
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First, assume D, centralizes 0,(®). In this case, 0,(D) is a S,-
subgroup of O, ,(®). By maximality of |D|,, D, is a S,-subgroup of
N(0,(2)). This implies that D, contains every element of .2z #;(P).
To see this, let Ae FZ 1;(P), and let A, =AND,. Since 0,(D) is
a S,-subgroup of 0,,,(D), it follows that AN D, < 0,(D). If A, were
a proper subgroup of A, then D, would be a proper subgroup of
Ny,(0,(D)). Since this is not possible, we have A = A,. But now,
Vieelg(A); D) < D, and by maximality of |D|,, D, =P follows, and
we are in the preceding case.

We can now assume that ®, does not centralize 0,(D). Suppose
D, contains some element B of .# (p). By Lemma 19.10, B centralizes
0,(D). Since D, does not centralize 0,(D), |0,(D)| > ¢, and so Lemma
19.11 is violated in C(Q), @ being a suitable element of 0,(). Thus,
we can suppose that D, does not contain any element of & (p). In
particular, ® N 2,(A) is of order 1 or p for all Ae A= _1;(p). Let
Bez(P), and D, = Cp(B). Since FZ #;(D) is non empty by
hypothesis, ®, is non cyclic. Let € be a subgroup of D, of type
(p, p). Since B L D, <€, B> is elementary of order at least p®. If
¢ does not centralize 0,(D), then there is an element E in &* such
that € does not centralize C(E) N 0,(D). But in this case, a S,
subgroup of C(Z) is larger than ©© in our ordering since B & C(F),
C(E) possesses an elementary subgroup of order p°, and a S,-subgroup
of a S, ,subgroup ¥ of C(E) is not normal in . This conflict forces
every subgroup of D, of type (p, p) to centralize 0,(D). Thus, 2,(D,) =
D* centralizes 0,(D), since D* is generated by its subgroups of type
(p, ). However, we now have N(D*) 2D, B,0,D)> and a S,
subgroup %, of N(D*) is larger than © in our ordering, possesses an
elementary subgroup of order p°, and has the additional property that
its S,-subgroups are not normal in &,. This conflict completes the
proof of this lemma.

Lemma 19.12 gives us a fairly good idea of the structure of the
p, g-subgroups of @. The remaining analysis is still somewhat detailed,
but the moves are more obvious.

For the remainder of this section, B denotes a S,-subgroup of G,
L2 a S,-subgroup of N(B), and L a S,-subgroup of & which contains Q.

LEMMA 19.13. S&° 1,;(R) s non empty.

Proof. We apply Hypothesis 19.2 (ii) and let © be a maximal
p, g-subgroup of & which contains elementary subgroups of order »?
and ¢®. By Lemma 19.12, ©, <1 D, D, being a S,-subgroup of D,
Since D is a maximal p, g-subgroup of &, D, is a S,-subgroup of ®,
0o O, = P¢ and the lemma follows.
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We now choose B in 7/(@) and set L, = Cy(B).

LEMMA 19.14.

(i) &1, 18 empty.

(ii) Q contains 2,(Z(Q)).

(iii) p» =1 (mod q).

(iv) QF contains an element Y which centralizes an element of
Z (B), and has the additional property that C,(Y) contains an
elementary subgroup of order @:.

(v) If XeQt and X centralizes an element of & (P), then X
.does not centralize any element of ?/(5,), and C(X) does mot contain
an elementary subgroup of order q'.

Proof. Let € be an elementary subgroup of {Q of order ¢° and
choose ¢ in Q, if possible. If B possesses a non cyclic characteristic
abelian subgroup €, then some element of & has a non cyclic fixed
point set on €. Since every subgroup of € of type (p, p) lies in
Z (P), (iv) is established in this case.

If every characteristic abelian subgroup of 9 is cyclic, then some
non cyclic subgroup &, of € centralizes Z(¥). Since any non cyclic
subgroup of P which contains 2,(Z(%)) is normal in B, by 3.5, some
element of &, centralizes an element of & (), so (iv) is proved.

If & £ Q,, then Lemma 19.11 is violated in C(E), E € &* E central-
izing an element of & (P). Hence, (i) is proved.

On the other hand, % #;(X) is non empty, so L), possesses a
subgroup ¥, of type (¢,q9). If » =1 (modg), then some element of
%. is seen to centralize an element of & (B). Since this is forbidden
by Lemma 19.11, (iii) follows.

We now turn attention to (v). In view of Lemma 19.11, we only
need to show that if X in QF centralizes an element of # (B), then
C(X) does not contain an elementary subgroup of order g¢*.

Let 2 be an element of & () centralized by X, let  be a S, -
subgroup of C(X) and let & be a maximal p, g-subgroup of ® containing
. By D,,in C(X), A, =A< H S R, for some G in C(X). Suppose
by way of contradiction that C(X) contains an elementary subgroup
of order ¢*. By D,, in C(X), $ contains an elementary subgroup of
order ¢*; thus, ® contains such a subgroup.

We first show that a S,-subgroup of & is not normal in & Suppose
false. In this case, since & is a maximal p, g-subgroup of &, a S,-
subgroup of f is conjugate to B, and so £ is conjugate to PU.
However, (i) implies that Q does not contain an elementary subgroup
of order ¢!, since |Q:Q,| = ¢q, so & does not contain one either.

We now apply Lemma 19.12 and conclude that & does not possess
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an elementary subgroup of order . It follows directly from Lemma
8.13 that ® has p-length one. Let &, be a S,-subgroup of & containing
A, and let B, = V(eelgx(A.); &,). By Lemma 19.10, B, centralizes O,(8).
Since & has p-length one, B, < & But then N(LB, = N contains S,-
subgroups of larger order than |f,|, and N also contains &, contrary
to the assumption that & is a maximal p, ¢g-subgroup of ®&. This
contradiction proves (v).

We now turn to (ii). Choose Y to satisfy (iv) and let € be an
elementary subgroup of Cp(Y) of order ¢*. If QI(Z(ﬁ)) = 2, were
not contained in &, then (€, 2,> would contain an elementary subgroup
of order ¢*, and (v) would be violated. This completes the proof of
this lemma.

We remark that Lemma 19.2 and Lemma 19.14 (ii) imply that
Z(Q) is cyclic.

Theorem 19.1 can now be proved fairly easily. We again denote
by & an elementary subgroup of ) of order ¢° and we let Y be an
element of &* which centralizes an element of % (). Let &, = Cx(B).
Since 2, = .Ql(Z(ﬁ)) centralizes B, 2, does not centralize any element
of (), by Lemma 19.2, and so does not centralize 8. Thus, we
can find an element E in ¢! with the property that 2, does not
centralize Cy(E). Consider € = C(E). We see that € contains both
Y and B. Since Y does not centralize B, {(Y,B) is a non abelian
group of order ¢, with center 2,. Let & be a S, ,subgroup of €
which contains (Y, B>; since £ contains B, L does not contain an
elementary subgroup of order p®. Since £, is contained in the derived
group of <Y, B>, 92, is contained in ¥. We apply Lemma 8.13 and
conclude that 2, centralizes every chief p-factor of L. It follows
that 7802 = (1) for suitably large %, and so £, S 0,(8). But now
if © is any S, ,subgroup of € which contains 2,, we have 2, & 0,(9),
by Lemma 7.5, and so [%2,, C;_B(E’)] is both a p-group and g¢-group, so
is (1D, contrary to construction. This completes the proof of Theorem
19.1.

COROLLARY 19.1. If p,qemUm, p + q, and p ~ q, then either
PET; Or qQET,.

Proof. If © satisfies E;',, then both p and ¢ are in 7,. Other-
wise, Hypothesis 19.2 is violated and the corollary follows.

20. An FE-theorem for 7,

Hypothesis 20.1 p,qem;, p # q, and p ~ q.
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THEOREM 20.1. Under Hypothesis 20.1, ® satisfies E,,.

The proof of this theorem is by contradiction. The following

lemmas assume that Hypothesis 20.1 is satisfied but ® does not satisfy
Ep,ql

LEMMA 20.1. If P is a S,-subgroup of ® and Q is a S,-subgroup
of ®, then either P normalizes but does not centralize some g-subgroup
of ®, or Q normalizes but does mot centralize some p-subgroup of ®.

Proof. This lemma is an immediate consequence of Hypothesis
20.1, Theorem 19.1, and the assumption that ® does not satisfy E,,.

We assume now that notation is chosen so that 3, a S,-subgroup
of ®, does not centralize Q,, a maximal element of U(P; q). Let Q*

be a S,-subgroup of N(X),) permutable with B, and let Q be a S,
subgroup of ® containing Q*.

LEMMA 20.2. O,(PR*) # (.

Proof. Suppose false. Let 2 be an element of %= _#;(Q). By
Lemma 7.9, we have A S 0,(PLQ*). We apply Lemma 17.4 and conclude
that N(Q,) & N(8), where 8 = Z(B), ¥ = V(cclx(A); L), and so &
satisfies E,,, contrary to assumption.

Let P, = 0,(PQ%).

LEmMMA 20.3. Q* is a S,-subgroup of every proper subgroup &
of @ which contains LB,Q*.

Proof. Let ¥ be a S, ,subgroup of & with Sylow system Q,, B,
where Q*S L, and P,= P, and let F(T) =T, x T,, where T, =0,(T),
T, = 0,(%).

We first show that ¥, & 93,. Suppose by way of contradiction
that T, NP, F,. Since O* and P, both normalize T, N P, and both
normalize ¥T,, setting T = Ng (T, NP,), we see that TXQ*P, is a
group, and that Q*YP, normalizes T¥. Let T*/Z, NP, be a chief factor
of THO*P, with T* = T¥. Since P, < PO, it follows that P, central-
izes T*/Z, NP, that is YT*P, = T, N B,. In particular T* normalizes
B,. Now PL* is a maximal p, g-subgroup of & by Lemma 7.3, so
L2* is a S,-subgroup of N(P,). A second application of Lemma 7.8
yields that 9B, is a S,-subgroup of 0,(N(P,)). But B,T* is normalized
by *, so a third application of Lemma 7.3 yields B,2* = 0,.(N(BY)),
so $* = 93, contrary to our choice of T*. Thus, T, & P..

We next show that T, & Q*. To do this, it suffices to show that
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P, centralizes ¥,, for if this is the case, then %, S C(P) S N(R),
and so T,Q* is a g-subgroup of N(P,). Since Q* is a S,-subgroup of
N(B), %, S Q* follows.

To show that P, centralizes T,, we first show that P, centralizes
Cq,(2y). By definition, Q* is a S,-subgroup of N(Q,), and since
LQ*Cq (L) is a g-subgroup of N(Q,), we have Cz(Q,) S O*. Hence,
[C:, (), BIS TN, RIS TN P, =<1). Suppose that P, does
not centralize ¥, and that T; is a P,Q-invariant subgroup of <,
minimal subject to the condition v%,P, # {1>. By minimality of I,
we have T, =T P,. Since T, is a ¢-group, 7T, T, and so
VEL P, = {1). Since YQ,P, = (1D, we also have 7*QB,Z; = <1>. The
three subgroups lemma now yields v*$,2,Q, = (1), so Q, centralizes
P, = ;. By what we have already shown this implies that P,
centralizes ¥,. This conflict forces v¥,T, = (1.

We next show that Q, & £,. To do this, consider C¢(T,) = € < Z.
Since T, & PB,, we see that Q, & €. On the other hand, Z(p,) central-
izes both ¥, and Z,, so Z(P,) S T,, by 3.3. Hence, € S Cx(Z(P)) =
C(Z(PB)) & N(Z(PB)). Since O, = 0,(PL*), Lemma 7.5 implies that
£, S 0,€) char € €, and so Q, & %.,.

Consider finally Cg(Z,). Since Q, S T,, we have C¢(T,) S C(T) S
C(X) & N(RX,). Since P, =0,(PQ*), Lemma 7.5 implies that
P, S 0,(C4(T,)) char Cx(T,) < T, and so P, = T,. Since we have
already shown that ¥, & P, we have T, =P, < Z, and so Q* is a
S,-subgroup of ¥, as required.

To prove Theorem 20.1 recall that Q is a S,-subgroup of ® con-
taining *. Choose U in %2 _145(Q), and let A* = AN Q*. We first
show that A* CA. Suppose by way of contradiction that UA* = A,
Then 2 normalizes PB,. Lemma 7.3 and the previous lemma imply
that B, is a maximal element of WU(; p). By Corollary 17.1, N($B,)
contains a S;-subgroup of ®, and ® satisfies E,,. Since we are
advancing by contradiction, we have UA* c 2.

We next show that A* N Q, = (1). To do this, we observe that
A*NQ, Q% 80 if A*NQ, # <1, then A*N QN ZEQ*) =<1). In
this case, however, C(UA* N O, N Z(Q*)) contains P, and also contains
LQ*A, contrary to the previous lemma. Thus, 2* N Q, = {1>. Since
A* and L, are both normal in Q*, we have YA*Q, = (1.

Let A, = Ny(Q*), so that A* A, & A.  Observe that vALQ* =
Q*NACY, and so OF normalizes A,. Let B be any subgroup of 2,
which contains 2* properly. Since [B, QUA*] S A*, we see that B
normalizes O,2* = Q, x A*. Since Q* normalizes B, O* also normal-
izes Cp (B) = D, say. If D £ 1), then DN Z(V*) # {1>. But then
the previous lemma is violated in C(® N Z(V*)). Hence, D = (.
Since C(2,) N QA* 2 A*, we have C(B) N QA* = A*,



20. AN E-THEOREM FOR s 869

’

Since B normalizes Q, x A*, B also normalizes (L, x A*) =
Since B has no fixed points on Qf by the above argument, L, is
abelian. But now Q,2* and B are normal abelian subgroups of {{;, B>,
so {Q,, B> is of class two, so is regular. It follows that if Be®,
Q €Q,, then [B, Q] = [B,Q] = [B,Q]*. But B is an arbitrary subgroup
of A, which contains A* properly, so we can choose B such that
J(B) =< A*. For such a B, the element B centralizes J'(X,). It now
follows that L, is elementary.

We take a different approach for an instant. 9 does not centralize
the elementary abelian group Q,, and N(XQ,) has no normal subgroup
of index p, by Lemma 17.3. It follows that L, is not of order gq.

Returning to the groups 2* and B, since B has no fixed points
on L, if BeB, B¢A*, then the mapping ¢5:Q, — A* defined by
$(Q) = [B, Q], @ in Q,, is an isomorphism of Q, onto a subgroup of
A*., Hence, A* is not cyclic.

From the definition of A*, we see that A* contains Z(X). We
wish to show that %* contains an element of 2/(Q). This is immediate
if Z(Q) is non cyclic, so suppose Z(X) is cyclic. If A* does not
.contain any element of 2/(Q), then the element B above can be taken
to lie in some element of Z/(Q). However, [Q, Bl € 2,(Z(X)), so ¢
could not map Q, onto a subgroup of order exceeding q. We conclude
that 2* contains Z (X)) and also some element of Z/(Q).

We will now show that for each element Z of Z(Q)*, we can find
-a p-subgroup H(Z) in UX; p) which is not centralized by Z. Namely,
A* is faithfully represented on P, since A* N Y, =) and A* is a
normal abelian subgroup of Q*. We first consider the case in which
Z(LQ) is non cyclic. Let & be a subgroup of Z({Q) of type (g, ¢) which
has non trivial intersection with {(Z>, that is let & contain 3, = 2,((Z)).
‘Since 8, acts non trivially on P,, 3, acts non trivially on Cg(E) for
suitable E in €%, Let € = C(F), and let R be a S,-subgroup of €
permutable with Q. It is easy to see that 3, does not centralize
‘0,(LR) e U, p).

If Z(Q) is eyclic, we use the fact that 2* contains an element
N of Z7(Q). We can find an element U in U such that 8, = 2,(Z(X))
does not centralize Cy (U). Let € = C(U). By (B), it follows that
1 S 0, 4C), and so [B,, C3(U)] S 0,(€). Thus, € contains an element
of UQL; p) which 8, does not centralize.

It now follows from Theorem 17.1 and the preceding argument
that if P is a maximal element of MU(Q; p), then Z(D,) is faithfully

represented on SB If SB is a S,-subgroup of N (EB) permutable with
£, then Lemma 20.2 is violated with » and ¢ interchanged. This
completes the proof of Theorem 20.1.
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21. A C*-theorem for 7, and a C-theorem for 7,

It is convenient to introduce another proposition which is “between’”
C, and D,.

Cr: X% satisfies C,, and if ¥ is a m-subgroup of ¥ with the
property that |T|, = |%X|, for at least one prime p in m, then ¥ is
contained in a S,-subgroup of %.

THEOREM 21.1 If p,qem; and p ~ q, then ® satisfies CxX,

Proof. We can suppose p # q. We first show that & satisfies
C,... By Theorem 20.1, ® satisfies E,,. Let  be a S, -subgroup
of @ with Sylow system P, Q, where P is a S,-subgroup of &. We
assume notation is chosen so that || > [Q|. Then 0,(9) # 1> by
Lemma 5.2. Lemma 7.3 implies that 0,(9) is a maximal element of
UK; p). If O, is another S, -subgroup of ® containing L, then 0,(D,)
is also a maximal element of U(Q; p). From Section 17 we conclude
that 0,(9,) = G7'0,(D)G for suitable G in &. Hence, GH,G* and
both normalize 0,(9) so are conjugate in N(0,(D)).

Turning to CJ,, we drop the hypothesis || > |Q|, and let
be a maximal p, g-subgroup of ® containing . Let  be a S, ,-subgroup
of & containing .

First, assume that O,%) # 1. In this case, 0,(%) is a maximal
element of U(B; q). If 0(D) # 1, then 0,(D) is also a maximal element.
of U(*B; ¢). Thus, Theorem 17.1 yields that  is conjugate to <.
(Here, as elsewhere, we are using the fact that every maximal element.
of U(B; ¢) is also a maximal element of U(; q) for all A in F=_+#5(P).)
Thus, suppose O,(9) = 1. In this case, if Ae = +;(P), then L LD,
B = V(eelx(A); B), by Lemma 17.5, so |G|, = |N(B):C(B)|,. But
N(0,%)) dominates LB, so | N(O(X)) |, > |®|,, which is absurd.

We can now suppose that 0,(¥) = 1. We apply Lemma 17.5 and
conclude that B < T, where T = V(eely(A); P), and A e F=Z 4;(P).
Let 2, be a S;-subgroup of £. Since ¥ is a maximal p, ¢g-subgroup
of @, &, is a S,-subgroup of N(DB).

Let © be a S, ,-subgroup of ® containing P and let Q be a S,-
subgroup of . Let Q, =0,9). If Q, =), then $ S N(B), by
Lemma 17.5, and we are done. Otherwise, $ = Ly Ny (B), again by
Lemma 17.5, and we assume without loss of generality that Ny(B) & Z.

Assume that Nu(B) N Q, # <1>. Then in particular, T N Q, # 1),
contrary to 0,(%) =<1>. Hence, Nu(B) N L, = 1.

We will now show directly that Ni(B) =T. Since Ny(B) & 2,
it suffices to show that |Ny(®B)|, = |Z],. Now N(Q) = 0,(N(Q)))-
(N(2) N N(B)), by Lemma 17.1, and since Ng(B) N O, = 1), it follows
easily that | Ny(B)l, = | N(Q,) N N(B) .
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Let N,= N(Z(B)). By Lemma 17.3 we have %, =0,(N)-(N(Q)NN).
Let M = N(Q) NN,. Since M contains P, 0,.(M) = 0,.(N,) N M. By
Lemma 17.5, we now have I = (0,.(N) N W) - (N(B) N W), which yields
N, =0,N) - (NEQ) N NB)). Now R, contains T and TN O, N) =
<{1), since 0,(%) =<1>. Thus, L, is mapped isomorphically into
9,0, (M) = (N(R) N N(B))/(0,(N) N N(L,) N N(B)), and it follows
that | N(Q)NN®) |, = || = |Z|,, as required.

Since Nﬁ(%) = %, it follows that T & 9, proving the theorem.

THEOREM 21.2. Let o be a subset of m,. Assume that © satisfies
E,, for all p, q in 0. Then & satisfies C,.

Proof. By the preceding theorem, we can assume that ¢ contains
at least three elements. By induction on |o|, we assume that &
satisfies C, for every proper subset 7 of o.

Let o ={p,, --+,p.}, n =3, and let 0, =0 — p;, ;=0 — p; — Dj,
1<%, j=mn, 1+ J. Let & be a S,-subgroup of G, 1 <7 <n. Then
the S, j-subgroups of &; are conjugate to the S, ,subgroups of S;.

For i # j, let m;; =|0,(3;)|. Note that by C,, m:; depends
only on ¢ and j and not on the particular S, -subgroup of & we choose.

Fix 4,4, k, %+ j + k # 1, let B; be a S, -subgroup of G, let S}
be a S, -subgroup of & containing P, and Sf be a S, -subgroup of
® containing P;, chosen so that & NS¢ is a S,, -subgroup of S
which is possible by C,,M, C.,J and C.,.

Let Bi; = 0,,(8)), Bu = 0,(S}). Suppose that P;; N P, = <.
With this assumption, we will show that m,; < m;.. We can assume
that 1 =1, j =2, k =8, that P, NP, =<1, and try to show that
My = My,

Let 513,, R, Ry, --+, R, be a Sylow system for SF NSF, and let
B, Ry, - o+, R, and P, R, R, - -+, R, be Sylow systems for Sy and SF
respectlvely Here R; is a S, subgroup of & 1 =2,

Since P, is the S, -subgroup of F(S}), the condltlon %l, n P =<
says that %3, is falthfully represented as automorphisms of F(&}). Now

F©:) =FCHNB.x FGHNR, x FSHNR, x -+ x FSHNR,,

where P, = F(S¥)NP,. Since P, and P,, are disjoint normal subgroups
of P, P, centralizes P,,. If 4 < s <n, then {(Pp,, FGH) NR,)> =9,
is clearly contained in &} N &f and so P, and F(SF) N R, are disjoint
normal subgroups of »,, and so commute elementwise. But P, is
faithfully represented as automorphisms of F(S}), so is faithfully
represented as automorphisms of F(&}) N R,. It follows from Lemma
5.2 that m,, < m,,.

Returning to the general situation, if 0,,(3;) N 0,,(S,) = {1,
whenever it # j# k+1, and S; NS, is a S,M-subgroup of @, then



872 SOLVABILITY OF GROUPS OF ODD ORDER

m;; = mj.. Permuting <, 5, k cyclically, we would have m;; < m;, <
my; < m;;. The integers m;;, mj, m,; being pairwise relatively prime,
we would find m,;; =1 for all 7+ 5. This is not possible since a
Ss,-subgroup of & is solvable.

Returning to the groups &} and &F, we suppose without loss of
generality that P, N Py = Dy # <1).  Since Dy & Piu < SF, Dy
commutes elementwise with Opi(@;‘). Similarly, D,,, commutes element-
wise with 0,,(87). Hence {,, 0,,(S}), 0,,(3})> = 2 is a proper sub-
group of & normalizing ®,,,, By Lemma 7 5, both 0, (&) and O, (S
are S-subgroups of O, (%); in particular, € has a normal pl-complement
Since £ has a normal pl-complement we can find an element C in Co(P)
such that 0,(S}) is permutable with C-'0, (S¥)C. For such an
element C, let M = €0,,(y), C~0,,(S})C).

We will now show dlrectly that for each ¢ in g, N(IN) contains
a S;subgroup of ®&. This is trivially true if M = (1), so suppose
that M = <1). Let M, ---, M, be a Sylow system for M which is
normalized by %,, where I, is an S,,-subgroup of M, ¢ =2, -

We remark that by C; ,,, each M; is a maximal element of H(iﬁ, p,)

Let [ | = p% and let |®|,, = p/i. By Lemma 17.5 and C},,, we
see that pfi—% =|N(B):C(B) |,,‘, where B = V(ccly(A); P), B =B,
and A e &L A (P).

Let N, = N(Z(B)). Let € be a coset of 0,(N) in N,. Then €
contains an element N of N(B) by Lemma 17.5. Hence, ¥ ™' = MY,
t=2,..-,m where C,---,C, all lie in C(N). Let & = (P, M,,- --,M,,
Cy, +--,C,)>. Since Dy, N Z(P,) #+ 1, and since & centralizes Dy, N Z(B)),
we have 8 ®. Let = 0,(R) (»p = p,) so that P = & by Lemmas
7.3 and 7.4. Hence, & contains both M and M* ', and since B
normalizes M, A normalizes both M and M*~". By C},,1 =2, ---, n,
IR is a S-subgroup of €. By the conjugacy of Sylow systems in AL,
there is an element C in LA such that A = A, WM = M¥, Since
LA has a normal p-complement, Ce CQ) < 0,(N,), so € contains
CNe N(I).

Thus, if T =N, N NE), we have N, = 0, (N)T. Since PS I,
we have 0,(%) = TN 0,(N,). Hence T = 0,.(T)Nx(B) by Lemma 17.5,
so that 2, = 0, (N,)Ng(B). Thus N4(B) maps onto N(B)/C(B). Since
Nz(B) N M centralizes B, it follows that |IT: TN, = plis,
1=2,++-,n. Hence |TM|, = |G|, as required.

If now M = (), then N(M) G and so G satisfies E..

We now treat the possibility that I = (1>. In this case, both
F(By) and F(PF) are p-groups. By (B), both groups contain %. By
Lemma 17.4, both P} and P¥ are contained in N(Z(B)), so once again
O satisfies E,.

It remains to prove C,, given E, and C. for every proper subset
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7 of o.

Let © and 9, be two S,-subgroups of & with Sylow systems
B, --+, B, and Q,, - -+, Q, respectively, P, and Q, being S,,-subgroups
of G, 1 1= n.

If F(9) and F(9,) are p,-groups, we apply Lemma 17.4 and conclude
that © and D, are conjugate in N(Z(DB)), where B = V(ccly(); By,
A e 2. 4;(P) and we have normalized by taking P, = Q.

If F(D) is a p-group, then C, ,, fori=2,:--,m imply that F(9,)
is a p-group. Thus, we can assume that neither F(9) nor F(9, is
a p-group for any prime .

Let m; = |0,(D) |, mi=[0,(D) |, 1 =1 =n. For each 7, we can
choose G; in ® so that Q¥ =P;, 1 <5=n, 1#Jj. Let K, = OF,
i=1,.--,m, so that § N &; contains a S, -subgroup of ©.

Suppose 0, (8:) N 0,,(9) = {1> for some i, j, © # j. Then 0, (&)
is faithfully represented on F(9), since O, J(R;) < . But in this case,
0,,(R;) centralizes O, (%) and also centralizes 0, (D) for k + 1. Hence,
O,,J(R,-) is faithfully represented on 0,(9), and so mj; = m; by Lemma
5.2. For the same reasons, m; < mi, since 0,,,({‘9) is faithfully repre-
sented on F(®;,). If forall i,j,1<4,5=<n,1#7J, 0,(R)NO0, (D) =
(1), we find m} < m; < m}, and so mj =m; =1. This is not possible
since  and 9, are solvable.

Hence, we assume without loss of generality that Dy =
0,(R:) N 0,(D) # <1). We will now show that 0,(R,) is conjugate to
0,,{(-?9). To see this, we first apply Lemma 7.4 and C, ,, to conclude
that 0,(&.) and 0,,(9) have the same order. Since D,, centralizes
both 0,/(R,) and 0,(9), it follows that 8 = (%P, 0,(&,), 0,(9)y C 6.
By Lemma 7.4, it follows that <0,,(8&.), 0,(D)) S 0,,(D). By Theorem
17.1 and C;, ,,, 0,(®,) and 0,(9) are S-subgroups of 0,,(&), so are
conjugate in 8, being of the same order. Since 0,(9) # <1, Co
follows immediately.

22. Linking Theorems

One of the purposes of this section is to clarify the relationship
between 7, and =,.

Hypothesis 22.1.
(i) pem, gen(®).
(ii) A S,-subgroup P of & does not centralize every element of

U(B; 9).

THEOREM 22.1. Under Hypothesis 22.1, if L, is a mawximal
element of U(P; q) and Q is an element of Q. of order g, then Cp,(Q)
contains an elementary subgroup of order ¢°. In particular, g €T, UT,.
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Proof. Choose € char Q, in accordance with Lemma 8.2, and set
€, = 2(C). From 3.6 and Lemma 8.2, it follows that ® does not
centralize €,. Since ¢l(€) < 2, €, is of exponent gq.

Since N(€,) 2 N(Q,), Lemma 17.3 implies that 0*(N(€,)) = N(C)).
Since N(€,) has odd order, this in turn implies that €, is not generated
by two elements. Consider the chain #:€,27€,Q, 2 v, 2 -.-.
Since P does not centralize €, P does not stabilize &, so we can
find an integer » and subgroups ¥,, U, such that v**EQ+' < A, <
A S € Q7 and such that B = A, A, is a chief factor of N (X,) and
with the additional property that B does not centralize B. Since
NR®,) = 0°(N(Q,), we also have RN =0°N), where N =
(N(B) N NQW))/(C(B) N N(Qy)). Since | N(Q,)| is odd it follows that
|B| = ¢*. Since YA,Q, S U, it follows that | Co, (@] = ¢ If Cr(Q)
did not contain an elementary subgroup of order ¢, then we would
necessarily have Q € %, since 2, is of exponent q. Since |Cy, Q)| = ¢,
the only possibility is that C),(Q) is the non abelian group of order
¢* and exponent ¢. But in this case Qe Cy,(Q) S Z(C,), and Cp(Q)
contains an elementary subgroup of order ¢° since Q, does, by Lemma
8.13, Lemma 8.1, and the equation N(Q,) = 0*(N(Q,)).

Hypothesis 22.2.

(i) B i8 a S,-subgroup of & and pe ..

() q, rem,Un,; P does not centralize every element of UL; q)
and P does mot centralize every element of U(B; 7).

THEOREM 22.2. Under Hypothesis 22.2, q ~ r.

The proof of this theorem is by contradiction. The following
lemmas assume that q +~ r.

Since Hypothesis 22.2 is symmetric in ¢ and r we can assume
that ¢ > r, thereby destroying the symmetry.

Let A e & 45(P). Let Q,, R, be maximal elements in U(P; q),
U(B; r) respectively.

LEmmA 22.1. If © is an U-invariant q, r-subgroup of &, and
if a Si-subgroup D, of O is non cyclic, then 9, < 9.

Proof. Let 9, be a S,-subgroup of  normalized by . Since
q * r, either FSZ 15(9,) or FZN(D,) is empty. If & 4:(D,)
is empty, application of Lemma 8.5 to $ yields this lemma.

Suppose S Z.45(9,) is non empty. Then FZ 449, is empty,
so © has g-length one. Thus, it suffices to show that O, centralizes
O0.(9). We suppose without loss of generality that ¥ normalizes 9,.
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Then by Corollary 17.2 9, is contained in a conjugate of L, so C(H)
possesses an elementary subgroup of order ¢ for H in ,, H of order
q, by Theorem 22.1. We will show that 2,(9,) centralizes 0,(9). Since
9, is assumed non cyclic, 2,(9,) is generated by its subgroups & which
are elementary of order ¢? so it suffices to show that each such €
centralizes 0,.(9). If & does not centralize 0,(9), then & does not
centralize 0.9) N C(E) for suitable E in G*. By Lemma 8.4,
FZN5(0.(D) N C(E)) is non empty for such an E, so g + r is violated
in C(E).

Since 2,(9,) centralizes 0,.(9), it follows that & 7; (0.(9)) is
empty, since q¢+ r. Hence, 9, centralizes 0,(9) by Lemma 8.4, as
required.

We define .9 as the set of ¢, r-subgroups of U(A) which have
the additional property that no S,- or S,-subgroup is centralized by A,

LEMMA 22.2. 9 18 non empty.

Proof. Suppose that vQ,A = {1>. If we also had YRA = 1),
then q ~ r would be violated in C(X). Hence, YRA # <{1), and we
can find R, S R,, R, # 1), such that R, = YR, A and such that A, =
Cy(R,) = 1). Consider C) 2<Y, Q,, R,y =28. By Lemma 17.6,
A 20, ,(2) and it follows readily that & possesses a normal comple-
ment , to A. We can then find C in Cg(¥) such that $ =<0, R
is a q, r-group. By Lemma 22.1 and the fact that Q, is a maximal
element of U(Y; q), we have Q, <{H. But now R{ S N(Q,) = 0°(N(R)).
Since ¢ + r, if &, is a S,-subgroup of N(LQ,), then F&F 4;(S,) is
empty. By Lemma 8.13 N(Q,) centralizes every chief r-factor of
N(Q,). It follows that U centralizes R?, contrary to construction, so
we can assume that vQ,% # {1.

Suppose YR, A = {1>. Since A possesses an elementary subgroup
of order »°, we can find A in A such that Cp(A4) is non cyclic.
Consider C(4) 2 <Y, C5(A4), ®,>. By Lemma 17.6 we can assume that
$=<{Cy(A),R)> is a q,r-group. Then Lemma 22.1 implies that
S, < D, &, being a S,-subgroup of . Enlarge $ to &, a maximal
A-invariant ¢, r-subgroup with Sylow system &, R,. Lemma 17.6,
Lemma 22.1 and maximality of & imply that £, is a maximal element
of U(X; q), contrary to q + r.

We can now assume that vQ% # {1> and YRA = {1).

Let Q, be an U-invariant subgroup of Q, of minimal order subject
to 7YQ.A # (1). Let R, be an A-invariant subgroup of R, of minimal
order subject to YRA # {1)>. Let A = ker(A—AutQ,), A, =
ker (A — Aut R,). Since A acts irreducibly on Q,/D(Q,) and on R,/D(R,),
it follows that /%, is cyclic, 2 = 1, 2. Since A€ F&Z 4:(P), L, N A, =
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Ay #= <1). An U-invariant S, ,-subgroup of <2, Q,, R,> = C(,) satisfies
the conditions defining 2", by Lemma 17.6 and D, ,, in {2, Q,, R).

Let & be a maximal element of 9%, with Sylow system &,, &,,
chosen so that 2 normalizes both & and &,, & being a S,-subgroup
of 8.

LEMMA 22.3. 8, is cyclic and O (8&) = {L.

Proof. Suppose &, is non cyclic. Then Lemma 22.1 yields £, < &.
The maximal nature of £, together with Lemma 17.6, imply that
£, is a maximal element of U(X; q), so is conjugate to Q..

By Lemma 17.3, N(&,) = N = 0°(N). Since g+ r, N(®, does
not possess an elementary subgroup of order »:. Now RN = 0?(N) and
Lemma 8.13 imply that v&,% = {1), contrary to construction. Hence,
K, is cyeclic.

If 0,8) # <{1), then 2,(0,(R)) = 2,(8,) < & The maximal nature
of & now conflicts with Lemma 17.6 and Theorem 22.1 proving this
lemma.

We choose C in C(X) so that & & R,; since &’ is also a maximal
element of 977, we assume without loss of generality that &, & R,.

LEMMA 224,

(i) R, i1s non abelian.

(ii) No mon identity weakly closed subgroup of K, 18 contained
m 0,(8R).

(iii) O,.(R) contains an element of Z/(R), R being any S,-subgroup
of & containing a S,-subgroup R* of N(R).

Proof. We first prove (ii). Suppose T # (1), ¥ is weakly closed
in 8, and T =S 0,(8&). Then T < &, so the maximal nature of &
together with Lemma 17.6 imply that &, = R,.

Since N(R,) = 0°(N(R)), so also N(T) = 0°(N(X)). Since q + r,
Lemma 8.13 implies YA&, = (1), contrary to construction, proving (ii).

If &, were abelian, then 0,(8) =<1)> and Lemma 1.2.3 of [21]
imply that &, = 0,(f), in violation of (ii). This proves (i).

Suppose r € ;. In this case, C), implies R* =R, and since R{~{1,
it is clear that R, contains an element U of Z/(R). Since R, =
N(@O.(8)) N R, it follows that U N Z(R) S K, and so by (B), UNZ(R) S
0,(8). It now follows that U & &,, and so U & 0,(R), again by (B).
Next, suppose that rem,. In this case, since R # {1), R* contains
an element B of Z(R), R* being a S,-subgroup of N(R;). Since B
centralizes O,(PR*), by Lemma 19.1, we have B S R,. Since B & R,,
BNZNR)ES K, and so by (B), BNZR) = 0.(R). It follows that
B < 0,(R). This proves (iii).
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To prove Theorem 22.2 we will now show that &, centralizes
Z(0,(8) = B. Suppose by way of contradiction that this is not the
case. We can choose € € Z/(r) such that € = &, but € £ 0.(R). Since
K, is cyclic €, =€ N O(R) is of order r. From (B), we then have
v 18C 1 = ().

If »r =5, we apply Lemma 16.2 and conclude that *3€* = {1),
contrary to the above statement. Hence » = 3, and by Lemma 16.3
we have 7*3€* = €,; in particular, €, & 3. Now apply Lemma 16.3
again, this time with O,&) in the role of %, and conclude that
T'0,(])C* = €,.

Let ¥ = v0,(®)8,. By Lemma 8.11, we have ¥ =vI®, and so
€, € 2(Z(%)). Hence by (B), &, acts trivially on T/2,(Z(¥)), and this
implies that T = 2,(Z(%)), so that ¥ is elementary.

The equality v’2C€* = €, and (B) imply that an element of € — €,
induces an automorphism of ¥ with matrix J;. Since |&,| divides 3°—1,
we have |&,| = 13.

By definition of .2~ we have p/12 = | Aut &;|. Since p # r =3,
we have a contradiction, completing the proof that &, centralizes 3
in all cases.

Now Z(R, centralizes 0,(R), so by maximality of &, we have
Z(R)ESK, and (B) implies that Z(R,)=Z(0.(8)). Hence, R&N(Z(R,))=
N,.. But N, = 0°(N)) and since q¢ # r, N, does not possess an elementary
subgroup of order ¢>. Lemma 8.13 implies that 7&2 = {1), contrary
to construction, completing the proof of Theorem 22.2.

For p in m,Um, let %2 (p) be the set of all subgroups W of &
of type (p, p) such that every element W of I8 centralizes an element
B of Z7(p). We allow B to depend on W.

Hypothesis 22.3.
(i) pem, qgen(®).
(i) p+4q.

THEOREM 22.3. Under Hypothesis 22.3, if & is a p, g-subgroup
of & and if & contains an element of 7 (p), then a S,-subgroup of
K& 18 normal in K.

Proof. Let .9 be the set of subgroups of & satisfying the
hypotheses but not the conclusion of this theorem and let .94 be the
subset of all & in .2~ which contain at least one element of Z/(p).

We first show that .9 is empty. Suppose false and & in 7 is
chosen to maximize |®|,. Let &, be a S,-subgroup of &, and let
B = V(ccly(B); K,) where Be Z (p) and B & K,.

Since p « q, Hypothesis 22.1 does not hold. Hence, Hypothesis
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19.1 holds. Apply Lemma 19.1 and conclude that %L centralizes O,(R).

Suppose £, is a S,-subgroup of &. Then &, centralizes O,(R).
By Lemma 17.5 and Hypothesis 22.3 (i), if A e .F=_+;(8K,), and B, =
V(celg(A); 8,), then B, S 0,,,(R). Since &, centralizes O,(R), it follows
that B,=0,(8), and so ¥, <{®. By Lemma 17.2, N(Z(8,)=0*(N(Z(B)))).
Since » + q, N(Z(8B,) does not possess an elementary subgroup of
order ¢° so Lemma 8.13 implies that 8, < &, contrary to the definition
of .24{. Hence, in showing that .%{ is empty, we can suppose that
&, is not a S,-subgroup of ®.

Since V centralizes 0,(®), we have &, 0,(8) S N(LB). Since B is
weakly closed in 8, and £, is not a S,-subgroup of &, &, is not a
S,-subgoup of N(8B). Maximality of ||, implies that &, < &, - O,(R),
and so 0,(R) is a S,-subgroup of O, ,(!).

Let 9 be a S,-subgroup of @ containing &,, and let A € A& _4;(P).
Since O0,(8) is a S,-subgroup of 0, ,(8), it follows from (B) that
ANK, =ANO0,(R). By maximality of |R],, &, is a S,-subgroup of
N(0,(R)) and it follows readily that A = 0,(8). But in this case,
B, = V(celx(A); 8,) < &, by Lemma 17.5. Since &, is not a S,-subgroup
of @, it is not a S,-subgroup of N(%;), and the maximality of &, is
violated in a S, ,subgroup of N(%,). This contradiction shows that
% is empty.

Now let & be in % with | 8 |, maximal. Let ®ES &,, T € 7 (p).
If YB0,(R) # {1), then T does not centralize C(W) N 0,(R) for suitable
W in T*. But in this case a S, ,-subgroup of C(W) contains an
element of Z7(p) and also contains non normal S,-subgroups, and .2
is non empty. Since this is not the case, T centralizes 0, (&), and
so W, = V(ecly(W); K,) centralizes O,(R), W being an arbitrary element
of 277 (p) contained in &,. Since &, is not a S,-subgroup of ®, it is
not a S,-subgroup of N(LW,), so maximality of |&|, implies that &,
centralizes O,(8). Hence, 0,(8) is a S,-subgroup of 0, .(8). Since
K, is a S,-subgroup of N(O,(8)) in this case, Z(P) < 0,(R) for every
S,-subgroup P of @ which contains ,. It follows that &, contains
an element of %/(p). This contradiction completes the proof of this
theorem.

If pen,Um, we define m(p) to be the set of primes ¢ such that
p ~ q, and we set T(p) = m(p) N 7,

THEOREM 22.4. If p,qem and p ~ q, then my(p) = m\(q).

Proof. We only need to show that if »em, and p~ r, then r ~q.
Apply Theorem 21.1, let & be a S, ,-subgroup of @ with Sylow
system PR, Q, and let € be a S, ,-subgroup of & with Sylow system

B, R.
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If Hypothesis 22.2 is satisfied, Theorem 22.2 applies and yields
this theorem. Hence, we suppose without loss of generality that
centralizes O,(8R).

Let Ae FZA5(P), B = V(celg(N); P). Apply Lemma 17.5 and
conclude that L < R.

If B also centralizes 0,(2), then we also have L &, and ¢~ »r
follows from consideration of N(L). We can suppose that P does not
centralize 0,(2).

. Suppose we are able to show that N(0,(8)) contains a S,-subgroup

of C(B). Apply Lemma 17.3 and conclude that N(Z(L)) =N, =
0, (N) - N, NN, where N = N(O(2)). Let Q, be a S;-subgroup of C(P)
which is contained in M. Since P centralizes 0,(R), it follows that
L, is a S;-subgroup of 0,.(N,). Let N¥ be a S,-subgroup of 0,.(N,),
so that 0,.(RN) = NFQ,. Hence,

m1=0p'(m1)'m1n%=mf&'m1nm=g}:'m1nm;

since Q, &E N, NN. Since N, contains a S,-subgroup of &, so does
N NN. But N contains a S,-subgroup of & as well, and so ¢ ~ 7.

Thus, in proving this theorem, it suffices to show that N(0.(2))
contains a S,-subgroup of C(P).

We wish to show first that some element 4 of A* centralizes a
subgroup T of 977 (r) with B & 0.(2). If D(0,(?)) = D is non cyelic,
then every subgroup of D of type (7, 7r) is in 97 (r) and since U
possesses an elementary subgroup of order p% an element A is available.
Suppose then that D is eyclic. If © = (1), then of course P centralizes
D. If D+ Q), then N(D) = 0°(N(D)) and once again P centralizes
D. It now follows that A* contains an element A whose fixed-point
set on 2,(0,(2))/2,(D) is non cyclic, and this implies that C(X) N 0,()
contains an element of <7 (r).

For such an element 4, let  be a S, ,-subgroup of 0,.(C(4)) which
is A-invariant and contains O,(R). Then Lemma 17.5 implies that O
contains an element of 97°(r). Apply Theorem 22.3 and conclude that
9, <19, O, being a S,-subgroup of . If H* is a maximal element
of U, q, r) containing 9, then Theorem 22.8 implies that $* < H*,
9F being a S,-subgroup of $*. By maximality of D*, ¥ is a maximal
element of U(; r). Since O contains a maximal element of U, q),
namely, O,(8), so does $*. It follows that N(0,(2)) contains a maximal
element O* of U(P*; q¢) where P* is a suitable S,-subgroup of N(0,(R)).
But P = N(0,(2)), and so P = P** for some N in N(0.(8)), and so
Q*¥ =0, is a maximal element of WU(PB; ¢) normalizing 0,(2). By
Lemma 17.4, Q, is a maximal element of U(; q).

Now 9 centralizes O,(8f), and O,(R) is a maximal element of U(; q).
It follows that N(0,R))/C(O(8)) is a p'-group. Since N, and O, (K)
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are conjugate by Theorem 17.1, it follows that N(Q,)/C(Q,) is a p'-
group, and so P centralizes Q,. By Cy,, it follows that Q, is a S,-
subgroup of C(%3), completing the proof of this theorem.

THEOREM 22.5. If pem, then & satisfies C. ).

Proof. By Theorem 22.4, if q, r € my(p), then ¢ ~ r. By Theorem
20.1, O satisfies E, , for q, r € my(p). By Theorem 21.2, G satisfies Cryime

Hypothesis 22.4.

(i) pem, qem,Um,.

i) If P is a S,-subgroup of O, them P contains a normal
subgroup € of type (p, p) which centralizes at least one maximal
element of U(Y; q).

LEmMMA 22.5. Under Hypothesis 22.4, € centralizes every element
of U(E; q).

Proof. Suppose false and £ is an element of WU(C; q¢) minimal
with respect to YQ€ # (1). Then Q =¥Q€ and €, = Cx(Q) + {1).
Let © = C(G,). Then 9 contains an element A of & _+;(P) with
¢ <= A. By Lemma 17.5, A € 0,. (), and so Q = vQF is contained
in 0,(9). If Q* is an U-invariant S,-subgroup of 0,.(9), it follows
readily that vQ*€ = 1), If 9 is a maximal element of U, q)
containing O*, then € does not centralize Q. Let 2, be a maximal
element of U(P; q) centralizing €. Since L, is also a maximal element
of U(; q), we have Q, = L7 for suitable C in CR) = C(C). Since ¢
does not centralize 75, &7 = € does not centralize Q,. This contradiction
completes the proof of this lemma.

The next theorem is fairly delicate and brings 7, into play ex-
plicitly for the first time.

Hypothesis 22.5,
(i) pem, genm,
i) »~aq.

THEOREM 22.6. Under Hypothesis 22.5, if L is a S,-subgroup
of 8 and L, is a maximal element of W(P;q), then O, + 1D, If
L, 18 a S;-subgroup of N(L,) permutable with B and O, is a S,
subgroup of & containing L, them L, contains every element of
SGE " (Q,). Furthermore, 0,(PLQ,) = (1.

Proof. By Theorem 19.1, P does not centralize Q,, so in particular

Q, = <.
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Suppose that Q, contains an element B of #/(Q;). By Lemma
19.1, B centralizes 0,(PL,) and since B is a normal abelian subgroup
of 2, (B) implies that B S 0,(PLY,). Let A be an element of
GFE N5(L,) containing B, Let O = N(B) 2 <L, 0,(BPL,)). Since
qET, 0,9) =), and (B) implies that A = 0,(9H). Hence,
[A N Dy, 0,(BL)] S 04(D) NOL(PL) = A), and by (B), ANQ, &
0, (PR,), and so AN Q, S 0,(PL,), that is, AN, =ANQ,. If
AN, A, then AN LD, C Ny(Qy), contrary to Ny(Q)SANQ, =
ANLY,. Hence, A S Q,. Since gem, Corollary 17.3 implies that
NUA; p) is trivial, so 0,(BPY,) = {1>. By Lemma 7.9, it follows that
L, contains every element of 7. _4"(Q,), and not merely 2. This
proves the theorem in this case.

We can now assume that Q, does not contain any element of
77(L,), and try to derive a contradiction.

Since L, is a S,-subgroup of the normalizer of every non identity
normal subgroup of PQ,, if D(Q,) # <1>, then Np(D(L,)) contains an
-element of Z/(X,), and since Np (D(L,)) = L, in this case, Q, contains
an element of Z/(Q,), contrary to assumption. Hence, D(Q,) = {1.

Let QF = 0, (PQy) N Q,. Since [Qf, Q)] = [0, (PL), L] < PQ,,
and since every element of 7/(Q;) normalizes [QF, Q,], we conclude
that ©, & Z(Qf). Since D(Q}) N Y, is normalized by every element
of Z/(Q,) and also by <0,(PL,), P N N = P, we have
D) N, =A>. This implies that QFf = Q, x § for a suitable
:subgroup ¥ of QfF.

Since Z(Q,) & Q,, we have Z(Q,) & Qf, by (B). Since Q, contains
no element of 7/(Q,), Z(X,) is cyclic. For the same reason, Z(Q,)NQ,=
<1), since otherwise, 2,(Z(Q;) & L, and every element of Z/(Qy)
normalizes {Q,. In particular, Q, is a proper subgroup of QF. This
implies that 0,(PYQ,) # <1)>. More exactly, Q, = Co*(0,(PL)).

Let B e /() and let O, = € (B), so that [O,: Q] = g.

Suppose 0,(PL,) is non cyclic. In this case, a basic property of
p-groups implies that 0,(PL),) contains a subgroup € of type (p, p)
which is normal in 8. Since L, is a maximal element of WU(DP; q),
Hypothesis 22.4 is satisfied. Since 9, is of index ¢ in Q,, Theorem
22.1 implies that Q #+ {1>. Hence, (B, ) is a proper subgroup of
® centralizing £,. Choose B, € cely(B) and €, € ccly(€) so that & =
<{%B,, > is minimal. By D,, in &, it follows that & is a p, g-group.
By Lemma 19.1, BE centralizes 0,(f) and by Lemma 22.5, E® centralizes
0,R). It follows that & = B, x €,. Let " = N(B,). Since g ex,, F(N)
is a g-group. By Lemma 22.5, €, centralizes F(NR) so 3.3 is violated.
'This contradiction shows that 0,(PBL,) is cyclic.

Since Q, = Cp*(0,(PLYy)), it follows that F is cyclic of an order
dividing p — 1.
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Let B = 2,(0F) = O, X 2«(F), and let H, = Npp (B). We see that
PQ, = D10,(PQ,), D1 N 0,(PL,) = <1). Let M = N(B), T, = C(B). It
is clear that I, N PO, = QF, since M, N 0,(PL,) = {1), and since Qf
is a S;-subgroup of O, ,(PL).

Let € = 0,(M mod M,). We see that & N P, = QF, again since
QfF is a S;subgroup of 0, ,(PL,). We observe that since L} contains
Z(Qy), M contains every element of %/ (L), and so contains B. By
Lemma 7.1, € contains B. Hence, D> M.

We next show that /M, = L is elementary. If D(R) # (1), then
by a basic property of g-groups, C%(D(E)) is of order at least ¢’.
Hence, O, = Ca(D®) N Q, # <1>. But in this case, Q, is normalized
by <0,(PL), ) = PL,, and is centralized by D (8 mod M,), and so
L, is not a S,-subgroup of N(Q,). This is not possible, so D(R) = {1.
We have in fact shown that if £ < I, and W, C &, & &, then Cx(L)
is of order q.

Since £ is abelian, £ normalizes [B,B] = 2(Z(Qy)). It follows
that Cg(R) = 2,(Z(Q,)).

Let &, = (8™, M, and let B, = B¥, MeM. Since B and B,
are conjugate in M, [B,B,] is of order ¢ and is centralized by 8. It
follows that [®, B,] = 2,(Z(Q,). Since 2 is abelian, and since BX
covers &,/M, = §1, it follows that [L, ] = 2,(Z(;)). Let |Q,| = ¢*,
and |%,:IM,| = q™. Since each element of 2! determines a non trivial
homomorphism of LB/2,(Z(X;)) into 2,(Z (L)), it follows that m < n.
Since Cx(L) = 2.(Z(Xy)), it also follows that m = n. Hence, m = n.
This implies that €, = &, since any g-element of Aut ¥ which centralizes
g is in ¥, by 8.10. Here we are invoking the well known fact that
€, is normal in a S,-subgroup Q of Aut® and is in fact in A&+ (Q).
(This appeal to the “enormous” group Aut ¥ is somewhat curious.)

Returning to &, let B* be a S,-subgroup of &, and let W = 2,(B*).
Since JY(BV*) & Z(BV*), and Z(B*) is cyclic, it is easy to see that
Q(Z(W)) = 2(Z(Q,)), and that W/2(Z(W)) is abelian. Hence, W is
an extra special group of order ¢***!' and exponent q.

We next show that I, is a p’-group. Since W, = C(L), it suffices
to show that no non identity p-element of N(Q,) centralizes ¥L. This
is clear by D,, in N(Q,), together with the fact that no non identity
p-element of P, centralizes B.

Since M, is a p’-group, so is &. Since L WM, we assume with-
out loss of generality that Ng(®¥) normalizes T*.

Let € € & _1;(PB), and set €, =€ n N$(%). Since P =
0,(PLy) - Np(B) and 0,(PL,) is cyclic, €, is non cyclic. Since €, is
faithfully represented on %, it is faithfully represented on I = 2,(B*).
Since p > q, €, centralizes 2,(Z()).
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We can now choose C in €} so that €, does not centralize B, =
Cx(C). Let B, = [, €]. We will show that %8, is non abelian.
To do this, we first show that T is extra special. Let We W, —
Q(Z(®)). Since C centralizes W, C normalizes Cg(W). Since p > g,
C acts trivially on T/Cx(W), and so C centralizes some element of
B — Cx(W). It follows that Z(W,) = Z(W), so that W, is extra
special. We can now find T, & B, so that %, = W, T, and [, N W, &
Z(); in fact, we take T = Cg (). By the argument just given,
R, is extra special. Since T, is, too, it follows that 28, is extra special,
hence is non abelian. _

For such an element C, let £ = C(C) 2 <€, ®,>. By Lemma 17.5,
€ <0, ,Z). Since W, =[T,, €], by Lemma 8.11, it follows that
®, < 0,(3). It follows now that U(E; q) contains a non abelian group.
But now Theorem 17.1 implies that the maximal elements of U; q)
are non abelian. Since L, is a maximal element of U@; q) and L,
is elementary, we have a contradiction, completing the proof of this
theorem.

TaeoreM 22.7. If p, qem, and p ~ q, then m(p) = 7(q).

Proof. Suppose p ~ r. By Theorem 22.4, we can suppose that
rem, Proceeding by way of contradiction, we can assume that a
S,-subgroup O of ®& centralizes every element of U(Q; r), by Theorem
92.1. By Theorem 19.1, a S,-subgroup * of & does hot centralize
every element of U(%P;r). Applying Theorem 22.2, we can suppose
that P centralizes every element of U(B; ).

Let O, be a maximal element of WU(%B; q) and let R, be a maximal
element of U(P; r). Let R, be a S,-subgroup of N(R,) permutable with
P and let R, be a S,-subgroup of @ containing R,. Let A e FZ4;(B).
By Theorem 22.6, O,(PR,) = <1>, so A does not centralize R,. We
can then find A in 2* such that R = [Cy (4), Al # .

Suppose L, is non cyclic. Then by C7,, £, contains an element
of 7(g). Let ©=CA) 2, R, Q> =7, and let & be an A-
invariant S, ,-subgroup of 0,.(¥) with Sylow system !,, Q,. By Theorem
22.3, Q, 4 & Since N(Q,) = 0°(N(LY)), it follows that AR, = O
by Lemma 8.11 and the fact that N(Q,) does not contain an elementary
subgroup of order r°. This violates the fact that R} = YRUA = D,
by D,, in ©. Hence, Q, is cyelic.

Since YQP = <15, B, = 0,(PQ,) # (1), where O, is a S,-subgroup
of & permutable with P and containing Q,, which exists by C;.,.
Since N(B,) = O(N(R)), it follows that O, & Z(Q,), L, being a S,
subgroup of O,(N(Py)).

Let 8 = V(cclg(); P), and N, = N(Z(B)). By Lemma 17.3, N, =
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0, (N) - N, N NR,). Since Q, is a S,~subgroup of 0,.(N,), it follows
readily that M, N N(R,) contains an element of %7 (¢). In particular,
N(R,) contains an element of 9%77(q). If f is a S,,-subgroup of N(R,)
with Sylow system &, &,, then &, < 8, by Theorem 22.3. By Theorem
22.6, R, contains an element € of & _#;(R,). By Corollary 17.3,
U(€) is trivial. Since £, eWU(C), we have a contradiction, completing
the proof of this theorem.

23. Preliminary Results about the Maximal Subgroups of ®

Hypothesis 23.1.
(i) w t8 a mon empty subset of =,.
(il) For at least one p in w, w = n(p).

We remark that by Theorem 22.7, Hypothesis 23.1 (ii) is equivalent

(i) 7w(p) = w for all p in w.

Under Hypothesis 23.1, Theorem 22.5 implies that ® contains a
Sz-subgroup . Since O also satisfies Ey, for all subsets w, of @,
is a proper subgroup of & by P. Hall’s characterization of solvable
groups [15]. This section is devoted to a study of © and its normalizer
M = N(D). All results of this section assume that Hypothesis 28.1
holds. Let w ={p, -+, p,},n =1, and let P, ---, L, be a Sylow
system for 9.

LEMMA 23.1. IR 48 a maximal subgroup of & and is the unique
maximal subgroup of ®& containing 9.

Proof. Let & be any proper subgroup of & containing . We
must show that & M. Since K is solvable we assume without loss
of generality that & is a @, ¢g-group for some ¢¢ w. Let %, :--,P,,
L be a Sylow system for &. It suffices to show that P, < B,Q.

Since ¢¢ w, p,*q. Theorem 22.1 implies that P, centralizes
0,(PBL). By Lemma 17.5, 8 < B,Q, where B = V(eelg(A); B,) and
Ae FZ45(P). By Lemma 17.2, N, = N(Z(B)) = 0»(N,). Since N,
does not contain an elementary subgroup of order ¢®%, Lemma 8.13
implies that P, centralizes every g-factor of P,Q and so P, < PO,
completing the proof of this lemma.

LEMMA 23.2. If p; € n(F(D)), and UA; € S&4;5(B,), then C(A,)SM.

Proof. We can assume that ¢ =1. By Cj},; $ contains a S, s
subgroup of C(2,) for each 7 =2, ..., n. Thus, it suffices to show
that if g¢ w, and Q is a S,-subgroup of C(2,) permutable with P,
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then Q & k.

By the preceding argument, 3, < L,Q. Since P, normalizes C(A,) =
A x D, D being a p;-group, it follows that P =P, x Q.

Since F(D) N P, # (1D, it follows that M = N(F (D) N P,), since
FO) NP, char I and P is the unique maximal subgroup of &
containing . The lemma follows since N(F(D)NP,) 2 C(F(O)NP) =2 Q.

LEMMA 23.3. Let 1=1<n, and let WA;e A2 1), LB, =
Vieelgx(As); Bi). If C(A) & M, then N(B,) < IN.

Proof. We can assume that ¢+ =1. If F(9) is a p,-group, then
Lemma 17.5 implies that B, < 9 and so B, W, since B, is weakly
closed in F(9) N P,. In this case, N(LB,) = M and we are done.

We can suppose that F(9) is not a p,-group, and so T = 0,(D) #
{1>. Let T,, ---, T, be a P,-invariant Sylow system for T, where T;
is a S,,-subgroup of T and we allow T, =<1)>. By C;,, g, is a
maximal element of U(P,; »;).

Let Ne N(B,. Then by Theorem 17.1, £¥ = ¥?: where C,, : -+, C,
are in C(Y;) S M. Since T char H g M, each T¢: is contained in T
and so ¥ =Z, Since T # 1), M = N(X) 2 N(B,), as required.

LEMMA 23.4. Let 1<1=n, A;e & 4:(P:), B = Vicelx(¥,); Bs).
If <O, N(B)) & IR, then M is the unique maximal subgroup of
S containing P;.

Proof. We can assume that 1 =1. Let Q be a g-subgroup of
® permutable with P,. It suffices to show that Q & .

Since Q = 0,(PB,Q) - Ny(B), it suffices to show that O, = 0,(P,) &
M. If Q is centralized by P,, then by hypothesis O & M. Otherwise
we apply Theorem 22.1 and conclude that g€ w. By Theorem 17.1,
7 < 9 for suitable Ce C(Y,) = M, and the lemma follows.

LEMMA 23.5. For each 1 =1, --+-,n, if A, € A& (L), then
CA,) S M, and M is the unique maximal subgroup of & containing P;.

Proof. First, suppose ;€ 7(F(9)). Then C(¥;) S M, by Lemma
23.2. Then by Lemma 28.8, N(B;) & M, B; = V(celx(A,); PB:), and then
by Lemma 23.4, this lemma follows. We can suppose that p; ¢ m(F(9)).

We assume that 1 =1. Let C(¥,) =, X D, where D is a p{-group.
It suffices to show that for each ¢ in 7#(®), WM contains a S,-subgroup
Q of ©. If gew, this is the case by C;,., so we can suppose that
qéw.

Since p, ¢ T(F(D)), A, does not centralize F(). If F(D) were cyclic,
and p = max {p,, +*-, »,}, then a S,-subgroup of $ would be contained
in F ©) and so be cyclic. Since this is not the case, F(9) is non cyclic,
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so we can assume that F(9) N B, is non eyeclic. We can then find 4
in A so that C(4) N F(D) N P, contains an element of 7 7(p,), say 3.

Let 8 =D, B, %> S C(4), and let  be a S, ,,, subgroup of
L* with Sylow system &,,8,, £,, where 2, & 2, and Q & £,. Since
A S 0,,,,(8*) by Lemma 17.5, it follows that A,0,,(8%)/0,,(2*) is a
central factor of €*. Hence, %, is a S,,-subgroup of £* and so £* =
A - 0,(8%).

We apply Theorem 22.3 and conclude that 2, <8 If Cis a
maximal element of U(XL,; p,, ¢) containing 2,,-%,, it follows that §,2<] @,
where 5,2 is a maximal element of W(Y,; p). By construction, &
contains Q. By Theorem 17.1, there is an element C in C(¥,) such
that £, = 0,,(8,%,). Since O normalizes ¥,, it follow that N(0,,(P,B.)
contains a S;-subgroup of C(2,). But p,en(F(9)), so by what is
already proved, we have N(0,(P,3,) S I, and so M contains C(,).
We apply Lemmas 23.3 and 23.4 and complete the proof of this lemma.

24. Further Linking Theorems
LEMMA 24.1. If pem,qem, U, and q ~ p, then m(q) S m(p).

Proof. If q = p, there is nothing to prove, so suppose q #* ».
Corollary 19.1 implies that gen,. Let r ~q,r # q,r + p. We must
show that r ~ p.

If renr, and Q is a S,-subgroup of @, then { does not centralize
every element of U(Q; p) and Q does not centralize every element of
U(; r). By Theorem 22.2, we have p ~ r.

If rem,, then since also g€ r, we have r ~ p, by Theorem 22.7.
This completes the proof of this lemma.

If p e 7, and p, € n(p), p, # », let 7(p,) = {p, p,, * + -, »,}. By Theorem
22.7 and Lemma 24.1, 7(p,) = n(p;),1<4,5<m. It follows from
ver,that p;en,, 1 <4 < n. By Theorem 22.5, ® satisfies Crynp. Let
© be a S,,,,-subgroup of &. Clearly, © C ® since p ¢ m(p,).

It is easy to see that F(9) is non cyclic. Choose 7 so that the
S,,-subgroup of F(9) is non cyclic. Let B,, -+, P, be a Sylow system
for 9, P, being a S, ;subgroup of . Thus, P; N F(P) is non cyelic,
so that %, N F(P) contains a subgroup B of type (p, p) which is normal
in PB;. Let A be an element of %7 #;(P;) which contains B. Let
P, be a maximal element of UQ; p). By Lemma 24.1 and Theorem
22.6, By #<A). Let CA) =A x D, D being a pl-group.

THEOREM 24.1. (B, 0,,(9), D> s a pi-group.

Proof. Let & be the set of U-invariant subgroups P, of P, such
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that <%, 0,,(9), D>C . Since <0,(9), D>SC(®), it follows that
e Z

Suppose Ppoe &, and T = (P, 0,,(9), D). Since A normalizes
LA T)=AT =LcG. By Lemma 17.6, A< 0,,,,(2).

Let 2 be the image of 2 under the projection of 0,;.,,(%) onto
0,; ,,(9)/0,,(2). Since A = A, we see that A is a self centralizing sub-
group of 0,,,(2)/0,,(8), and it follows readily that 0,,,,(2)/0,,(%) is
centralized by ‘i?o, 0,(9) and ®. By Lemma 1.2.3 of [21], we have
<%o, 0,(9), D)< 0,,(2) and hence T = 0,,(2) is a pi-group.

Let &, -+, ¥, be an U-invariant Sylow system of %, E; being a
S,,subgroup of ¥. If g;e{p, ---, p.}, it follows from C;;,, that Z;
is a maximal element of WU(X; q;). Since DESF, this implies that
0,,(9) is a S-subgroup of T. If ¢; # p,q; ¢ {py, -+, P}, then Theorem
22.1 implies that U centralizes ¥;, so that T, =D. Finally, if ¢q; = p,
then there is an element D of ® such that ¥? <, by Theorem 17.1.

Let & be a fixed S,-subgroup of {9, 0,(9)). By the preceding
paragraph, & is a S,-subgroup of &, and B, N <L is a S,-subgroup of
. Since oS B, N T, it follows that <P, | K,e F> = P* is permu-
table with & so that P*R is a proper pi-subgroup of ®. This means
that &# contains a unique maximal element. Since Cgp(B) is A-in-
variant for each Be®Y, since P, =<{Cp(B)|BeB", and since
{Cp(B), 0,/(9), D)< C(B)C®, the theorem follows.

THEOREM 24.2. Let R = (P, 0,(9), D), and M = N(R). Then
M contains 9, M is a maximal subgroup of & and M is the only
maximal subgroup of & containing L.

Proof. Since P, # {1>, M is a proper subgroup of &. We first
show that I contains P;. Let O be an W-invariant S,-subgroup of
R, so that L is a maximal element of U; q), either by virtue of
q € (p;), or by virtue of ¢ ¢ m(p;) so that A centralizes Q. For P in
PB;, QF = QP for some D in D by Theorem 17.1 together with C(N) =
A x D. Since DS R, QF is a S,-subgroup of R. Hence, RF SR, and
so R =R, Thus, P; S M.

To show that DSM, we use the fact that H = 0,,(9)-Ne(B),
where B = V(cclg(N); B:). Since 0,(H) &R, it suffices to show that
Ny(B)=M. We will in fact show that N@B)SM. Let Q be a B-
1nvar1ant S,-subgroup of . If Ne N(B), then A" =B, so that A"
normalizes Q. Hence, A normalizes QF = Q?, De D, and we see that
R¥ = R. Thus, M contains D and N(D).

Let I, be a maximal subgroup of @ containing M. It is easy
to see that R = 0,,(IM,) by Lemma 7.3, so that L, <M, and M is a
maximal subgroup of ®.



888 SOLVABILITY OF GROUPS OF ODD ORDER

Let & be any proper subgroup of & containing PB,. To show that
KM, it suffices to treat the case that & is a ¢, p;-group. Let &,
be a S,-subgroup of & permutable with PB;. Since N(B) S I, it suffices
to show that 0,,(®) SI. This is clear by C),, if ge{p, :--,p,}. If
q = p, this is also clear, by Theorem 17.1, since C () S M and P, =M.
If g¢{p, p, -+, .}, then P, centralizes 0,(P;R,) by Theorem 22.1, and
we are done, since C ()< M.

If gem,Um, and Q is a S,-subgroup of &, we define
Q) = {9, | 0, EQ, O, contains some element of & 45(Q)},

(D) = (| QEQ, Q, contains a subgroup O, of type (g, q)
such that C,(Q) € ¥_(R) for each Q in Q,},7=2,3,4.

LEMMA 24.2, If qemyUm, and Q ts a S;subgroup of &, then
every subgroup L, of X which contains a subgroup of type (q, q, q)
18 1 % (Q).

Proof. Let Be7Z/(Q), QF = Cp (B), so that QF is non cyclic.
Let 2, be a subgroup of QF of type (g, 9). If Qe Q,, then Cy(Q)2B.
Since B is contained in an element of & _#;(Q), it follows that
C,(Q) is in Q).

THEOREM 24.3. If qem, Q 8 a S,-subgroup of &, and Q 1is
contained in a unique maximal subgroup of ®, then each element of
(L) 18 contained in a unmique maximal subgroup of ®.

Proof. Let MM be the unique maximal subgroup of ® containing
. We remark that if this theorem is proved for the pair (Q, M),
then it will also be proved for all pairs (Q¥, W) where M e M. This
prompts the following definition: .97*(Q) is the set of all subgroups
L of O such that Q, contains €¥ for some € in & #;(Q) and
some MeIM. Clearly 4 (Q) S 4*(Q).

Suppose some element of .94*(Q) is contained in a maximal sub-
group of ® different from IX. Among all such elements Q, of .*(Q),
let || be maximal. By hypothesis, Q,c Q. Let M, be a maximal
subgroup of ® different from 9% which contains Q, and let QFf be a
S,-subgroup of M, which contains Q,. If Q,c QF, then Q,C Nea ().
Since Q, < Ny(Q,), maximality of |Q,| implies that Ng(Q,)S M, so
that N.(Q) S 0¥ for some M in M. Since M, # M, so also M¥ ™" = M.
But Ng,(Q)* " € 94 *(Q), and maximality of | Q| is violated. Hence,
L, i8 a S,-subgroup of IN,.

Let €€ & 4;(Q) be chosen so that €¥ S Q, for some MeIN.
Since every element of WU(C) is contained in MM, every element of
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MUE€¥) is contained in M¥ =W. Hence O, ,(M)SM. If V=
V(cclg((i); L), then Q;C Ny(B), so Ny (B)S I, by maximality of
|Q].  Since M, = 0, (M,) - Nyp (B) by Lemma 17.6, we find that ¢, S M,
contrary to assumption. The theorem is proved.

THEOREM 24.4. Let gqem, U, and let Q be a S,-subgroup of ©.
If each element of 7 (Q) 18 contained in a unique maximal subgroup
M of O, then for each © = 2, 8, 4, and each element L, of (L), M
18 the unique maximal subgroup of & containing L.

Proof. For i =2, 38,4, let % *(Q) be the set of subgroups £,
of Q such that Q, contains a subgroup Q, of type (g, ¢) such that Co(Q)
contains an element of .7 *(Q¥) for some Me M and all Q € Q,. Here
7 *(Q¥) denotes the set of Q¥, Q,€ .9 *(LQ). Suppose ¢+ = 2,3, or 4
is minimal with the property that some element of .&4*({Q) is con-
tained in at least two maximal subgroups of &. This implies that
S *(Q¥) does not contain any elements which are contained in two
maximal subgroups of &, M being an arbitrary element of M. Choose
Q, in & *(Q) with |Q,| maximal subject to the condition that L is
contained in a maximal subgroup MM, of & with M, # M. We see
that Q, is a S,-subgroup of M,." Let L, be a subgroup of L, of type
(¢, ¢) with the property that Cy,(Q) contains an element of .o7*(%)
for suitable M in M, and each Q@ in Q,. (We allow M to depend on
Q.) Since 0,(IM,) is generated by its subgroups 0,(M,) N C(Q), Q € T},
it follows that O,(IM,) & M.

Let € be an element of & _#;(Q). Then €L, or we are

done. Let £, =,N0, (M). Since Q,NE =, NE by (B), it

follows that Np(Qy) DD, Hence, N(Q,) S M, by maximality of | Q.
Since W, = Oq,(YIRI)-Nm(ﬁo), we have MM, S M, completing the proof
of this theorem, since ¥ (Q)S ¥ *(Q), 1 =2, 3, 4.

THEOREM 24.5. If qem, and Q 18 a S,subgroup of ®, then
18 contained in a unique maximal subgroup of O.

Proof. If m(q)=m, this theorem follows from Lemma 23.5.
Suppose pem(q) N 7. Let m(q) = {p, », --+, p,}, where ¢ =p, and
let  be a S, -subgroup of @ containing Q. If QLN F(D) is non
cyclic, we are done by Theorem 24.2, so we suppose that QN F(D)
is cyclie.

Let I be the unique maximal subgroup of & containing . Suppose
we are able to show that C(€) S M for some € in FZ_#;(X). Since
F(®) N QO is eyclie, F(M)N O is also cyclic. Hence, 0, (M) # 1. If
B = V(celx(€); Q), then N(DB) normalizes O,(MM), by Theorem 17.1,
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together with C(€)S M. Since & = 0,(R)- Nx(B) for every proper
subgroup & of & which contains Q, it suffices to show that every
element of U(Q) is contained in M. This follows readily by Cés,
Theorem 22.1 and C(€) < .

Thus, it suffices to show that C(€) S IMM. Choose i such that F;,
a S,-subgroup of F(9), is non cyclic, and let P; be a S,,-subgroup of
Y permutable with Q. It suffices to show that C3,(C) e (B,) for
some Ce@Q% by Theorems 24.3 and 24.4 together with the fact that
M is the unique maximal subgroup of & containing ;.

Let 3* = 0,,(Q%;), so that F¥ is a maximal element of U(Q; p;).
By Lemma 17.3, Q< N(g¥). Since P, is contained in M and no
other maximal subgroup, QS M. Thus, if 2,(Z(F:)) is generated by
two elements, then Q centralizes Z,(®;) and we are done. If Z(§))
is non cyclic, then every subgroup of Z(J;) of type (p;, ;) is contained
in & (P;). Since € contains a subgroup of type (g, q, q), C(C) N Z(F.)
is non eyeclic for some C in €% and we are done in this case. There
remains the possibility that Z(%F;) is cyclic, while 2,(Z,(F;)) is not
generated by two elements. Since every subgroup of 2,(Z(%:) of
type (p;, »;) which contains 2,(Z(%;)) is contained in %($;), by Lemma
24.2, and since C(C) contains such a subgroup for some C in €% we
are done.

The preceding theorems give precise information regarding the
S,-subgroups of the maximal subgroups of & for q in =,.

THEOREM 24.6. Let qem, and let M be a maximal subgroup of
®. If Q 18 a S,;-subgroup of M and Q is mot a S,-subgroup of ®,
then Q contains a cyclic subgroup of index at most q.

Proof. Let O* be a S,-subgroup of ® containing Q, let B e Z7(Q*)
and let Q, = C(B) so that |[V: Q)| =1 or ¢q. If Q, is non cyelic,
then Q,e€ 4(Q*), and so L, is contained in a unique maximal sub-
group of ®, which must be M, since QS M. But Q*Z M, a con-
tradiction, so Q, is cyclic, as required.

Theorem 24.6 is of interest in its own right, and plays an important
role in the study of =, to which all the preceding results are now
turned.

Hypothesis 24.1.
1. 3em,.
2. P 18 a S;-subgroup of ©.
3. & ts a proper subgroup of & such that
(i) P&K.
(i) If = 0(R), there ts a subgroup € of D chosen in
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accordance with Lemma 8.2 such that Z(€) is gemerated by two ele-
ments.

THEOREM 24.7. Under Hypothesis 24.1, P is contained in a
unique maximal subgroup M of ®, and M centralizes Z(P).

Proof. Let £ be any proper subgroup of & containing . We
must show that £ centralizes Z (D).

By Lemma 8.2, ker (f — Aut@) is a 8-group, so is contained in
. It follows that Cx(€) = Z(€) and in particular Cp(©) = Z(S).

Suppose €S 04(2). Then Z(04(R8)) = Cy(C)=Z(€C), so Z(04(%)) is
generated by two elements. Since 2| is odd, a S;-subgroup of £
centralizes Z(04(2)), so centralizes Z(P). Since P also centralizes Z (),
we have LS C(Z(P)).

Suppose € Z 0,(2). Since Z(€) is a normal abelian subgroup of P
we have Z(€)S 0,(%). Since Y'PE*< Z(€), we conclude that €S
0,, ,(2). By the preceding paragraph, N(P N 0, :(2)) centralizes
Z(P). Thus, it suffices to show that P0,.(2) = &, centralizes Z ().
Since £, = Ng (0«(2)€):[0,,+(8), €], and since P normalizes 0,(2)C, it
suffices to show that [0,(R), €] centralizes Z(P). Let 3 = Z(0(2)),
so that 8 contains Z(P). Since 3 is a normal abelian subgroup of %P,
(B) implies that 3S 04(8®). Hence, v’36* =1, which implies that
[0,.5(2), €] induces only 3-automorphisms on 3, and suffices to complete
the proof.

Hypothesis 24.2.

1. 3er,.

2. P 18 a S;-subgroup of G.

3. If & is any proper subgroup of ® containing B, and if =
O(R), then every subgroup € of  chosen in accordance with Lemma
8.2 satisfies m(Z(€)) = 3.

REMARK. If 8em, then Hypothesis 24.1 and Hypothesis 24.2
exhaust all possibilities.

LEMMA 24.8. Under Hypothesis 24.2, P contains an element B
of 7/ () such that the normal closure of B in C(2(Z(%P))) is abelian.

Proof. If Z(P) is non cyclic, every element of Z/(P) satisfies
this lemma. Otherwise, set & = C(2(Z(P))), and let A be a non
cyclic normal abelian subgroup of R. Since A < P, A contains an
element B of Z7(P) which meets the demands of this lemma.

THEOREM 24.8. Let pem, and let P be a S,-subgroup of &. If
p = 8, assume that 7/ (P) contains an element B such that the normal
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closure of B in C(2(Z(P))) is abelian. If p =5, let B be any ele-
ment of Z/(PB). If K 18 any proper subgroup of & such that
0,(®) =1 and if &, i3 a S,~subgroup of &, then & = L+ Ng(B), where
B = V(ccly(B); &), and L is the largest normal subgroup of & which
centralizes Z(R,).

Proof. Observe that £ contains 0,(R).

Since 0,(& mod &) = £-(], N 0, (! mod L)), maximality of  guaran-
tees that £ =0, (8 mod 8). If B L, then Sylow’s theorem yields
this theorem since B is weakly closed in & N &,.

Suppose by way of contradiction that 8 Z 8. Let 8, = 0,. (& mod ).
By Lemma 1.2.3 of [21], 7B, £ 8.

Let B, =&, N8, and let & = & N Ng(P). Let B, be the normal
closure of B in Ng(®B,). Suppose &L, = C(Z(8,)). Since &8, < Na(By),
and since & = - Ng(P,) by Sylow’s theorem, we see that 2788, 4 K.
Maximality of & implies that v&%8,=2. In particular, v¢,8 < 8. Since
8, = 2.8, by Sylow’s theorem we have B< 0, (R mod 8), which is not
the case. Hence, v¢,8, & C(Z(®,)). Since Z(P,) 2 Z(K,), we also have
v&.8, Z C(Z(P,)). Since <B, DS N(Z(P.)), the identity [X, YZ] =
[X, Z][X, Y}* implies that B, contains a conjugate B, = B¢ of B such
that v8,38, £ C(Z(%B,)). Since g.c Ng(%B,), application of Theorem C of
[21] to 523,§1/§1 N C(Z(P,) yields a special g-group L = /L, N C(Z(B.))
such that B, acts irreducibly and non trivially on Q/D(Q). Since O
is a p’-group, and O does not centralize Z(%P,), Q does not centralize
B = 2(Z(*B,)). Furthermore, W = W, x W,, where W, = Cx(V) and
W, = yBLQ, and W; is invariant under B,Q, 7 =1, 2.

Since W, is a p-group and W, # 1, we have BW; + 1, where W, =
Cx,(By) and B, = ker (B, — Aut SNJ) #1. If p=5, Lemma 18.1 gives
an immediate contradiction. If p = 3, and Y*W,B! = 1, we also have
a contradiction with (B), since Y®B,Q # 1. If Y&BB} # 1, Lemma
16.3 implies that Z (%) is cyclic, and that B, = 2,(Z(P¢)). However,
the normal closure of B, in C(2,(Z(%¢))) is abelian, and so VW;B} =1,
the desired contradiction, completing the proof of this theorem.

REMARK. Except for the case p =3, and the side conditions
0,(8) =1 and & < &, Theorem 24.8 is a repetition of Lemma 18.1.

Hypothesis 24.3.

1. per,qen(p),q+p.

2. Q 18 a Si-subgroup of &, P, 18 a maximal element of U(X; D),
and P, 18 a S,-subgroup of N(P,) pvermutable with L.

8. P 28 a S,-subgroup of & containing P,, and B e Z(P), where
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for p = 8, the mormal closure of B in C(Q(Z(P))) s abelian.
4, B = V(ccl@s(%); B).

THEOREM 24.9. Under Hypothesis 24.3, either Ny(®B) contains an
element of 7 (Q) or Co(Z(Py)) contains an element of (). Further-
more, P, = P and © satisfies C,,.

Proof. Let £ be the largest normal subgroup of & = N(%P,) which
centralizes Z(P,). Then & = 8- No(B), by Theorem 24.8. Since LI &,
LN L. If NLQ is non cyelic, then € N Qe ¥ (Q).

Suppose € N Q is a non identity cyclic group. By Lemma 17.6,
QS R'. Since a Sylow g¢-subgroup of 8 is eyclic, it follows that &'
centralizes QN L-8y/L,, where & = 0,(2), and so QNLESZ(X). If
B centralizes QN L-L/L, then Ng(B) contains a S,-subgroup of K.
In this case, Q normalizes BX for some K in . Let {Q, B be a
S, ;-subgroup of & containing QB*X, with VX = P, By the conjugacy
of Sylow systems in &, we have P}£r = B, QFt = Q for suitable K,
in & Hence, Q normalizes BXE1 and BEE1 S P,. Since B is weakly
closed in PB,, B = V== and we are done. If B does not centralize
QN L-LL, then N(B)N L is a ¢'-group, since QN L is cyclic. In
this case the factorization, & = 8- N,(B), together with Q N LS Z(X),
yields that Q = QN L x Q,, for some subgroup L, of L. This in
turn implies that every non cyclic subgroup of Q is in 4(X).

Since & = 2:Ny(B) and L N Q is cyclic, the S;-subgroups of Ng(T)
are non cyclic. Hence, Q contains a non cyclic subgroup L, such that
Q, normalizes BX for some K in K. By the conjugacy of Sylow
systems, we can find K, in & such that VX1 S P, and QF1S Q. Since
B is weakly closed in 3,, B = BEXX1, and we are done, since every non
cyclic subgroup of { is contained in ().

Suppose N Q = {1>. Then L is a ¢’-group. From & = 8- Ny (B),
we conclude that Q normalizes BX for some K in & and the conjugacy
of Sylow systems, together with the fact that B is weakly closed in
®,, imply that Q normalizes B. This completes the proof of the first
assertion of the theorem.

If B, P, then ‘ISICN;,B(SB). Since every element of .&4(X) is
contained in a unique maximal subgroup M of &, by Theorem 24.3,
if N(B) contains an element of .%4(Q), then P, is not a S,-subgroup
of M. But P,Q is a maximal p, g-subgroup of &, by Lemma 7.3. If
C(Z(P,) contains an element of .4(Q), then since Z(Py) 2Z(P) by
(B) and Theorem 22.7, we see that C(Z(P)) contains an element of
% (Q). Hence, PSM. Thus, in all cases, PSM. Since WM also
contains a S;,-subgroup of ©, @ satisfies E.). Since L) is contained
in M and no other maximal subgroup of ®, ® satisfies C,, as required.
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Hypothesis 24.4.

1. 3em,.

2. P s a S;-subgroup of .

3. P contains a subgroup A which 18 elementary of order 27
with the property that Y'C(A)A* =1 for all Ae Ut

Hypothesis 24.5.

1. per,.

2. A S,-subgroup P of & is contained in at least two maximal
subgroups of .

LEMMA 24.4. Assume that Hypothesis 24.5 18 satisfied and that
if p =8, Hypothesis 24.4 is also satisfied. If p=5, let A be an
arbitrary element of & A45;(P). If p =3, let A be the subgroup
given in Hypothesis 24.4. Let T be the weak closure of U in P, and
let T* be the subgroup of P generated by its subgroups B such that
B A and AB s cyclic for suitable G in G. Let M be a proper
subgroup of ® containing P, with the properties that M s a p,q-
group for some prime q and WM has p-length at most two. Let (%, %))
be any one of the pairs (Z(P), W), (Z(W*), W), (Z(P), B*). Then M =
MI,, where M, normalizes X and WM,/Cy (%) s a p-group, and M,
normalizes ).

Proof. Let Q be a S,-subgroup of M, and let = 0,(IM). Then
HQ <M. The lemma will follow immediately if we can show that
vQ%) normalizes % and induces only p-automorphisms on %.

Suppose by way of contradiction that either some element of ¥QY
induces a non trivial g-automorphism on %, or ¥Q%) does not normalize
X, If Y =W, we can find B = A< Y such that either some element
of YOB induces a non trivial g-automorphism of X or else YQB does
not normalize X. Similarly, if 9 = B*, we can find BEY and G in
® such that B<S A, AY/B is eyclic and such that either some element
of YOB induces a non trivial g-automorphism of Z(P) or else vQOB
does not normalize Z(%).

Let O = Q9/9, so that YO8 = (YQB)H/D. Since OB is gener-
ated by the subgroups YQ,8 which have the property that B acts
irreducibly and non trivially on Q,/D(Q,), we can find 9, = Q.9/9
such that YQ,®B either does not normalize X or some element of YQ®B
induces a non trivial g-automorphism on %, and with the additional
property that B acts irreducibly on <,/D(Q). ‘

Let B, = ker (B — Aut Q,) = ker (8 — Aut Q,/D(Q)), so that B/B,
is eyclic. Let M, = 9B, and 9, = 0,(WM,). Since HB S P, and since
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Z(P)S 9, it follows that Z(P) S Z(9,). Also, since Z(LW*) is a normal
abelian subgroup of P, we have Z(W*)< 9.

Suppose that £ = Z(P). If p = 3, then since A¢/B, is generated
by two elements, it follows that B, # {1>. Hence, Z(9,)< C(B.).
Since the normal closure of ¢ in C(3B,) is abelian, we have Y*Z(9,)B* =
{1>, and (B) implies that a S,-subgroup of $Q, centralizes Z(9,), so
centralizes Z(%).

Suppose p = 5. ‘We first treat the case that 9, N U # {1) for some
Nez/(Pf), NS A®. Then {Z(H), A DS CH,NUN) =C€ and P°NCE is
of index at most p in P¢. If P* is a S,-subgroup of € containing P¢ N €,
then P°NE < P*. Hence, YP*BSYP*AS PN E, and so YyP*B =
{1>. It follows that B= 0,(€). (Note that 0,(€) = (1) since A* =S CE.)
Hence, YZ(9,)8 S 0,(€), and so 7*Z(9)B* = (1), so that a S,-subgroup
of O, centralizes Z(9,) and so centralizes Z(P).

We can now suppose that 9, N1 =1 for all U such that
Nez(PF), NS A, In this case, since A¢/B, is generated by two ele-
ments, there is a normal elementary subgroup € of P3¢ of order p* such
that E=SUA¢. Hence, ENB, +#<1). Since ENB,ESENH,, we can
find E in €N $L. Consider C(E)2<{Z(D), Cps(E)). Since AB is
eyclie, if Ue z/(PF) and USAY, then BNU=U,# {1)>. Let Uelli.
Let P* be a S,-subgroup of C(E) containing Cge(E), so that
| B* : Cpa(E) | =1, por p'. We have v"P*B'S Cye(E), and so 7'P*B* =
{1>. This implies that BES0,(C(E)). Let Ze Z(D,); then [Z, Ule
0,(C(E)), so that [Z, U, U, Ul€ Cye(E). Since UelU,SUe Z/(P°), it
follows that [Z, U, U, U, U]l e Z($°). Since H,NU =1), and since
[Z, U U U Ule Z(P°) N D, we have [Z, U, U, U, U] =<1). This shows
that a S,-subgroup of $Q, centralizes Z(9,) and so centralizes Z(%).

Suppose now that X = Z(T®*), so that Y =W. In this case,
B = A°, Hence, B, W*, since B/B, is cyclic. Since Z(W*) is con-
tained in 9,, if B* denotes the normal closure of B, in HBL,, then
Z(T*) centralizes B*, B* being a subgroup of W*.

Let €* = C(B*) N 9, so that €* is normal in $BY,. If p =3,
we have Y€*B* = (1), since B, # (1), and it follows that a S,-sub-
group of M, centralizes €*. Namely, if €* =€fDOCF> .- is part
of a chief series for M, then P, centralizes each €}/C#,,, so that a
S,-subgroup of I, centralizes each €¥/C},,, so centralizes €*. If »p =5,
then B, N # (1) for some Ue 7/ (), USB, and we have y'E*B* =
{1)>, and we are done.

THEOREM 24.10. Under Hypothesis 24.5, p =8 and n(3) = {3}.
Furthermore, Hypothesis 24.4 is mot satisfied.

Proof. Suppose that either p = 5 or Hypothesis 24.4 is satisfied.
Let & be any element of & 45(P) in case p = 5 and let A be the
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subgroup given by Hypothesis 24.4 in case p = 3. Let W, W* be as
in Lemma 24.4. Let N, = N(Z(P)), N, = N(W), N; = N(Z(W*)), and
let © be any proper subgroup of & containing . Then by Lemma
24.4 and Lemma 7.7, wehave D = (D NGO NR) = O NR)O NN, =
ONRY)ONNRN,). Taking H =N, we get N, S NN, R, = NN,. Taking
=N, we get NN, N, =NN,.. Taking H=N,, we get N, &S
NI, R,SNN,. By Lemma 8.6, we conclude that NN, is a group
and so DS NN, for every proper subgroup H of & containing P. If
NN, =G, then 0,(N) is contained in every conjugate of N, against
the simplicity of @. Hence, NN, is the unique maximal subgroup of
& containing .

We can now suppose that p = 8 and that Hypothesis 24.4 is not
satisfied. Suppose qgem(3),q #3. Let . be a S,-subgroup of &
permutable with B and let MM be the unique maximal subgroup of &
containing Q. If © =0,(M) and € is a subgroup of 9 chosen in
accordance with Lemma 8.2, then Theorem 24.7 yields that m(Z(€)) = 3.
Let & be a subgroup of Q. of type (q,q,9) and let 2,(Z(€)) =
€, x - xC€,, each €, being a minimal €-invariant subgroup. If €
centralizes Z(€), then any subgroup of Z(€) of type (3,3,3) will
serve as . This is so, since in this case, C(4) S M for all A in AL,
Otherwise, |€;| =27 for some 4, and since E/Cx€;) is cyelic,
Ce(€) e (X)), so we let A be any subgroup of €; of type (3,3, 3).
The proof is complete.

25. The Isolated Prime

Hypothests 25.1.

1. 3erm,.

2. A S;-subgroup P of ® s contained in at least two maximal
subgroups of . )

THEOREM 25.1. Under Hypothesis 25.1, there is a q-subgroup
Q of ® permutable with P such that if O = PQ and if B, Q are
the images of P, Q respectively in D/0(D), then P # 1 is cyclic, P

is faithfully and irreducibly represented on Q/D(Q), and Q does not
centralize B = 2(Z(049))).

Proof. There is at least one proper subgroup of & containing P
and not normalizing Z (%), since otherwise N(Z(*)) is the unique
maximal subgroup of & containing . Let © be minimal with these
two properties. Then $ = P for some g¢-group L. Since 3er,,
0,9 =1. Since FAZ 1) is empty, © has g-length 1. Hence,
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O(D)Q <1 . By Lemma 8.18, P is abelian. By minimality of $, P
acts faithfully and irreducibly on Q/D(Q). If P =1, then P < D,
and Q normalizes Z (%), which is not the case.

Since ) does not normalize Z(P), O does not centralize Z(0,(D))
80 does not centralize 2,(Z(0,(9))). The proof is complete.

We will now show that Hypothesis 24.4 is satisfied. PQ is rep-
resented on B = 2,(Z(0:(9))), and it follows from (B) that the minimal

polynomial of a generator of P is (x — 1)'®'. Hence, there is an ele-
mentary subgroup 2 of B of order 27 on which  acts indecomposably.
Let P, = Cx(¥N) and let € = 2,(Z(PB,)) so that A S €. Choose A e A*.
and set € = C(A4). Let P* be a S;-subgroup of € containing B,. (It
may occur that P = P* but this makes no difference in the following
argument.) If P, = P*, then YCA* = 1. Suppose | P*: P,| = 3. Then
<B, B*> = N(Po), so that (B, P*> normalizes E. Since P and P* are
conjugate in N(P,), any element of PB* — B, has minimal polynomial
{x — 1) on G.

Let 8 = 04C). Then |[:8N%PBy| =1 or 3, so that YRE = P,
and YRE*=1. By (B), C= & If K< P, then € = Z(R), and
YCA'=1. Suppose [R:R8NP,| =38. Then D) =P, so that
C s Cy(D(R)). If Cy(D(R) S Py, then € S Z(Cx(D(R))), and once
again Y'CA’ = 1. Hence we can suppose that Cgo(D(R)) contains an
element K of  — &N P,. Since & & P*, it follows from the preceding
paragraph that the class of Co(D(R)) is at least three. On the other hand,
if X and Y are in Co(D(R)), then [X, Y] e Co(D(R))NK’. Since & S D(R),
we have [X, Y, Z] =1 forall X, Y, Z in Co(D(R)). This contradiction
.shows that Y€’ =1 for all A in A:. Combining this result with
the results of Section 24 yields the following theorem.

THEOREM 25.2. If pem,, and P is a S,-subgroup of ®, then P
18 contained in a unique maximal subgroup of ®.

THEOREM 25.3. Let pem, and let P be a S,-subgroup of &. Then
each element of () is contained in a unique maximal subgroup of ®.

Proof. First, assume that if p = 3, then Z/ () contains an ele-
ment B whose normal closure in C(Z(B)) is abelian, while if p =5,
B is an arbitrary element of Z/ ().

Let M be the unique maximal subgroup of & containing P. Let
S *(P) be the set of subgroups P, of P such that P, contains €¥ for
suitable € in & _7;(P), M in M. Suppose by way of contradiction
that some element 3, of .4*(P) is contained in a maximal subgroup
M, of & different from M, and that |LB,| is maximal. It follows
readily that B, is a S,-subgroup of M,. Since B, contains €* for
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suitable € in A& A45(P), M in M, 0,.(M) = 1. Thus the hypotheses
of Theorem 24.8 are satisfied, I, playing the role of & and B, the
role of &,, B = V(celgx(B); By). Since Nyp(TB) O P, and since P,2E* 2
Z(P) (C¥ being self centralizing), we conclude from the factorization
given in Theorem 24.8 and from the maximality of %3, that I, & M.

There remains the possibility that for every B in Z/ (), the
normal closure of B in M = C(Z(P)) is non abelian, and p = 3.

Let © = O,(M). If $ contains a non cyclic characteristic abelian
subgroup 2, then A contains an element B of Z/(P), and B is abe-
lian. Since we are assuming there are no such elements, every
characteristic abelian subgroup of © is eyelic. The structure of 9 is
given by 8.5. If € is any element of Sz .#;(P), then € = », by
(B), so € e FSZA5(D).

As before, let P,e *(P) be chosen so that LB, is contained in
a maximal subgroup M, of & different from M, with |LPy| maximal.
Then B, is a S;-subgroup of W, and O, (W,) = 1.

Let T = 0,(M,). Since v*TE* =1, (B) implies that TN E = P, N €.
Since P, = N,B(il) by maximality of %,, we conclude that € =S . We
need to show that 9 & P,. Consider DN P, = H,. Since VP2 S
2.(Z(P)), we conclude that 9, S 0;, (M), and maximality of |P,]
implies that N(P, N O, ;(W)) S M so it suffices to show that I, =
B0s. (W) S M, and it follows readily from T, = Ng (TDo):79Di0:,5 ()
that it suffices to show that 79,0,.(W) & WM. Since € & ¥, we have
Z(®) = €, so that *Z ()9} =1, and 79,0, (M,) induces only 3-auto-
morphisms on Z(%), so centralizes Z(P), and M, & WM follows in case
D, C 9.

Suppose DS PBo. If HSNTDOE, then 2(Z(P)) &', and since
VIO S 2(Z(P)) = ¥ & DR), (B) implies that $ & . In this case,
(Z(Z)) = 2(Z(P)) < M,, so M, & M. There remains the possibility
that 5N =C.

If £ =G, then ¥*TH* =1 and (B) is violated. Hence, T OE, so
that ¥’ # 1. Hence, ' NZ[X) #+ 1. If 2(Z(P)) & T, then VT’ & T’
and we are done. If 2(Z(P)) £ T, we conclude that $ centralizes
T N Z(E), since T NZE®) SC. This is absurd, since 2,(Cy(9) =
2.(Z(P)) by (B) applied to M, completing the proof of this theorem.

Before combining all these results, we require an additional result
about =,.

THEOREM 25.4. Let pem,, let P be a S,-subgroup of & and let
M be the unique maximal subgroup of ® containing PL. Then P S W',

Proof. Let € e & A4;(P), and suppose G in @ has the property
that €< ®. Then €S M. By Theorem 25.3, we have I =,
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so that GeM. Hence B = V(ccly(€); P)= V(ccly(€); B). By (B)
and pex,, € < 0,(M) for each M in M. Hence, B < M, so maxi-
mality of I implies M = N(V). By uniqueness of M (or because B
is weakly closed in ), we have M 2 N(P). Furthermore, by Theorem
25.3, if M = M, then € & M, Thus, € is not in the kernel K(G)
of the permutation representation of P on the cosets of P in IMGP.
We can then find C in € such that R(G)C has order » in Z(B/K(G)),
so Theorem 14.4.1 in [12] yields this theorem.

We are now in a position to let #, and 7, coalesce, that is, we
set 7, =m, U,

THEOREM 25.5. Let M be a maximal subgroup of ®. If pem,
and M, 18 a S,-subgroup of M, then either M, is a S,-subgroup of
® or M, has a cyclic subgroup of index at most p, and M, ¢ S (P)
Jor every S,-subgroup P of &. If w 18 the largest subset of m, with

the property that M contains a Sy-subgroup S of &, then S M,
and S < W,

Proof. Let P be a S,-subgroup of & containing IN,. Suppose
M, CP. Then M, ¢ .94(P), by Theorems 24.8, 24.5, and 25.3. Thus,
if BeZ(P), then C(B) N M, is cyelic. Since |M,:CB)NM,| =1
or p the first assertion follows.

Let &, be a S,-subgroup of & for ¢ in w. (If » is empty there
is no more to prove.) If gem, then &, € W by uniqueness of M
and Lemma 17.2. If gen,, then &, € I by uniqueness of IM and
Theorem 25.5. Hence, S < W'. If ren(M), r¢ w, then I central-
izes every chief r-factor of M, by Lemma 8.13. Since & <& W, we
conclude that & < M.

THEOREM 25.6. 7, s partitioned into mon empty subsets o, ---,
0., m =1, with the following properties:

(i) If & m, then ® satisfies E. if and only if © S o; for
some 1 =1,+--,m.

(ii) If $: 18 a S, -subgroup of ®, then N; = N(D;) is a maxrimal
subgroup of ®, O; S N}, and ;N D¢ s of square free order for
each GEG —-N;,, 1 =1, ..., m.

(i) If p;eo; and PB; is a S, -subgroup of O;, and if Bz N P =
D;#1 for some Ge® — N;, then D, is of order p; and Cﬂs‘(SD,-) =
D; X E;, where €; is cyclic, 1 =1,2, -+, n.

Proof. By Lemma 8.5, m, is non empty. By Corollary 19.1,
Theorems 24.3, 24.4, 24.5, 25.2 and 25.8 ~ is an equivalence relation on

m, and if o,, -, 0, are the equivalence classes of 7, under ~, then (i)
holds.
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Let $= 9, be a S;,-subgroup of @ and let P=P; be a N
subgroup of  for p = p;€0,. By Theorem 25.5, N(P) = RN is a maxi-
mal subgroup of &, and H & W.

Suppose GE® — N and PN P =D # 1. If D, is any non identity
characteristic subgroup of 9, then either N(®,) N Pe X (P) or
N(D) N P¢ ¢ (P9, by Theorems 24.3, 24.4, 24.5, 25.5 and 25.8. Since
N(D(D)) contains every element of both %/ (P) and Z (), we con-
clude that D is elementary of order » or »'. Suppose |D|=p. If
D contains 2,(Z(P)) then N(D) contains an element of Z/(P), so that
NE®)NPeA(P). If D does not contain 2,(Z(P)) then N(D)NP
contains an elementary subgroup of order p° so once again
N(E®) NPe (P). The same argument applies to P¢, so that P N.
Hence ¢ = P~ for some N in N. Hence GN e N(P) SR, so GeN,
contrary to hypothesis. Hence, ® is of order p.

If Cp(D) € (P), then N(D) SN, so that P°NN DD, contrary
to the fact that ¢ N P~ has order 1 or » for all N in RN, by the
preceding paragraph. Hence, Cp(D)e¢ ¥ (P). If Be Z(P), and
Cp(D) N Cx(B) = €, then € is of index at most p in Cyx(®) and € is
disjoint from D, since Cp(D) ¢ 4(P). Hence, Cy(D) = D x €. This
proves (iii), the cyclicity of & following from Cp(®) ¢ 4 (PB). The proof
is complete.

26. The Maximal Subgroups of &

The purpose of this section is to use the preceding results, notably
Theorems 25.5 and 25.6, to complete the proofs of the results stated
in Section 14.

LEMMA 26.1. If pem U7m, and P 8 a S,-subgroup of ®, then
B S NP

Proof. If P is abelian, the lemma follows from Grun’s theorem
and the simplicity of &. If P is non abelian, 8 is not metacyelic,
by 3.8. Also, p = 5, as already observed several times. Thus, from
3.4 we see that 2,() is a non abelian group of order »®. The hypo-
theses of Lemma 8.10 are satisfied, so L & N(2.(Z(PB))) by Theorem
14.4.2 in [12] and the simplicity of . Since N(P) S N(2.(Z(%p))), and
since N(2,(Z(P))) has p-length one, the lemma follows.

LEMMA 26.2. If pem, and P is a S,-subgroup of &, then P 13
abelian or 18 a central product of a cyclic group and a mon abelian

group of order p* and exponent p.

Proof. We only need to show that ¥ is not isomorphic to (iii)
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in 8.4. Suppose false. Let B, = 2,(P), and let & be a fixed S,-
subgroup of N(P). Set & = R/Co(P). The oddness of | N(¥)| guar-
antees that &, is abelian.

Let & be a chief series for P, one of whose terms is P, and
which is R-admissible. Let a; be the character of & on the ¢th term
of % modulo the (i + 1)st, where ¢ =1, --.,7+ 3, and |B: B,| = p".
Since P/P, is eyelic, a; = --- = ;. From 3.4, we see that o, = @,
Furthermore, a,.,= a&,, and a,; = /.., Combining these
equalities yields a,, =1, so a,, =1, and Lemma 26.1 is violated.

If B normalizes A we say that B is prime on A provided any
two elements of B! have the same fixed points on 2A. If |B| is a
prime, B is necessarily prime on %. If 2 is solvable, then B is prime
on U if and only if for each prime p, there is a S,-subgroup A, of
9l which is normalized by B and such that B is prime on 20,.

The next two lemmas are restatements of Lemma 13.12.

LEMMA 26.8. Suppose A i3 a solvable m-group, and B 8 a cyclic
7'-subgroup of Aut(N) which is prime on A. Assume also that
||| B| is odd. If |B| is not a prime, if the centralizer of B in
A is a Z-group, and if B has no fixed points on W/W, then A s
nilpotent.

LEMMA 26.4. Suppose A is a solvable m-group and B is a ='-
subgroup of Aut(A) of prime order. Assume also that |U|-|B]| 18
odd. If the centralizer of B in A is a Z-group, and if B has no
fized points on A/, then UA/F(A) is nilpotent.

2’ denotes the set of all proper subgroups of &, 25 denotes
those subgroups 2 of @ such that, for all pem, A does not contain
an element of .&4(P) for any S,-subgroup P of &; 2 = 2 — Z7.
_# denotes the set of maximal subgroups of @, # = _# N 25, 1=
0, 1.

If R e 2, then & does not contain an elementary subgroup of order
p* for any prime p, so & is nilpotent. Furthermore, if 7(®) = {py, - - -, Pa},
P> P> -+ + > ., then & has a Sylow series of complexion (p,, - -+, P.)-

Suppose pem, and P, is a subgroup of type (p, p) with P,e 27
Let %, ++-, P, be the distinet S,-subgroups of & which contain .
Since B, ¢ (B,), 1 <1 < n, it follows that P, 2 2(Z(*B:)), and that
N(B,) — C(B,) contains an element of order p centralizing 2,(Z(%:)).
Since N(P,)/C(B,) is p-closed, this implies that 2,(Z(B:)) = A(Z(B))),
1<4, j <n. This fact is very important, since it shows that the
p + 1 subgroups of P, of order p are contained in two conjugate
classes in ®, one class containing 2,(Z (%)), the remaining p subgroups
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lying in a single conjugate class.

If Me _, H(M) denotes the largest normal nilpotent S-subgroup
of M. Note that by Lemma 8.5, H(IM) = 1. More explicitly, 7(H(IN))
contains the largest prime in 7(M). Note also that H(M) is a S-sub-
group of &.

If Me_», H(IM) denotes the unique S,-subgroup of M, where
g = o(IM) is the equivalence class of 7, under ~ associated with M.
That is, pe o if and only if pem, and IM contains a S,-subgroup of
®. Or again, peo if and only if M contains an elementary subgroup
of order p®. Or again, peo if and only if pexm, and I contains an
element of .97 (%P) for some S,-subgroup P of &.

Suppose Me 7, gen(M) — o(MM) and a S,-subgroup O of W
centralizes H,(M). Since WM is the unique maximal subgroup of &
containing H,(M), it follows that N(Q) S M, so that Q is a S,-sub-
group of @. Then by Lemma 26.1, Q S . Since the derived group
of M/H,('IN) is nilpotent, we have Q < M. Thus, if 7 is the largest.
subset of 7(IM) — o(M) such that some S.-subgroup of M centralizes
H,(M), then M contains a unique S.-subgroup E, (M), E(M) is a
normal nilpotent S-subgroup of M, E, (M) is a S-subgroup of G,
and the structure of the S,-subgroups of E,(MM) is given by Lemma.
26.2. We set H(IN)=<E(M), H(M)>=E,(M) x H,(M). Since E,(M) M
and E,(IM) centralizes H,(M), and since IM is the unique maximal
subgroup of & containing H,(M), it follows that E,(IMN) is a T.I. set
in G.

If per,N7* and P is a S,-subgroup of G, then the definitions
of 7, and 7* imply that 2,(Z,(%)) is of type (p, p). In this case, we
set T(P) = Cyx(A(Z(P))), and remark that T(P) char B, |P: T(P)| =
p. Furthermore, if P is an element of order » in T(P), then Cy(PY
contains an elementary subgroup of order . If qem, — m*, set
T(RQ) =2, O being any S,-subgroup of &. The relevance of 7T(Q)
lies in the fact that if @ is any element of T(Q) of order ¢, then
C(Q) is contained in only one maximal subgroup of &, namely, the
one that contains Q. This statement is an immediate consequence of
the theorems proved about .o%4(XQ)), explicitly stated in Theorem 25.5..

If A e 2], then A is contained in a unique maximal subgroup M
of ©, so we set M(A) = M. The existence of the mapping M from
&5 to _#; is naturally cruecial.

If Me _+;, set HDY) = HI). If Me_#, let HEN) consist of
all elements H in H(IMN)* with the property that some power of H,
say H, = H™ is either in E,(M)* or is in T(Q)* for some S,-subgroup-
LQ of M with q € 7(H(M)).

Let gem, and let Q be a S,-subgroup of & with 7T(Q)cQ; let
7 (L)) denote the set of subgroups L, of Q of type (g, ¢) such that
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Ly = 2(C5(Q)) for some element @ in Q,. If Qe .7(Q), then Q2
2,(Z()). Furthermore, if gem, and Q, is a subgroup of ® of type
{q,q), and if L, is contained in at least two maximal subgroups of
S, then Q,e 7(Q) for every S,-subgroup Q of & which contains Q.

LEMMA 26.5.
(i) If Me _#, then HW) is a T.I. set in ©.
(i) If WMe _#, then HM) i3 a T.I. set in ©.

Proof.

(i) H(IRY is eyelic and normal in M, by Lemma 26.2. Hence,
if He HEM)* N HEN?)'* for some G in @, then NKH)) 2 (M, M*),
so GeM, as required.

(ii) It is immediate from the definition that ﬁ(ﬂﬁ) is a normal
subset of W, so I;V(EIR) is a T.I. set in M. Suppose Ge® and
He HY) N HWY®. Choose n so that K = H* is in either E(I)* or
T(X)* for some S,-subgroup Q. of H(M), and such that K is of prime
order. If Ke E,(M)*, then since (| E,(M)|, | H(M)|) =1, it follows
that Ke E,(M)%*. Hence C(K) 2 <{H,(), H(M)*>, and so GeM.
Suppose Ke H(M)*. Then Cy(K)e () and so C(K) S M. This
implies that H,(M) N H,(M)® contains non ecyclic S,-subgroups. By
Theorem 25.6 (ii), we again have Ge M. The lemma is proved.

With Lemma 26.5 at hand, it is fairly clear that the one remaining
obstacle in this chapter is 7*. In dealing with 7*, we will repeatedly
use the assumption that |@| is odd.

LEMMA 26.6. Let pem, let P be a S,-subgroup of &, and let
WM =MCP). If P, 18 any non identity subgroup of T(P) and P, s
contained in the p-subgroup P* of &, them N(P*) & WM.

Proof. In any case, 3* = I, by Theorem 25.6 (iii). If P* is non
cyclic, then N(2,(3*)) contains an element of .(*B,) for some S,-
subgroup P, of W and we are done. Otherwise, 2,(P*) = 2,(%,), so
N(2,(3*)) contains an element of .4(J3), and we are done.

LEMMA 26.7. Suppose p,qem, UT,, pF*q, L 18 a S,-subgroup
of & and P is a S,-subgroup of N(X). If P 18 cyclic, then P 13
prime on L.

Proof. Suppose false. Then ¢ = +1 (mod p), and every p,g-
subgroup & of ® is g-closed. Also 2,(P) & Z(B*) for some S,-subgroup
P* of @, by Lemma 26.2 and || > p. If P* is eyclic, or if P* is
non abelian, then P = N(2,(B)), by Lemma 26.1. Since every chief
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g-factor of N(2,(P)) is centralized by N(2,(P)), it follows that P
centralizes C(2,(P)) and we are done.

If P* is abelian and non cyclic, then P* normalizes some S,-
subgroup Q* of N(£2,(%P)). Since the lemma is assumed false,
Co(2(P) #1, so Q* #1. If & is a maximal p, g-subgroup of &
containing $*Q*, then & is g-closed, so contains a S,-subgroup of &.
This violates the hypothesis of this lemma.

LEMMA 26.8. Let pem, qcn(®) and suppose that qexn, Um, or
p+~q. If & is any p, q-subgroup of & and K contains an element
of A (P) for some S,-subgroup P of O, then & is p-closed.

Proof. Let M = M(R). The hypotheses imply that p||Hy(I?)|
and ¢t | H(M)|. The lemma follows.

LEMMA 26.9. Let pem, qecn(®) and suppose that qerm, Um, or
p~q. If Q is a q-subgroup of & which is normalized by the cyclic
p-subgroup P of &, then P is prime on .

Proof. If |B| = p, the lemma is trivial. Otherwise, the lemma
follows from Lemma 26.8, since N(2(P)) contains an element of
S (R,) for some S,-subgroup P, of G.

LEMMA 26.10. Let M e _#Z, and let P be a S,-subgroup of M for
some prime p. If P is mon abelian and P L W', then P does not
contain a cyclic subgroup of index p.

Proof. We can suppose that Pe.2;, for if Pe 27, then M =
M(P) and P S W by Theorem 25.6 (ii). Hence, proceeding by way
of contradiction we can suppose that P = gplP, P,|P/" =P =1,
PP,P, = P+ where n = 2. Note that P’ = (P .

If YV is nilpotent, then P’ < M, so M = N(P') by maximality of
M. This implies that P is a S,-subgroup of & which is not the case.
Hence, M is not nilpotent. In particular, Me_~. It follows that
p + q for all ¢ in w(H,(MN)).

We first show that E, () = 1. For ' centralizes E,(M), so if W,
is an element of _# containing N('), then E;(I) normalizes some
S,-subgroup B, of M, with P = PB,. It follows from Lemma 8.16 that
E,(I) centralizes PB,. If E,(M) + 1, then B, & M, which is not the
case, so E, (M) = 1.

Choose ¢ in 7(H(IM)) and let Q be a S,-subgroup of I normalized
by B. We can now choose A S T(Q) such that A is normalized by
2,(P), is centralized by some non identity element P of 2,(P), but is
not centralized by 2,(P). For otherwise, 2,(P) centralizes T'(X), and
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N(Q,(B) & M, which is not the case. For such a choice of A and
P, let & be a S, -subgroup of C(P) which contains 2A2,(*p). By Lemma
26.7, there is a S,-subgroup &, of & which contains 2 and is contained
in M. Since 2,(P) does not centralize A, and since P+ gq, a S,-
subgroup £, of & is contained in 25, by Lemma 26.8.

We wish to show that & <1 & This is clear if £, contains an
element of %4(Q*) for some S,-subgroup L* of &, by Lemma 26.6.
Otherwise, Lemma 8.5 implies that &, < &, since ¢ > p. By Lemma
26.6, £ = M, so M contains a S,-subgroup of C(P). This implies that
(P> # {PF"">. Since the p subgroups of P of order p different from
(PP are conjugate in P, and since IAI(EU%) is a normal subset of N,
we can suppose that P = P,

Let B* be a S,-subgroup of & containing P and let W = 2,(Z,(PB*)),
so that WN P = (P, or else pem, It follows that P,W central-
izes P, for some W in . But M contains a S,-subgroup of C(P),
so C(P) N WM contains an element of order equal to that of P, W.
Since P,W and P, have the same order, a S,-subgroup of C(P)N W
has exponent p*, which is not the case. The proof is complete.

LEMMA 26.11. Let We _# and let P be a S,-subgroup of M for
some prime p. If P 18 nmon abelian, then P & W'

Proof. First, suppose pem,. If Pe .27, we are done. Other-
wise, P contains a cyclic subgroup of index » and we are done by
the preceding lemma.

We can now suppose that pem,. If I’ is nilpotent, the lemma
follows readily from Lemmas 26.1 and 26.2. We can suppose that
MW is not nilpotent and that P £ W'. Since P is non abelian, Lemma
26.2 implies that 2,(P) is of order p°, or else P is metacyclic. In the
second case, we are done by the preceding lemma.

We first show that E,(IM) = 1. Since 2,(Z(P)) centralizes E,(MN),
it follows readily that N(E,(IM)) dominates P, by Sylow’s theorem.
If E(M) #1, then M = N(E,(M)), and so PL S WM, by Lemma 26.1,
and we are done.

Let & be a S,-subgroup of M which is normalized by B, with
q € T(H(IR)).

We show that Q = T(Q). For otherwise, P centralizes Q, by
Lemma 8.16, so that N(P') & M. By Lemmas 26.1 and 26.2, P S
N(P'), contrary to P &£ W'. Hence, O = T(Q).

Let 8 = Z(2,(P)). We next show that 3 has no fixed points on
Qf. Let 9, =2 NC(8), and suppose by way of contradiction that
Q, #+ 1. Let £ = N(38), and let ¥ be the maximal normal subgroup
of € of order prime to pq. Let &,, &, be permutable Sylow subgroups of
g P, O, S L. Since &, = ¥, it follows that £ is not contained
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in any conjugate of M. This implies that L, € 2. This in turn
implies that &, centralizes every chief g-factor of £, by Lemma 8.18.
Hence, 8, </ &,2, and it follows that N(Z,) covers £/¥2,. Since
N(Z) S I, by Lemma 26.6, we have a contradiction. Hence, Q, = 1.

We next show that if Pe2,(p) — 3, then C(P)< M. This is
clear if C(P) N Q is non cyelic, since Q = T(Q), so suppose C(P) N Q =
LQ, is cyclic. We remark that Q, # 1, an easy consequence of the
preceding paragraph.

Let I, be a maximal subgroup of & containing C(P), and let
LQ* be a S;-subgroup of M, containing L,. If O* is non eyeclic, then
LQ* is contained in a unique maximal subgroup MM¢ of ®, Ge®,
and since Q* S M,, we have WM, = Me. Since M N M 2 Q,, and
since L, S T(Q), we have MM = M. Thus, we can suppose that O*
is cyelic.

Since 3 acts regularly on Q,, we can suppose that a S,-subgroup
P* of M, normalizes O* and that (P, 3> & P*.

If 9| is nilpotent, then 2,(V*) < M,. Since 2,(T*) = 2,(Q,), we
have M = M,. Hence, we can suppose that M’ is not nilpotent.

Choose r in w(H,(IM,)), and let R be a S,-subgroup of M, normalized
by P*Q*. Since Q* is cyelic, ¢ ~ r. Since ¢ * r, O* does not cen-
tralize R. It follows from Q* = (P*Q*)’ that R = T(R), by Lemma
8.16. Since ©*3 is a Frobenius group, it follows that R, = RN C(B) #
1. Let € = N(B).

Let & be a S, ,-subgroup of € which contains R, and P*, and
let &, be a S,-subgroup of & containing R,. If K, is non cyeclic, then
R,e2] 350 RS M. If &, is cyclic, then in any case & & M,, since
R =TMR). Let &, be a S,-subgroup of & If P* does not centralize
R,, then r > p, and so &, < &, and once again & S M,. If P* cen-
tralizes R, and R, 4 &, then K, < K. Since the structure of &, is
determined by Lemma 26.2, and since R, centralizes P*, it follows
that R, centralizes &,, so that 2,(R) < &, and once again & & IM,.
Thus, in any case, we see that £ = IM,. This implies that 3 S MW,
80 3 centralizes every chief ¢-factor -of IM,. This is absurd, since
BQ* is a Frobenius group. We conclude that C(P) & It for every P
in 2,() — 3.

We will now show directly that N(2,())=M. Choose N € N(£2,(P)).
Then 2,(B) normalizes O and QF. Since 8 has no fixed points on
QF, QF is generated by its subgroups Q¥ N C(P), Pe 2,(B) — 8. By
the preceding paragraph, we conclude that QY S M. Since MY is the
unique maximal subgroup of ® containing QF, we have I = IMN¥,
so NeIM. By Lemma 26.1, P S N(2(P)), so P <S P. The proof is
complete.

LEMMA 26.12. Suppose Me _# and P is an abelian, non cyclic
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S,-subgroup of W for some prime p. Suppose further that a S,-
subgroup of & is non abelian. Then P = P, X B,, where |P,| = p,
B, centralizes H(W), PLLH(MN) is a Frobenitus group with Frobenius
kernel H(IMM) and P, contains 2,(Z(B*)) for every S,-subgroup P* of
& which contains P.

Proof. Let P, be a S,-subgroup of & containing P. If pen,
then 2,(P)e . 7 (B,), and if o is any automorphism of P, of prime
order s, then 8 < p, by Lemma 8.16. The same inequality clearly
holds if pem,.

Choose ¢q in 7(H(M)) and let O be a S,-subgroup of M normalized
by B.

Let 8 = 2.(Z(B,)). We will show that Q3 is a Frobenius group.
Let € = N(3) and suppose by way of contradiction that Q,=QNE€ #1.
First consider the case that pem,. Let I, = M(C), and let Py, be a
S,-subgroup of M, normalized by Q, with <= B,. Then [Q, P] &
QNP, =1, so O, centralizes P. Since 2,(P) & 7 (Pw), it follows
that Q, centralizes . Thus, if ¢ e 7 (E, (W) or T(X) =1, we con-
clude that P, & WM, which is contrary to hypothesis. Otherwise,
T(RQ)cQ, or germ, U, so that ¢ > p, or P centralizes Q. But in
these cases, we at least have N(Q,) & M, so Q, +# XV, which yields
q > p, and so a S,-subgroup of M N MW, is non cyclic, and centralizes
Pw. Again we conclude that L, & M, which is not the case. Hence,
we can suppose that pe ..

Let & be a S, subgroup of € containing PY,, P < K,, O, S K,
and let &* be a maximal p, g-subgroup of ® containing &, &, & &;,
!, S &, where &; is a S,-subgroup of &* and &) is a S,-subgroup
of ®*. Since P, is a S,-subgroup of G, &, = & is a S,-subgroup of
®. If & contains an elementary subgroup of order ¢° then & < &*,
and maximality of &* implies that &* is contained in a conjugate of
M, contrary to hypothesis. If £ does not contain an elementary
subgroup of order ¢° then either ¢ > p or P centralizes Q,. If ¢ > p,
then & < 8*, so once again &* < M for some Ge®. If ¢ < p, then
K < K*, and since Q, centralizes P, O, centralizes &;, by Lemma
26.2. In this case, 0,(8*) = 1. If 0,(8*) is non cyclic, then &* & IM?,
either by Lemma 26.6, in case q € w,, or because Q <1 MM in case q € 7,.
If 0,(8*) is cyclic, then Q, < 8*. In this case Nj(X{,)®P is conjugate
to a subgroup of R*, since £* is a S-subgroup of N(L,). Since
K < K*, it follows that P centralizes N(X,) so that Ny(Q,) centralizes
some S,-subgroup of N(Q,). If ¢ e n(E,(M)), this is not possible. But
if g em(H(M)), then Ny(LQ,) is non cyclic, so N(N (L) S M. Thus,
in all these cases, M contains a S,-subgroup of &. Since this is not
possible, B0 is a Frobenius group, and so BH(IN) is a Frobenius

group.
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Suppose M e _#. We will show that if B, is any subgroup of
B of order p with C(38,) N H(M) # 1, then C(8,) & M. Let M, e #
with C(8,) & M,. First consider the case W, = M¢, for some G in
®. Let L, be a non identity S,-subgroup of C(3,) N H(IMM) and let
LQ, be a S,-subgroup of C(3,) N H(IM,) containing ,. If O, CQ,, then
Lemma 26.2 implies that Q, is a S,-subgroup of ®&. In this case,
since M, and M are conjugate and since P is a S,-subgroup of IMN, P
contains a subgroup of order » which centralizes the S,subgroup of
M. Since BH(EN) is a Frobenius group, this implies that if 3, is
any subgroup of P of order », then either B,H,(I) is a Frobenius
group, or 3, centralizes H,(IN), the S,-subgroup of M. This violates
the choice of Q,. Hence, Q, =X, If a S,-subgroup of & is abelian,
then Q, < <M, MD, so M = M,. If some S,i-subgroup of & contains
2.2, in its center, then by Lemma 8.10, I = 9&,. Hence, we can
suppose that Q, is of order ¢ and {, & Z(H(M)). In this case,
NE)NWM, is of index ¢ in M, and N(Q) N W is of index ¢q in I,
and N(Q,) N M, contains C(3,).

Let = N(Q,). If & is contained in a conjugate of I, then
NEQ)NHI) < 2 so 8 S M, since N(Q,) N HEIR) < M,. Similarly,
LS M, and we are done. If L is contained in an element of _#;, then
since 3H(M) is a Frobenius group, we see that N(Q,) N H(MN) < <&, T,
and € & .

Hence, in showing that C(3,) & M, we can suppose that C(3.)
is contained in an element M, of _#. Since 3:(C(3,) N H(M)) is a
Frobenius group, this implies that 8 & M. Since P is a S,-subgroup
of M, we conclude that P is a S,-subgroup of WM,. By what we have
already proved, BH(IR) is a Frobenius group. This implies that
(C(8,) N HEON)H,(WM,) is nilpotent, so C(3,) N H(IN) centralizes H,(IN,).
Since N, is the unique maximal subgroup of & containing H,(M), it
follows that H(IN) centralizes H,(M,), so that M = IM,, which is absurd
since Me _#, M e_». We conclude that C(8,) & M.

We next show that if Me_~ and C(3,) contains an element of
ﬁ(zm), then C(2,) & M. Here, as above, 2, is a subgroup of P of
order p. Let Q, be a PB-invariant S,-subgroup of C(3,) N M with
QN H®) # @. From Lemma 26.7, we conclude that C(8,) N M
contains a S,-subgroup Q, of C(&,), and we can assume that O, = Q,.

Let WMe #Z, CB)E M. If M =M% then MNM, 22, so
M =M,. If WM is nilpotent, then by Lemma 26.7, we see that
M, N M contains a S,subgroup O, of M, which is J-invariant. Since
BQ, is a Frobenius group, Q; < M, and so W, = M. We can suppose
that ! is not nilpotent, and that M, = M. In particular, W, e _~Z.
It follows that P is a S,-subgroup of I, so that IH(MN,) is a Fro-
benius group, and so L, centralizes H(M,), and WM = W, follows.
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Thus, M = W, in all cases.

Suppose now that P contains two distinct subgroups 3, 3. such
that C(B,) N ﬁ(ﬂ]&) #+ @ and C(8) N ﬁ(sm) #+ @. We can choose P in
B, such that 3, =387. If Me_#, we get an easy contradiction.
Namely, C(3) S MNM?, and so M =MWM* and PeMNP, =P, so
that 8, = 8, contrary to assumption.

If M e _#, then M N M” contains C(3,) N H(WM). If H(M) contains
an abelian S,-subgroup & with C(8,)N<Q # 1, then C(8,) N2 < AW, M7,
and M = MP, which is the desired contradiction. Otherwise, if Q is
a S,-subgroup of H(IM) with C(8,) N Q =9, # 1, then N(L,) N M is of
index ¢ in M and N(Q)NWM? is of index ¢ in WM”, while both
N(Q) N HAN) and N(Q,) N H(IM®) are S-subgroups of N(L,). Further-
more, since a S,.-subgroup 2, of N(Q,) is g-closed, it follows that
PN(Q,) N HEY) and PN(Q,) N H(IRF)) are S-subgroups of N(L).
Furthermore, P has a normal complement in N(Q,), since g€, and
no element of P centralizes N(Q,) N Q. By the conjugacy of Sylow
systems in N(Q,), we can therefore find CeC($)N N(Q,) such
that (N(Q) N HEAF) = N(Q,) N H(R). Since (N(L,) N H(ER” )¢ =
N(Q,) N HAY, and N(Q,) N HA) < M, we conclude that M = meo,
so PCe M, which is not the case, since C is in M and P is not.

Hence, there is exactly one subgroup 3, of P of order p which

has a fixed point on H (M), so B, centralizes H(M). Since P = B, x PB*,
where P* 2 8, the lemma follows.

Lemma 26.12 is quite important because, given MM, (and the
hypothesis of Lemma 26.12) it produces a unique factorization of 2,(p).
Namely, exactly one subgroup 8 of P of order p is in the center of
a S,-subgroup of @&, and exactly one subgroup R, of of order p
centralizes H(M), and 3 # 3, This is a critical point in dealing
with tamely imbedded subsets. Furthermore, Lemma 26.12 shows
that H(O) is nilpotent, a useful fact.

LEMMA 26.18. Suppose Me _» and P 18 an abelian, non cyclic
S,-subgroup of WM for some prime p. Suppose further that a S,-
subgroup of & is abelian. Then the following statements are true:

(i) B 18 a S,-subgroup of ®.

(ii) C((P) & M.

(iii) If P and P, are elements of P which are conjugate in &
but are not conjugate in M, either C(P)N HW)=1 or C(P)NHEN)=1.

(iv) FEither M dominates 2,(P) or C(2,(P)) N HEAR) = 1.

(v) One of the following conditions holds:

(a) P&
(b) N(P,) S M for every mon identity subgroup P, of P such
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that C(B,) N H(M) + 1.

Proof. If pem, then Pe .27 and all parts of the lemma follow
immediately. We can suppose that per,.

In proving this lemma, appeal to Lemmas 8.5 and 8.16 will be
made repeatedly.

If 2,(B) centralizes H(M), then M = N(2,(P)) and all parts of
the lemma follow immediately. We can suppose that 2,(P) does not
centralize H(M). This implies that H(R) N P = 1.

We first prove an auxiliary result: if & is any p, g-subgroup of
@ containing 2,(P) and if & N H(MN) # 1, then K is g-closed. To see
this, let Q be a S,-subgroup of & N H(IM), and let P, be a S,-subgroup
of £ N M which contains 2,(B). Let K, be a S,-subgroup of K con-
taining Q and let &, be a S,-subgroup of & containing PB,. If K, e .23,
then & & M? for some G in G and so R, < &. If &, € 22, then K does
not contain elementary subgroups of order p°or ¢°, so either &, < & or
KR IfRIK, and &, 4 K, then p>q. Suppose gem, U7, Then
L centralizes the S,-subgroup Q, of M. There is no loss of generality
in supposing that & is a maximal p, g-subgroup of ®&. It follows
from this normalization that O/(8®) is a S,-subgroup of ®, and f=
£, xK,. Hence, we can suppose g<z,. Since & ¥ & K, e.25. If
O (8) is not of order ¢, then & is contained in a conjugate of M, by
Lemma 26.7, and we are done. Hence, we can suppose that Q=
O,8) is of order q. But now N(Q) N M contains S,-subgroups of
order exceeding g, so that S, -subgroups of N(Q)) are g-closed. Since
K S NR), R is g-closed

(i) is an immediate application of the preceding paragraph, since
some element of P* centralizes an element of H(N)*.

We turn next to (iv). Suppose C(2,(B)) N HM) =1, and Q, is

a non identity P-invariant S,-subgroup of C(2,(P)) N H(M). Let Q,
be a S,-subgroup of N(2,(PB)) permutable with P. By the first
paragraph of the proof, P normalizes L, so by Sylow’s theorem
N(Q,) dominates 2,(B). Suppose for some 7 =1, P normalizes O,
and X, dominates 2,(). Let L,,, be a S,-subgroup of N({,)
permutable with . Then P normalizes Q,;, and so Q,,, dominates
2,(%P). Since L, SO, S ---, we see that some S,-subgroup of &
dominates £2,() and is normalized by . It follows that the normal-
izer of every S,-subgroup of I dominates 2,(P*) for some M in I,
and so M dominates 2,(P). (iv) is proved.

Notice that if C(2,(B)) N H(M) #= 1, then by (iv), elements of P
are conjugate in € if and only if they are conjugate in 9. Thus,
in the case, it only remains to prove (ii). We emphasize that in any
case (i) and (iv) are proved.
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Since P = W, if Me_#, then P M and the lemma follows.
We can suppose that Me _~#. Let qen(H(M)) and let Q be a PB-
invariant S,-subgroup of W. If 2,(P) centralizes T'(Q), then (ii)
follows immediately. Thus, we can choose P in 2,(B)* such that 2,(p)
does not centralize T(Q)NC(P) =Q,. If Q, €27, then C(P) = M,
so that (ii) holds. If Q,e 25 then L, is eyclic, by Lemma 8.16, and
the containment P S IMM'. Hence 2,(P) = (P> X B,, where P,Q, is a
Frobenius group.

Let € = C(P). If € is nilpotent, then Q, = 0,(€), so by Lemma
26.7, € & M, and (ii) follows. Suppose €’ is not nilpotent. Hence,
€ contains an elementary subgroup of order »*® for some prime ». If
ren(H,(IM)) then € & WM¢ for some G in &. Since M NI 2 Q,,
we have I = M¢ and (ii) follows. Suppose r ¢ 7(H,(IN)). In this case,
2,(P)Q; normalizes a S,-subgroup R of €. Since P centralizes R
and B, is a Frobenius group, and since q +« r, it follows that
RNC(P) 1. Let I, = M(€). By (iv) applied to I, we get
PSS M. Since QN HEI) =1, and since the derived group of
M/HEN,) is nilpotent, P centralizes L,, which is a contradiction.
Hence, C(P) = M, and (ii) holds. The lemma is proved in -case
C(2,(P) N HWM) + 1, and (i) is proved in all cases.

Throughout the remainder of the proof, we assume

(26.1) CMP)NHI?) 1
Suppose B, is a non identity subgroup of B and

(26.2) C(PB)N HEM) #1.

There are three cases:
(a) Me.#Z and C(P) NHDY) # Q.
(b) Me A and C(PB)NHA) = 2

(c) Me 4.
In each of these cases, we will show that
(26.3) N(B) &S M

Case a,. N(%L,) is nilpotent.

Choose q so that C(B,) N H(IM) contains an element of order g,
and let Q, be a P-invariant S,-subgroup of C(P,) N H(M). By (26.1),
2, E NP, so QS O(N(B). If qen(H(I), we conclude that
NO(N(By)) & M, by Lemma 26.7. If qen(E,(M)), then O(N(T))
centralizes IL(&Iﬁ)" for some G in &, and so N(Q,) 2 {<H,(IM), H (M),
and G eI follows.

Case a,. N(TP,)' is not nilpotent.

In this case, N(%,) contains an elementary subgroup of order r*
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for some prime ». If ren(H(IMM)), then M(N($,)) = M¢, for some G
in ®. Since M N HM) + @, we have M = Me. If r¢r(HDY), let
R be a S,-subgroup of N(3,) normalized by 2,(P)Q,, where L, is a
non identity S,-subgroup of C(P,) N H(IM), as in Case a,. Let 2,(B) =
2:(B,) X B, so that OB, is a Frobenius group by (26.1). If PR is a
Frobenius group, then Q, centralizes R, and R & M. This is not the
case, since r + r, for all r, e 7(H,(M)). Hence, P, has a fixed point
on R¥ so 2,(P) has a fixed point on H(M(R)). By (iv) applied to
M), it follows that 2,(P) & M(R), and so 2,(P) centralizes T,
which is not the case. Thus (26.3) holds in case (a).

In analysing case (b), we use the fact that E, (M) < H(M), and
that if B is any subgroup of H(IR) which is disjoint from E(im),
then B is of square free order and qe=m, N #* for every ¢ in w(3B).

Let Q be a non identity P-invariant S,-subgroup of C(P,) N H(IN).
so that | Q] = q. Suppose that (26.3) does not hold.

We will show that BLQ is contained in a maximal subgroup I,
of & such that I is not nilpotent, and such that I, is not conjugate
to M.

Case b,. N(PB,) & M€ for some G in 6.

Consider N(Q). Since N(Q) N M and N(X) N WM have non cyclic
S,-subgroups, and since M + M¢, it follows that N(L) is contained in no
conjugate of M. Let O, be a P-invariant S,-subgroup of N(L) N H(EM).
If N(Q)’ is nilpotent, then Q, S O,(N(L)), and so N(Q) SIM by
Lemma 26.7. This is not the case, since N(Q) N M has non eyclic
S,-subgroups. Hence, N(Q) is not nilpotent, so we take IM, =
M(N(LQ)).

Case b,. N(P,) is nilpotent, but N(%,) is not contained in any
conjugate of M.

Since QS NP, QS 0,(N(By)). If O(N(Py) is not of order g,
then N(P,) S M for some G in G. Suppose that O = O(N(B,)) is
of order q. Let N, = N(Q), so that N, N WM has non cyclic S,-subgroups
and N(B,) S N,.. Since N(P,) is contained in no conjugate of I,
neither is N,. If N is nilpotent, then a S,-subgroup of N, N WM is con-
tained in 0,(M,), by (26.1) and so N, = M, which is not the case.

We apply (iv) to WM,. If C(2(P)) N HI,) + 1, then P S WM, so
that P centralizes L, which is not the case. Hence, (26.1) holds
with 9, replacing M. Let P, be any subgroup of P of order p
different from 2,(B,). Then PO is a Frobenius group. Choose
ren(H(IM,)) and let R be a S,-subgroup of M, invariant under PO.
If Q does not centralize T'(R), then C(B,) N T(R) = 1, so that case
(a) holds with M, replacing M, P, replacing P,.

Suppose then that Q centralizes T'(R). Then N(Q) S M, so a
S,-subgroup L, of N(L) N M is contained in M,. We suppose without
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loss of generality that Q, normalizes R. If now %, is any subgroup
of B of order p which does not centralize Q,/Q, then since X, does
not centralize T(R), we conclude that C(B;) N T(R) + 1.

Thus, in all cases, if BF, By, ---, P¥ are the distinet subgroups
of B of order p which have fixed points on ﬁ(m), then n = p, so
that n = p or » + 1.

Choose Ne€ N(2,(B)). Then there are indices 7, j, not necessarily
distinct, such that PF = Pr¥. If ¢ = j, then Ne M, by (a). If 7+ jJ,
then N(PF) S T, N MY, so that HM) N + @ and M, = MY,
Hence, N(2,(P)) S WM, so 2,(P) & W;, and 2,(*P) centralizes O, which
is not the case. Hence, (b) implies (26.3).

We will now complete the proof of this lemma in case Me _~,.

Since some element of 2,(P)* has a fixed point on ﬁ(ﬂ]%), (ii) holds
by (26.3). Also, by (26.3), alternative (v)b holds. It remains to prove
(iii). Suppose P,, P, are elements of P which are conjugate in G,
but are not conjugate in M, and that C(P)NHEIMN) # 1,71 =1, 2,
Theorem 17.1 is violated.

We next verify (26.3) under hypothesis (c).

Suppose by way of contradiction that (26.3) does not hold. Let
L be a non identity P-invariant S,-subgroup of C(PB,) N H(IM). We
will produce a subgroup & of & such that & is not nilpotent, and
such that QP S &. Once this is done, then it will follow as in case
b, that p of the p 4+ 1 subgroups of B of order p have fixed points
on HM(R))*, and (26.3) will follow.

Suppose M, is a maximal subgroup of & containing N(PB,). If
M, is nilpotent, then Q = O, (M). If O,(WM) is non abelian, then
M, = M¢ for some G in &. Furthermore, from (26.1) and the fact
that Q is not a S,-subgroup of &, we conclude that Q = 0,(I,) N C(Ly).
Hence, N(Q) contains C(P,). Let M, be a maximal subgroup of &
containing N(XQ). If I is nilpotent, then M, = M and (26.3) holds.
Hence, M, is not nilpotent, so we can take & = M,. If O, (M, is
abelian, then I = M, and (26.3) holds. Thus, (26.3) holds in all cases.

The completion of the proof that (26.3) implies this lemma is a
straightforward application of Theorem 17.1.

LEMMA 26.14. Suppose M e _# and P is a non abelian S,-subgroup
of M. Then N(2(Z(P)) S M. Furthermore, one of the following
conditions is true:

(a) 92.(Z(P)) centralizes H(IN).

(b) N(B,) S WM for every non identity subgroup P, of B.

() B S HIR).

Proo . Suppose pem,. If Pe.2,, then M = M(P), and so
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N(2(Z(P))) < M. Since P S H(M), the lemma is proved. If Pe .27,
then B contains a cyclic subgroup of index p. Since P is assumed to

be non abelian, P is a non abelian metacyclic group, so P & W, by
3.8. Lemma 26.10 is violated.

Through the remainder of the proof, we assume pe 7,

Let 3 = 2,(Z(*B)), so that 8 is of order p, by Lemma 26.2 and
Lemma 26.10.

If 9 is nilpotent, then 8 <] M, and all parts of the lemma follow.
We can suppose that ' is not nilpotent. In particular, Me_#Z. We
can further assume that p ¢ 7(H(IM)).

Since P is non abelian, 3 centralizes E,(IN).

Choose q € 7(H,(IN)) and let O be a P-invariant S,-subgroup of k.
If gen*, then B centralizes Q.

Thus, if 7 = 7(E(WM)) U (z* N 7(H,(M))), then B centralizes a S:-
subgroup of M. If 7 = w(H(IM)), all parts of the lemma follow.

Let ren(H()) — & and let R be a S,-subgroup of M normalized
by B, and such that 3 does not centralize R. If there are no such
primes r, we are done. '

Let B, be any subgroup of P of order p different from 3. We
will show that N(P,) = M.

Since 8 does not centralize R, R N C(B,) £ C(B). Set R, =R N C(P,).
If R,e .2} then N(PB) S M. Otherwise, R, is a non trivial cyeclic
subgroup of R, and 3R, is a Frobenius group.

Let M, be a maximal subgroup of & containing N(B,). If M} is
nilpotent, then R, & 0,(IWM)), so M, = M, by Lemma 26.6. We can
suppose that I is not nilpotent and that M, is not conjugate to M.
If a S,-subgroup of M, is non abelian, then 3 centralizes R,, which is
not the case. Hence, a S,-subgroup of I, is abelian and non cyeclic.
We can apply Lemma 26.12 to I, and a S,-subgroup P* of M, which
contains B,3. We conclude that 3H(,) is a Frobenius group. Since
BR, is a Frobenius group, R, centralizes H(IM,), and so M = M,. We
conclude that I contains N(P,) in all cases.

Now let B, -+, B, be the distinct subgroups of P of order p
different from 3. Here n» = p* + p. Let £ be any proper subgroup
of & containing 2,(P). Let &, = 0,.(8). Since &, is generated by its
subgroups C(B;) N 8, 1 <1 <n, we have L, S M. Let &, = 2 N N(2(D)),
and choose L in ¥,. We can then find indices ¢, 7, not necessarily
distinet, such that ¥ = PB,. Hence, N(PF;) S TN WME,  Since N(PB;)
contains an element of R* = ﬁ(‘)ﬁ), we have I = ME, Hence, L = M,
so in particular, N(3) & .

Let 3, be any non identity subgroup of P. If B, is non cyelic,
then NS NB)ESM. If P, is cyclic, then N2,(PB)) & M. The
proof is complete.



26. THE MAXIMAL SUBGROUPS OF & 915

LEMMA 26.15. Suppose Me _#,A is a cyclic S-subgroup of WM
and ANM' =1, Then A is prime on H(WM), and CA) N H(M) 8 a
Z-group.

Proof. Suppose U is prime on H(M), but that L is a non cyclic
S,-subgroup of C(XA) N H(M). Choose pen(A) and let A, be the
S,-subgroup of A. Since N(,) £ M, it follows that Qe 27. Thus,
if g em,, Q is a S,-subgroup of ®, while if g € ,, O is also a S,-subgroup
of @, by Lemma 8.12. Since Q € .25, we have q € 7,, so that I = N(Q).

Let M, be a maximal subgroup of & containing N(,). If a
S,-subgroup of & is cyclic, then IM = N(X) dominates 2A,, which is
not the case, since A, N W' = 1. Hence, pen,Um,. Let A} be a
S,-subgroup of M, permutable with Q. If A} is a S,-subgroup of G,
then Q normalizes A¥. Otherwise, © normalizes A} since A, C AF,
and Lemma 8.5 applies to QA}.

Let & be a maximal p, ¢g-subgroup of & containing 2}, and let
f, be a S,-subgroup of  Then &, < &, so that &, is a S,-subgroup
of @. Let I, be a maximal subgroup of @ containing N(R,).

If Q were non abelian, then I S M, by Lemma 26.14, which is
not the case. Hence, Q is abelian. If pemx, then by Lemma 26.13,
we have N(Q,(Q)) < I, since O centralizes A, + 1. Since this is
impossible, we see that p e m,.

If A, £ &, then by Lemma 26.1, together with the fact that
N(Q) covers N(R,)/8,C(8,), we see that 2, NI’ # 1, contrary to
hypothesis. Hence, 2, = &,. Since 2, = C(V) N &,, this implies that
R, is a non abelian group of order »* and exponent p.

Since some element of Qf has a non identity fixed point on H(IR,)*,
and since MM’ centralizes O, we see that M’ = M,, by Lemma 26.13.
Since N(Y,) S M, and since A, N W’ = 1, it follows that WM = M,, the
desired contradiction.

Thus, in proving this lemma, it suffices to show that 2 is prime
on H(M).

First, suppose that 2 is a p-group for some prime p. We can
clearly suppose that || = p?, and that C(2,(2)) N H(M) + 1.

Case 1. pem, Let qen(E,(MN)), sothatgenr, Um,. Lemma 26.9
applies. Let q € m(H,(IM)). Then p ~ ¢ since AN IM' = 1. Lemma 26.10
applies. If Me_~#, Lemma 26.9 applies.

Case 2. pem, and a S,-subgroup of & is abelian.

If qgen(E(M)), or ge n(HEM)) and M e _#,, Lemma 26.7 applies.

Let q e n(H,(M)), and let Q be an UA-invariant S,-subgroup of IN.
If 9 centralizes Q, we have an immediate contradiction. Hence, U
does not centralize Q.

We can suppose by way of contradiction that [C(2,()) N L, A] # 1.
If C(2,) N Qe 2 M contains a S,-subgroup of G, which is not the
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case. Otherwise, ¢ > p, so every p, g-subgroup of ® is g-closed, and
MM contains a S,-subgroup of ®, which is not the case.

Case 3. pem, and a S,-subgroup of ® is non abelian.

Here, A & N(2,(A))’, by Lemma 26.2. Since C(2,(Y)) N HM) € 2,
the lemma follows.

Case 4. pem,. In this case, also, we have A S N(2,%)), and
the lemma follows.

Next, suppose that 2 = 2, x 20,, where ¥; is a non identity p;-group,
1 =1,2. Suppose by way of contradiction that Q is an U-invariant
S;-subgroup of H(M) and that A is not prime on Q. We can suppose
that 2, does not centralize QN C(2,(2A)) = QN CW) = Q..

Let %, be a maximal subgroup of & containing N(2,(%,)). Then
AN, is not conjugate to M, either because U, is not a S-subgroup of
A, or because A, & M;. Let O, be a S,subgroup of WM N WM, which
contains Q, and is U-invariant.

Suppose O, Q,. Then A, £ H(IM,), since [Qy, U] # 1, and
q ¢ m(H(M,))). Furthermore, Q, is non cyclic. Suppose g€, In this
case, ¢ > p,, 80 a S, -subgroup 2} of M, normalizes some S,-subgroup
of My, and it follows that A} normalizes some S,-subgroup of ®. This
implies that 2, is a S, -subgroup of . But in this case U, = N(2,(2L,))’
so that 2, centralizes Q, and so Q, = Q,. Suppose gexw, If Q,e.23
then N(2,(2,)) & M, which is not the case. Hence, Q,€ .25 so that
¢ > p,.  Once again we get that Q, = Q,. Hence, we necessarily have
2, = L, in all cases.

Since ¥, is prime on H(M), from the first part of the lemma, we
conclude that Q, is cyclie.

We next assume that ] is nilpotent.

Suppose 2,(0,(M,)) = 2,(X,). Since Q, is a S,-subgroup of MW, N M,
it follows that gem, and Q, is a S,-subgroup of ®, so that I = M,.
Since L, = [Q,, U] S 0,(I,), we can suppose that O,(M,) is non cyelie.
In this case, however, 0,(M,) is a S,-subgroup of & and N, is conjugate
to M, which is not the case.

We can now suppose that I is not nilpotent.

Suppose p, ¢ w(H,(M,)). Let & be a complement for H,(M,) in M,
which contains Q,%. Then @ is nilpotent and so [Q,, ;] = 0,(C).

Case 1. qem. In this case, ¥, is a S,,-subgroup of &, and Q,
dominates ,. This violates 2, N T = 1.

Case 2. qem, and a S,-subgroup of ® is abelian. In this case,
2,([2,, A,]) = 2,(0,(F)), so once again 2, is a S,-subgroup of ® and
M dominates ..

Case 3. qem, and a S,-subgroup of & is non abelian. Since Q,
is cyclic, we have q > p,, so some S,,-subgroup €, of € normalizes
some S,-subgroup of @. But now I dominates U, since every p,, g¢-
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subgroup of @ is g¢-closed, and € dominates 2.

Case 4. qem, If gqern*, then every p,, g-subgroup of & which
contains a S, ,-subgroup of M, is g-closed, so once again M dominates
A, and ¥, is a S,-subgroup of ©. Hence, g¢r*. Since M, is not
conjugate to M, it follows that if L, is a S,-subgroup of € containing
£,, then Q, € .25, which implies that Q, is cyclic, and Q, & M. Hence,
£, = Q,, since ¥, centralizes Q,. But now Q, = [Q,, 2] < €, so € & IN.
Thus, once again ¥, is a S, -subgroup of @ and N dominates 2I,.

All these possibilities have led to a contradiction. We now get
to the heart of the matter. Suppose p, € 7(H,(IM)).

We will show that p, ¢ 7*.

Let %, be a S, -subgroup of H,(I;) containing 2, and invariant
under 2,Q,. Suppose that

(26.4) N[, ) €W

We will derive a contradiction from the assumption that (26.4) holds.

If q € &, (26.4) is an absurdity, since N([2,, &) =M. Ifger, U,
then a S,-subgroup of N([2(,, Q,]) N M is non cyclic, so g € 7, as already
remarked. If ¢ < p,, then %, centralizes a S,-subgreup of I, so X,
is a S,-subgroup of @. In this case, however, [2,, Q] < I, an absurdity,
by (26.4). Thus, if (26.4) holds, then gex, and q¢ > ..

Since (26.4) is assumed to hold, it follows that Q, is a S,-subgroup
of M N N(Y,, &]). Hence, Q, is non cyclic. We have already shown
that Q, is cyclic. We conclude that (26.4) does not hold.

If p,en*, then [2;, Q,] centralizes %,, by Lemma 8.16 (ii), so
(26.4) holds. Hence, p, ¢ 7*.

Since (26.4) does not hold, and since p,¢7m*, C([¥U,, Q) NP, is
cyclic. It follows that C(2,) NP, is non cyclic. This implies that
N(@QL,) < M, since C(A) NP, € 27. Since p, ¢ T(H(IN,)), and since ¢ > p,,
it follows that a S, ,-subgroup of M,/H(I,) is g-closed. This in turn
implies that some S,-subgroup of M, normalizes some S,-subgroup of
‘®. Since 2, is a S,,-subgroup of I, A, is forced to be a S,,-subgroup
of @, But N2, & M, and A, & NQ2L), so A, centralizes L. The
proof of the lemma is complete in case w(A) = {p,, p,}.

If |7(¥)| =38, the lemma follows immediately by applying the
preceding result to all pairs of elements of 7(20).

LEMMA 26.16. Suppose M e _# and H(IM) is not nilpotent. Then
|M: W | is a prime and W is a S-subgroup of M.

Proof. Let pen(MM/I') and let A, be a S,-subgroup of AWM. By
Lemma 26.11, %, is abelian. Suppose %, is non cyclic. If a S,-subgroup
of ® is non abelian, then H(M) is nilpotent, by Lemma 26.12. Hence,
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we can suppose that a S,-subgroup of @ is abelian. By Lemma 26.13
A, is a S,-subgroup of @. By Griin’s theorem, the simplicity of @,
and Lemma 26.15, U, contains elements A,, 4, which are conjugate in
S but are not conjugate in M. If 2,:KAD) = 2,KA,)) and if 2,(C4)D)
has a fixed point on H(IM), then N(2,(<4,>)) S M, so that A, and A,
are conjugate in M. Since this is not the case, 2,KAD)H(M) is a
Frobenius group, and so H(IM) is nilpotent, contrary to assumption.
Hence, 2,(CA)) + 2(C4,)). By Lemma 26.13, either 2,(KAD)H(IN) or
2,(KAD)H(I?) is a Frobenius group, which is not the case. Hence,
A, is cyelic.

Let % be a complement to P¥ in M, so that U is a cyelic S-subgroup
of M.

By Lemma 26.15, 2 is prime on H(M) and C(A) N H(W) is a Z-group.

Let & = [, H(N)] and suppose that || is not a prime. By
Lemma 26.3, & is nilpotent. By 3.7, & <| H(I). Hence F(HIN)) 2 K,
so that H(N)/F(H(M)) is a Z-group. It follows that HY) £ W, the
desired contradiction.

LEMMA 26.17. Suppose Me # and 7, =n(HM)N1* 7, =
T(/HON) N7*. Let ©y={py, -++, D}, D > D> +++ > p,, and 7, =
{0 - b s> -+ >q. Set t=1,Ut,. Then a S,-subgroup of M

has a Sylow series of complexion (p, +--, p,, @y, -+, qn). Furthermore,
of ret, M has r-length 1.

Proof. We first show that M has r-length 1 for each » in .
If re¢n(H(IM), this is clear, so suppose rew(H(M)). Let R be a
S,-subgroup of M and let A be a subgroup of N of order 7 such that
Ca(A) = A X B where B is cyclic.

Let R, =R N0, , M), and M, = N(R,). It suffices to show that
I, has r-length one, since M = M,0,.(M). Let BV be a subgroup of
R, chosen in accordance with Lemma 8.2, and set T = 2,(B). Then
ker (Y, — Aut B) < M, N O, (M). If A S R, then m(W) < 2, and we
are done. We can suppose that 2 & R,. This implies that m(BW) < r,
since C(A) N W has order » and W is of exponent . We are assuming
by way of contradiction that I has r-length =2, so by (B), we have
m(BW) = r. Hence, m(W) = r.

Set B, = W/D(W) and let M, = W, /ker (M, — Aut B,). Then A maps.
onto a S,-subgroup of I,. Hence M, has a normal series1 €, G, < m,,
where €, and T,/€, are 7'-groups and |C,: G, | = .

Since m(TW) = r, €, is abelian. Also M,/C, is faithfully represented
on &,/¢, and since r € 7(H(IM)), €, = M,.

By Lemma 26.16, |t : M| = ¢ is a prime, and W’ is a S-subgroup-
of M. We let Q be a S,-subgroup of M, so that QO is of order gq.
Since | : P | = | M, : M|, it follows that O maps onto WM,/C,. Let.
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A denote the image of A in M, and let O denote the image of L in
M,. Since €, is a r'-group and a ¢’-group, we assume without loss
of generality that £ normalizes 2.

Let a be the linear character of & on 2, so that @« 1. Let 8
be the linear character of Q on ,/y¥W,A. Since ¢ divides (r — 1)/2,
Cx (Q) is non cyclic. Hence, C(Q) N H(M) is not a Z-group, contrary
to Lemma 26.15.

Thus, M has r-length one for each rez. Since a S; -subgroup of

M has a Sylow series of complexion (q,, - -, q,.) and since a S,-subgroup
of M is 7,-closed, it suffices to show that a S -subgroup of It has a
Sylow series of complexion (p,, +- -, P,).

Let & be a S, , ssubgroup of It with Sylow system &;, f; where
p; > p;. By Lemma 8.16, & N N(&,) centralizes ;. Hence & is p;-closed,
since & has p;-length one. The lemma follows.

LEMMA 26.18. Let Me _#Z and let & be a complement for H(IN)
in M. Then there 18 at most one prime p in w(€) with the following
properties:

(i) A S,-subgroup of € is a non cyclic abelian group.

(ii) A S,-subgroup of & is mon abelian.

Furthermore, if n(€) contains a prime p satisfying (i) and (ii), then
a S,-subgroup of € is a Z-group.

Proof. Suppose p,, p,€ n(€), p, # p, and both p, and p, satisfy (i)
and (ii). Let G, be a S,-subgroup of & and let €, be a S,-subgroup
of & permutable with &,.

Let G, = A; x B;, where |A;| = p;, A; centralizes H(M), B, H(IN)
is a Frobenius group and 2,(B;) S Z(P;) for some S, -subgroup P; of
®,1=1,2. Assume without loss of generality that », > p,. Then
&, normalizes &, It follows that 2,(&;) centralizes €,/2,, and this
implies that 2,(€,) centralizes 2,(8,). It follows that @ satisfies E, ,..

By Lemma 26.17, N(P,) contains a S, -subgroup P} of ®&. By
Lemma 8.16, B}’ centralizes P,, so centralizes &, Since C(¥,) & M,
we see that p, € 7,. By Lemma 26.2, and Lemma 26.10, 3, now centralizes
%,. This is a contradiction, proving the first assertion.

Now suppose p € 7(®) satisfies (i) and (ii), &, is a S,-subgroup of ¢ and
¢, is a non cyeclic S,-subgroup of & permutable with €,, g € n(€), ¢ + ».

Case 1. &, is non abelian.

In this case, &, is a S,-subgroup of ® and ¢ €x, by Lemma 26.14.
Since &, S W', &, normalizes &, Write &, = A x B, where A centralizes
H(), BH(M) is a Frobenius group, and 2,(B) & Z(*P) for some S,-
subgroup of B of & with &, =PB. Then 2,(€,) centralizes € /€, N C(H(MN)).
If &, centralizes &, then ® satisfies E,, as can be seen by considering
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N(E,).

We now show that @ does not satisfy &,,. Otherwise, since
NE,) & M, we see that &, normalizes some S,-subgroup P* of ®.
Then €, centralizes P* by Lemma 26.2, Lemma 26.14, and Lemma 8.16.
This is not possible since &, is abelian.

Hence, & does not satisfy E, ,, so 2,(€,) does not centralize &, and
q¢ > p. This implies that | €, : & N C(H(M)) | =q. Hence & N C(2,(E,))=
&y is of order q.

Consider N(2,(€,)) =N. Since a S,-subgroup of <N has order
p|GE,|, it follows that a S, ,subgroup of N is g-closed. Let {, be a
S;-subgroup of N containing &}, If F, is not of order ¢, then N(2,(F,))
contains a S,-subgroup of &, a S, ,-subgroup of N(2(F,) is g¢-closed,
and a S,-subgroup of N(2,(3%,)) has larger order than ¢,. As N(C,) <
M, this is not possible. Hence §, = &* has order q. But now a
S;-subgroup of N(gF,) contains &, and Z(E,), so a S, ,subgroup of
N(J,) is g-closed. This in turn implies that a S,-subgroup of N(,)
has order larger than |E,|, which is a contradiction.

Case 2. €, is a non cyclic abelian group.

By the first part of the proof, and by Lemma 26.13, &, is a S,-
subgroup of &. Since 2,(€,) centralizes &,/&, N C(H(M)), and since
C, L C(HM)), it follows that & satisfies &,,. This implies that a
S;.-subgroup of ® is p-closed, by Lemma 26.2. Hence, &, centralizes
the center 3 of some S,-subgroup of @, since 2,(€,) centralizes 2,(B),
(where €, = 2 x B, as in Case 1). To obtain the relation [2,(,), 2,(B)]
=1, we have used Lemma 26.13 to conclude that there are at
least 2 subgroups of &, of order ¢ which have no fixed points on H(R), or
else & S9N’ in which case €, normalizes €, and so 2,(B) centralizes €,.

But now N(£2,(B)) dominates &,, so &, centralizes some S,-subgroup
of ®, contrary to C(€,) =M. The proof is complete.

LEMMA 26.19. Let M e _»#. Suppose M/H(MN) is abelian. Sup-
pose further that either H(IMM) is nmilpotent or |W: H(M)| is not a
prime. Then M is of type I or V.

Proof. Let & be a complement for H(I). Since H(IM) = W’
by hypothesis (we always have H(IM)< W'), € = M/T is abelian.

Case 1. € is cyclic.

We wish to show that H(IM) is nilpotent, so suppose |E| is not
a prime. Since |€| is not a prime, since € is prime on H(IN), since
¢ has no fixed points on H(IMM)/H(M), and since C(C)N HWM) is a
Z-group, it follows from Lemma 26.3 that H() is nilpotent, so that
C(&) N HM) = G, is cyclic.

Case la. €, =1,

In this case, I is a Frobenius group with Frobenius kernel
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HER) = WM, so condition (i) in type I holds. If H(IN) is a T.I. set
in ®, then M is of type I, since (ii) (a) holds, so suppose H(IN) is
not a T.I. set in 8. Let HM) = ¥, x -+ x PB,, where P, is the S, -
subgroup of M and {p, :--, ».} = T(HER)). If p;em, then clearly
p;enr. If p,erm, N n*; then also p; e ¥, since EZ(B;) is a Frobenius
group. Similarly, if p,em, and ; is non abelian, then p; € ;.

Suppose p;¢rm*. Then either p,em, and B, is abelian, or
p,em, — n*. We will show that the second possibility cannot occur.

Choose G in & — M such that = HEN) N HN)? = 1, and let
H be an element of ® of prime order p. If p,en, — n*, and p #* p;,
then C(H) 2<{B;, B>, and M = IM¢, contrary to assumption. Hence,
p=p;. In this case, C(H)2<{C(H)NP;, C(H)N P>, and since
p; €y, — w*, both C(H)NP; and C(H) N B¢ are in .27, so M = INE.
Hence, (7, — #*) N ®(H(MN)) = .

Thus, if 7(H(M))Z ¥, then w(H(IM)) contains a prime ¢ such
that the S,-subgroup Q of M is abelian and gex, Since |&| does
not divide ¢ — 1 or ¢ + 1, but |&| does divide ¢* — 1, we can find
r, r,€(€) such that r|g¢—1 and 7,/]q¢+ 1. Let &, be the S,-
subgroup of €. Then Q = Q, x Q,, where Q; is normalized by €, and
Q; is cyelie, 1 =1,2. Since 7,|q + 1, it follows that Q, and Q, are
isomorphic €, -modules. Hence, €, normalizes every subgroup of L.

Once again, choose G in & — M so that D = HEI) N HEN)? + 1.
Then C(D)2<{Q, L, so C(D) is not contained in any conjugate of
M. Let CD)=M,e_»#. We apply Lemma 26.13 to M, and .
Since C(2,(Q)) = H(M), we have H(IN) = IM,.

Suppose H(M) were not abelian. Let R be a non abelian S,-
subgroup of H(IM). Apply Lemma 26.16 to M, and R, and conclude
that N(Q(ZR)) S M,, and so M S M,, which is not the case. Thus,
alternative (ii) (¢) in the definition of type I holds, so % is of type
I. (Since H(M)e #°,, HM) is generated by two elements.)

Case 1b. €, # 1.

Since H(M) = T, we have G, S H@Y S HI) U {1}. It follows
that N(€,) S M for every non empty subset &, of €} Let G = GG, —
¢ —¢,. If @o is any non empty subset of @, then each element of
& is of the form EE, EcG* E,e@®. Thus, if = {E®|EeG},
then N(&)< N@,)<S M. Since M N N(&,) = GG, M is a three step
group with @ in the role of Q* H(M) in the role of 9, €, in the
role of ©*. Since H(M) = W', we take U =1, so that (i) in the
definition of type V holds. If (ii) (a) holds, then I is of type V,
so suppose (ii) (a) does not hold.

Since G, HM), HEMN) is non abelian, Let H(M) = P x &,
where P is a non abelian S,-subgroup of H(IM) (there may be
several).
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We will show that &, is a T.I. set in . Suppose Ge® — M
and &, N &f = D is a maximal intersection, so that N(D) is contained
in no conjugate of M. Let M, e _» with N(D)SM,. Apply Lemma
26.14 to M, and P and conclude that ‘Jﬁ S M, a contradiction.
Hence, &, is a T.I. set in ®.

Since H(IM) is not a T.I. set in @, choose Ge® — M so that
1+ HIN) N HM)® is a maximal intersection. Since &, is a T.I. set
in @, we see that HIY) N H)® = D, = PN P°, and N(D,) is con-
tained in no conjugate of M, while N(D,)2, Since &, is a T.I.
set in N(9,), and since N(D,) Z M, S, is cyclic. By construction, P
is non abelian, so pen*. It only remains to show that pe m*.

Apply Lemma 8.16 to P and €. If & does not centralize Z(P),
then |E| divides p — 1 and we are done. Suppose that & centralizes
Z(*P). Then € is faithfully represented on 2,(Z,(P))/2(Z(P)), so if
| 2UZy(P)) : 2(Z(B))| = p, we are done. Otherwise, we let P, be an
element of P of order » such that C (P.,) {Pyy x A, where A is
cyclic. Since |2,(Zy(B)): X(Z(P))| = p?, we have P,c 2,(Z(P)), so
{Poy 2(Z(B))> < P. By Lemma 8.9, & +3(P) is empty. By
Lemma 26.2, P is a central product of a cyclic group and 2,(P),
with | 2,(B)| = p*. Since PS I’ and since € centralizes Z(P), we
have |P|=p’. € is faithfully represented on P/P’, and since &
centralizes ¥, each element of & induces a linear transformation of
B/P' of determinant 1. Thus, || divides either p — 1 or p + 1,
since € is isomorphic to a cyclic »'-subgroup of SL(2, p). Hence,
pernf¥, and M is of type V.

Case 2. € is non cycliec.

Case 2a. There is an element pe 7(€) such that the S,-subgroup
€, of € is non cyclic and a S,-subgroup of ¢ is non abelian. In
this case, Lemma 26.18 implies that € = €, x § where § is cyeclic.

Let €, =6, xE,, with |€,| =9, €,,<Z(), and with
€, H(IM) a Frobenius group. Also ¥ is a cyclic S-subgroup of IN.

We will show that G,FH(IM) is a Frobenius group. If § =1,
this is the case, so suppose ¥ # 1. By Lemma 26.16, ¥ is prime on
H(EM). Let * = C(F) N HM), and suppose H* + 1. Then €, H* is
a Frobenius group. Let I, be a maximal subgroup of & containing
N($), & being a fixed subgroup of § of prime order. Then AN, is
not conjugate to M. Hence, M N WM, € 2;. Since &,,H* is a Frobenius
group, &, N M =1, so a S,-subgroup of WM, is abelian. By Lemma
26.12, €, H(WM,) is a Frobenius group, so H(M) N M, centralizes H(IMN,)).
Since 1CH*S HIM) NM,, we see that MM, which is not the
case. Hence, * = 1, so FH(IN) is a Frobenius group, as is &,,FH ().
M itself is a group of Frobenius type.

Su ose W isnota T.I setin @ and 7(W) L *. It follows readily
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that ¥ is abelian and is generated by two elements. I is of type I.

Case 2b. Whenever a S,-subgroup of € is non cyclic, a S,-
subgroup of & is abelian.

Let # be the set of primes p in 7(€) such that a S,-subgroup
of G is non eyclic. Let € = &, x &, where &, is the S;-subgroup of
&. Thus @, is a cyclic S-subgroup of MM, and 7% # @. By Lemma
26.13, @, is a S-subgroup of &.

We first show that if pe# and €, is the S,-subgroup of €,, then

(26.6) CE)NHI) =1

This is an immediate consequence of Lemma 26.13 (iv) and Griin’s
theorem, since W' N €, =1,

We next show that either &, = 1 or &,H(IN) is a Frobenius group.
Suppose &, # 1. By Lemma 26.15 &, is prime on H(IM). Suppose
*=C@,)N HM) = 1. Let & be the S,-subgroup of €, for some
gen(®,), and let M, be a maximal subgroup of G containing N(€).
Then 9, is not conjugate to M.

By Lemma 26.13 (ii), together with I’ N &, =1, there is some
element of 2,(¢,)! which has no fixed points on H(IM)?, so H* is
cyclic. By construction (€, 9*>SIM,. Suppose I, N H(IM) is non
cyclic for some G in @. Let R be a non cyclic S,-subgroup of
M, N HENE). If a S,-subgroup of @ is abelian, then H(ENE) =M, by
Lemma 26.13 (i) and (ii). Since €< I, we have IM¢ = I, which
is not the case. Hence, a S,-subgroup of ® is non abelian. If R
were non abelian, then M, = M4 for some G, in @, by Lemma 26.14
with R in the role of . Hence, R is abelian. By Lemma 26.13,
R =R xR, |R| = 7, R, centralizes H(M,) and R,H(M,) is a Frobenius
group. By (26.6), RS M, so R, < M,. Since RH(IYL) < M, we can
find a S,-subgroup R* of M, which is normalized by €,. Since m
and I, are not conjugate, T(H(M)) N 7(H(M,)) = @, so R* does not
lie in H(M,), and R* does not centralize H(I,). There are at least
p subgroups P, of 2,(€,) with the property that BR*/R, is a Fro-
benius group, by (26.6). Each of these has a fixed point on H(M)E.
It follows from Lemma 26.13 (iii) that M, dominates €,. This is
absurd, by (26.6) and Lemma 8.13. Hence, %, N H(W) is cyclic for
all G in ®. In particular, M, N H(M) is cyclic. This implies that
M, N HE®) is faithfully represented on H(M,), so H* is faithfully
represented on H(M,). By (26.6), at least p subgroups of &, or order
p have fixed points on H(I,), so M, dominates E,, which violates (26.6),
by Lemma 8.13. G,H(I) is a Frobenius group. Thus, in the defi-
nition of a group of Frobenius type, the primes in 7(€,) are taken care
of. Let @, = @, x €,,, with |E,,| <|€,,|, pe T, and where &,; is cyclic,
i=12 If |G,|<|C,|, then 2,E,) char €,. By Lemma 26.14
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(v), it follows that G,,H(M) is a Frobenius group. If |G, | = |G,,|,
then by Lemma 26.14 (iii), there is some element P of order p in €,
such that {(PY>H(IN) is a Frobenius group. Thus, & contains a sub-
group &* of the same exponent as & with the property that G* H(IR)
is a Frobenius group. M is of Frobenius type.

If HPM) is not a T.I. set in ®, and 7(H(WM)) & =¥, it follows
readily that H(R) is abelian and is generated by two elements. The
proof is complete.

LEMMA 26.20. Let W e _# and let & be the subset of primes p
n (M H(M)) such that a S,-subgroup of M is a nmon cyclic abelian
group and a S,-subgroup of ® is abelian. Let & be a complement for
H(EM) in M. Then a Si-subgroup P of € is a mormal abelian sub-
group of € and PNE =1 or B.

Proof. We can suppose P+1. Let pe® and let &, be a S,-
subgroup of €. We first show that €, < € Let gen(¥) and let
&, be a S,-subgroup of & permutable with &,. If &, is non abelian,
then N(2(Z(€))SM, by Lemma 26.14. If 2(Z(G,)) centralizes
2,(€,), then G, &I so that &, centralizes &, We can suppose
that £2,(Z(€,)) does not centralize 2,(&,). Since 2,(€,) centralizes
/€, N C(H(M)), and since €, & C(H(IWM)), it follows that &, S WM so
that €, centralizes &,.

If &, is a non cyclic abelian group, then g€ # by Lemma 26.18.
If €,4C,E, then €, normalizes €, and 2,(¢,) -centralizes
C/C, NCHEN). If & NCHEMN) =1, then N(E,) dominates 2,(E,),
so &, centralizes G,. If & N C(H(IM)) #= 1, then €, N C(2,(E,)) domi-
nates €,, so that &, dominates &, and once again &, centralizes §,.

Suppose €, is cyclic. We can suppose that &, normalizes E,.
Then 2,(€,) centralizes &,. If gem Um, then &, centralizes &,
since &, S N(2,(E,)). We can suppose qem, and that a S,-subgroup
2 of C(2(C,)) is in 27. In this case, however, C(P) S M(Q) for all
Pe @, so M = M(Q) which is absurd. Hence, €, q &, so that P is
a normal abelian subgroup of €.

Suppose & contains a non abelian S,-subgroup &, for some prime
q. Then N(2,Z(E,)) S M, which implies that P S I, since N(C,)
dominates each Sylow subgroup of .

Thus, in showing that NI =1 or B, we can suppose that
every Sylow subgroup of & is abelian. By Lemma 26.18 and the defi-
nition of 7, this implies that a S;-subgroup § of € is a Z-group.
This in turn implies that § N P’ is a S-subgroup of W. Let F, be
a complement for FN M in . Then §, is cyclic. If F = 1, then
¢ is abelian and we are done. We can suppose &, + 1.

Suppose %, is not of prime order. Let & = [F,, BPH(IM)]. By
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Lemma 26.3, and Lemma 26.16 T is nilpotent. If [, P] # 1, then
[F, €,] # 1, for some S,-subgroup €, of P. Hence, N([F, €,]) domi-
nates every Sylow subgroup of 9. Since [F,, H(IM)] can be assumed
non cyclic, S I, and we are done. If [Ty B] =1, then PN WM =
1, and we are done.

We can now suppose that §, is of prime order r. We can now
write B = B, x B, where {,L =P NCG,) and B, =[P, Fl, and we
suppose by way of contradiction that P; %= 1,7 =0, 1.

Choose p so that G, N P, # 1, where €, is the S,-subgroup of P.

If %, N &, centralizes H(IM) N C(F,), then N(PB,) & M, by Lemma
26.13, since H(M) N C(F,) # 1. Since B, N €, < N(E,), B, N E, S,
contrary to construction. Hence we can assume that (P, N €,)9*
is a Frobenius group, where $* = H(I) N C(F,). Let M, be a maxi-
mal subgroup of & containing N(g,). Since B, N E, < N(C)), it
follows that P, N €, =M, since N(F,) dominates €,. Since W, is
not conjugate to M, it follows that 7#(H(M,) N w(H(IM)) = @, so that
H* N HO) =1. Since [D*, B, N E,] # 1, both B, N €, and [D*, B, N C,]
are in M, so commute elementwise. Thus [D*, B, N E,]=1, contrary
to the above argument. The lemma is proved.

LEMMA 26.21. Let Me_7 and suppose w(M/WM') contains a
prime p such that a S,-subgroup of M is non cyclic. Then N s

of type I.

Proof.

Case 1. A S,-subgroup of ® is abelian.

Case 2. A S,-subgroup of & is non abelian.

In Case 1, let # be the subset of those ¢ in 7(1/H(M)) such that
a S,-subgroup of M is an abelian non cyclic S,-subgroup of . Then
pe, and if € is a complement for H(M) in M, then a Sz-subgroup P of
@ is an abelian direct factor of ¢ by Lemma 26.20. Let € =P x F.
If ¥ were not a Z-group, then some Sylow subgroup &, of ¥ would
be non abelian, by Lemma 26.18 and the definition of 7. But then
N(E.) S, by Lemma 26.14. Since N(%,) dominates every Sylow sub-
group of ®, we would find PSS, which is not the case. Hence,
% is a Z-group.

Let §, be a complement for ¥’ in ¥, and let ., be the S,-
subgroup of F,. Let ©* = H(I) N C(2(F,)). Since H* is a Z-group,
and since N(2.(%,)) dominates every Sylow subgroup of B, P central-
izes $*. By Lemma 26.13, ©* =1. Hence FH(IN) is a Frobenius
group.

Let ¥, be the S,-subgroup of ¥’, and let $* = H(E) N C(2,(F.).
If ©* is a Z-group, then ©* =1 as in the preceding paragraph. If
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$* is not a Z-group, then since N(£2,(H.) dominates every Sylow
subgroup of P, we find PS WM, which is not the case. Hence,
FH(M) is a Frobenius group.

If ¥ is non abelian, then m(Z(9,)) = 8 for every S,-subgroup 9,
of H(MM), so that H(A) is a T.I. set in &. By Lemma 26.13, I is
of Frobenius type, so I is of type I. If ¥ is abelian, € is abelian,
8o M is of type I by Lemma 26.19.

In Case 2, let € be a complement for H(2N) in N, let &, be a S,-sub-
group of €, and let ¥ be a S,.-subgroup of &. Let ¥, be a complement
for F NP in F. Then §, is a S-subgroup of M, and F, = 1 is a possi-
bility. We can suppose {, is permutable with &,, so that $, normalizes
¢E,, since by Lemma 26.18, § is a Z-group, and &, N WM = 1.

Let €, = A x B, where A centralizes H(I), BH(IM) is a Frobenius
group, ¥, normalizes both A and B, and 2,(B)=S Z(PB) for some S,-
subgroup B of G. By hypothesis, [, €,] C E,.

Suppose ¥, = 1. Let F* = F N C(B), and suppose that 1C F* C
Fo. Let FF be a fixed subgroup of F* of prime order. Then H* =
H) N CEF) = HIM) N C(F,) is a Z-group normalized by §:B. Since
%oB is non abelian, * = 1. Hence F*BH(WM) is a Frobenius group.
Since ¥, is prime on H(IN), F.H(IMN) is a Frobenius group. In par-
ticular, every subgroup of ¥, of prime order centralizes °B.

Let &, = % NI, and suppose that ¥, # 1, so that our running
assumptions are: F, =1, 1CF*CFo, F: + 1. Suppose FH(M) is not
a Frobenius group, and let Ff be a subgroup of prime order such
that ©* = H) N CF¥) # 1. It follows that N(FF)SM. But Fi
centralizes 2,(C,), so €, is not a S,-subgroup of N(F¥). Hence
BFH(W) is a Frobenius group, in case 1C F* C F,. Hence, M is of
Frobenius type in this case. If BF is non abelian, then m(Z(9,)) = 3
for every S,-subgroup 9, of H(IR), r € m(H(IM)), so H(IN) is a T.I. set
in @ and M is of type I. If BF is abelian, and H(WM) is not a T.I
set in ®, and 7(H(M)) £ 7y, then m(H(MN)) =2 and H(IMN) is abelian.
M is of type I in this case.

Suppose now that ¥, = F* # 1. In this case AF < €. Since
BH(IN) is a Frobenius group and 2 centralizes H(IN), it follows
readily that FH(IMM) is a Frobenius group, and that M is of type I.

Next suppose F* =1, %, # 1. Since $, is prime on H(IM), F, is
of prime order. Since %, does not centralize B, F, does centralize
A Let * = HI) N C(F,), so that H* = 1. Since A centralizes
H(EM), A centralizes D*. Since BYF, is non abelian and BH(MN) is a
Frobenius group, it follows that H(IM) is a T.I. set in @ and that
O* is cyelie.

Let M, be a maximal subgroup of ® containing N(%.,). Then I,
is not conjugate to M. Let &, be a complement to H(M,) which con-
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tains $*. If A S H(W,), then since C(A) <=M, O* centralizes a non
cyclic p-group, which is not the case. Hence, A Z H(M), and we can
suppose that A =S E,.

Since N(D) < M for every non empty subset D of (AH*)?, it follows
that AH* is prime on H(M,). Let H¥ = HIN) N M, so that H & H*, and
O is prime on H(IM,). Since N(F,) &M, it follows that ¥ = H*.

If A is not a S,-subgroup of MW,, then 2,(B)* =M, for some M
in M. But then 2,(B)*H(IN) is a Frobenius group, as is 2,(B)*H*,
so that ©* centralizes H(I,), which is absurd. Hence %« is a S,-
subgroup of .

If ¥, < H,(I,), then either |F,|€m, or a S,go,-subgroup of W, is
abelian. But in the first case, $* dominates &, contrary to
T NP =1, while in the second case O*A normalizes some S -
subgroup & of M, with F S K, and [&], H*AJH*A is a Frobenius group.
As 9*U is prime on H(M,) and | H*A | is not a prime, it follows that
[9*U, &] centralizes H(M,). If & is a S%o.-subgroup of @, then 9*A
dominates &, so $, S W', which is not the case. Otherwise, a Sig, -
subgroup of & is non abelian, and 2,([R, $*A]) is contained in the
center of some Sz -subgroup of ®&. But N(9*YU, &)W, and a
Sl%ol-subgroup of M, is abelian. Hence, F, S H,(W,).

We next show that $*U is a complement to H(IMM,) in M,
Namely, turning back to the definition of ¥, we have F = F(F N J').
But BT, and A centralizes H(IMM). Hence, F=F, or § is a
Frobenius group with Frobenius kernel $§ N IM'. Now, since &, S
H,(M,), it follows that M, N M= O*AH(WM,). This implies that H*A
has a normal complement in ¢,. If $*A +# §,, then &, is a Frobenius
group with Frobenius kernel ¢, and €, = E9*U. This is absurd
since $*A is prime on H(IM,)), and | H*A| is not a prime. Thus H*A
is a complement to H(I,) in W,. Now, however, H(IN,) is nilpotent.
Since %, has no fixed points on (€ N PV)*, it follows that W N M, =
ToD* AL

Since *A centralizes {,, it follows that ¥, & H(I,). We next
show that H(I,) is a T.I. set in &. Namely, |%¥,| divides p — 1,
since [3B, ¥, =B. Hence »p > |, |; since | F,| is a prime, |F,|€ 7w, —7*,
so H(M,) is a T.I. set in G.

We now turn to N(E,). Let IN, be a maximal subgroup of &
which contains N(2,(8)). Then IR, is not conjugate to either W or
M,, since the S,-subgroups of these three maximal subgroups are
pairwise non isomorphic. Let 3 be a S,-subgroup of I, containing
¢, and normalized by ¥, If pem, then ¥, does not map onto
N(P)/BC(PB), since &, centralizes A. But then N(F,) covers
N(P)/PC(PB). This is not the case since N(F) S M, and AL M.
Hence, p¢m, so pem, and P H,(M,).
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Since C(F,) N H(M,) S M, and since
1=(H®)|, | HD)|-|HDY)|),

it follows that C(§,) N Hy(W,) = A. Hence, N(F,) N PV, normalizes
A. But N@Eo) N N) = FAO*. (This turns the tide.) Suppose
NE) N M, DAF,. Then M, contains a non identity subgroup H**
of 9*. But H(I,) contains B, and we find that [D**, B] = O** <
H(I,), which is not the case. Hence N(F,) N M, = AF..

By Lemma 26.17, M, has p-length one. Let &, = 0,.(M,), so that
PRYK, = P < M, = M,/R,. Then M,/PK, is a Frobenius group whose
Frobenius kernel is of index |%,|, or else M, = P&K,F,. In any case,
by Lemma 8.16, M, centralizes P/P’. But now AL M;, which is a
contradiction to H(I,) & M..

We have now exhausted all possibilities under the assumption
that &, + 1.

Suppose $, = 1. In this case, FS I, F is cyclic and F is nor-
malized by &,. Since BH(IMM) is a Frobenius group, 2,(B) centralizes
X, so 2,(C,) centralizes ¥. This implies that FH(IN) is a Frobenius
group, or § = 1. In both cases, M is of Frobenius type. If § # 1,
then BF is non abelian, so m(Z(9,)) = 8 for every S,-subgroup 9, of
HM), ren(HMM)), and HEN) is a T.I. set in &. If =1, then
¢ = €, is abelian, and the lemma follows from Lemma 26.19.

LEMMA- 26.22. Let 2 be the set of Z-subgroups B of & with
the following properties:

(i) If p,q are primes, every subgroup of B of order pq is
cyclic.

(i) B3=8:1%x8s18:|=2+#1,1=1,2 and for any non empty
subset B, of 8 — B, — B, N(Bo) & 8.
Then 2 18 empty or consists of a wunique conjugate class of
subgroups.

Proof. If 3€ 2, and 8 = 38, x B, satisfies (i) and (ii), then
3 =8 —8,— 8, contains (2, — 1)(z, — 1) elements. Since 3 is a
Z-group, (2, z,) = 1. :8 is clearly a normal subset of 3, so N(g) =
8. Suppose Ge® and Zef} N 3". Then there is a power of Z, say
Z, = Z* such that Zle:% N 3" and such that Z, has order p,p, where
p; is a prime divisor of | 3;| = 2;. Then {8,> <1<(8, 3% and so 3 =
3¢ Ge 3. Thus, the number of elements of & which are conjugate
to an element of :8 is

18] , _ _ |8
|8|(zx D@ -1 >-——=—.

(26.7)
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Suppose 3* is another subgroup of 2~ and 8* = 8* x B satisfies
(i) and (i)). Set 3* = 8* — 3f — 8*. We can assume that 3* N 3 +
&, by (26.7), and it follows that 8* = 8. The proof is complete.

LEMMA 26.23. Let Me _»~, and suppose W' is a S-subgroup of
W, | : W' | i8 not a prime, and WM/WM' s cyclic. Then M is of
type I or V, or M has the following properties:

(i) HE) s a nilpotent T.I. set in &.

(ii) If € i3 a complement for H(IM) in M then

(@) € 18 a non abelian Z-group and every subgroup of &
of order pq 18 cyclic, p, q primes.

(b) € 18 prime on H(IM), and G, = HM) N CE) is a non
identity cyclic group.

(iii) €, = B satisfies the hypotheses of Lemma 26.22.

Proof. If W = H(M), the lemma follows from Lemma 26.19.
‘We can therefore suppose that H(M)c M. Let € be a complement
for H(IN) in M, let F be a complement to &, = EN V¥ in & Then
® is a cyeclic S-subgroup of M, and |F| is not a prime;

If M is a Frobenius group, then m(Z(9,)) = 3 for every non
identity S,-subgroup 9, of H(M), so H(M) is a T.I. set in ®, and
we are done. We can suppose that I is not a Frobenius group.

Suppose FH(IM) is a Frobenius group with Frobenius kernel H (M).
‘'With this hypothesis, we will show that I is of type I.

Let €, be a cyclic S,-subgroup of &,. Suppose $* = H(IM) N C(2(E,))
# 1. Then G€,%, normalizes $*. Consider N(2,(€,)) 2{9*, &,, .
Since || is not a prime and FH* is a Frobenius group, it follows
that N(2(C)) <M. Hence, &, is a S,-subgroup of ®&. Since G,
.does not centralize H(M), it follows that every subgroup of { of
prime order centralizes &,. Since &, ST, |F| is not square free,
and § contains a S;-subgroup %, such that [€,, ] # 1. Consider
N(Q(F)). If qern, then [F,CE,]=1. If gem or gen, and a S,-
:subgroup of & is non abelian, then $,< N(2,(%,)’, so once again
I8 Cl=1. If gen, and a S;-subgroup of & is abelian, then
N(2,(€,)) contains a S,-subgroup of ®, contrary to N(2,(E,)) <.
Hence $* =1 and G, H(IM) is a Frobenius group.

Since M is not a Frobenius group, &, contains a non cyclic S,-
subgroup ¢, for some prime p. If €, is abelian, and a S,-subgroup
-of @ is non abelian, then € = €,-E,, and &,, is a Z-group. In this
case, €, H(IN) is a Frobenius group, and so M is of type I. If G,
is abelian, and a S,-subgroup of ® is abelian, then €, is a S,-subgroup
of &. In this case, every subgroup of ¥ of prime order centralizes
€,/€, N C(H(M)), so centralizes €} for some non identity subgroup
of €,. Since pem, and a S,-subgroup of & is abelian, it follows
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that if §, is a S,-subgroup of ¥ which does not centralize €3, then
qgem, a S;subgroup of ® is abelian, and €, is normalized by a S,
subgroup Q of ® with ¥, Q. Since C(2(E,))c M, C(E,) NS F.
Since Q is of type (¢°, ¢°), ab > 0, there is a direct factor of Q which
normalizes every subgroup of &,. Hence, ¥, is this direct factor.
Hence, q divides p — 1, so we have €, = €, x €,,, where €,; is
normalized by Q. It follows that &,,H(I) is a Frobenius group for
1=1,2. '

Suppose every Sylow subgroup of € is abelian. Let % be the
subset of p in m(€) such that a S,-subgroup of € is non cyclic, and
let P be a S;-subgroup of & By Lemma 26.18 and the preceding
paragraph, P is a normal abelian subgroup of €. Hence, M is of
Frobenius type. Since € is non abelian, H(M) is a T.I. set in &, so
M is of type I.

Thus, if FH(M) is a Frobenius group and every Sylow subgroup
of @ is abelian, then I is of type I.

Suppose FH(IM) is a Frobenius group, and €, is a non abelian
S,-subgroup of & Then €, is a S,-subgroup of ® and pem,. Since
every subgroup of § of prime order centralizes €,/€, N C(H(IM)),
and since &,Z C(H(I?)), Lemma 26.9 implies that § centralizes
@,/€, N C(H(WM)). This violates the containment €, &T'. Hence, if
XH(M) is a Frobenius group, M is of type I.

Suppose now that FH(M) is not a Frobenius group. Let €, =
CE) N H(M). By Lemma 26.15, G, is a Z-group. By Lemma 26.3,
H() is nilpotent so G, is cyclic. Since every subgroup of § of
prime order centralizes €'/’ N C(H(M)), it follows that € normalizes
@, so centralizes G, since Aut @, is abelian. Hence, G, < H(IM)'.

Since every subgroup of § of prime order centralizes
/6 N C(H(M)), it follows that €’ is abelian. Suppose €’ were non
eyelic. Let &, be a non cyclic S,-subgroup of ¢’. By Lemma 26.12,
together with @, =+ 1, €, is a S,-subgroup of G.

Let ¥, be a S,subgroup of § which does not -centralize
G,/C, N CH®), and let G =C,NCQ(F)) #1. Then N=
N(Z)) 2¢F, 6%, 6. It follows now from G, < H(IY < H@®Y) U {1}
that either §, is not a S,subgroup of ® or ¥, S W', both of which
are false. Hence, @ is cyclic. This yields that every subgroup of
& of order pq is cyelic, », ¢ being primes.

We next show that & is prime on H(IM). Since C(E)=2
CR)NHM) =€, for all Ec@, it suffices to show that €, =
C(E)N H) for all Ec@. Suppose false and €, is a S,-subgroup
of & such that C(2,(E,) N HM) = €, DC,. Since FE,/C, is a Fro-
benius group, it follows that &, is a S,-subgroup of & and N(€))<
M. In this case, let §, be a S,isubgroup of F which does not
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centralize &, and consider N(2,(%,) 2<€,, F>. If qem, Lemma 26.9
is violated; if ¢em, then §, S N(2:(F.)) so [Be €l =1; if qem, F,
is not a S,-subgroup of N(E,), contrary to N(C,)S . Hence, € is
prime on H(IM), and so €, = C(E) N H(AN) for all Ec @, Since € is
non abelian, H(IMN) is a T.I. set in G.

Let 8 = €E,, and let 3 = FF, — & — E,. By construction, & # 1,
G,+#1,and N@)NM=3. Since €S HMYSHD U {1}, NB)S
M for every non empty subset B, of Gt Since (|€|, |E,|) =1, thls
1mp11es that N(8) 3 and N(80)C8 for every non empty subset 80

of 8. Thus, B satisfies the hypotheses of Lemma 26.22, The proof
is complete.

LEMMA 26.24. Suppose WMe _# and M 18 of type V. Then W'
is tamely imbedded in .

Proof. We can suppose that I’ is not a T.I. set in G. Let
€, = W N C(€), where € is a complement to M’ in M. Then G, # 1,
and G, =S M”. Hence, W’ is non abelian. Let W = P x &, where
¥ is a non abelian S,-subgroup of W', and &, is the S,-subgroup of
P for some prime p (there may be several).

We show that &, is a T.I. set in ®&. If &, =1, this is the case.
Suppose &, %1, and SeS,NES{, S+ 1. Then C(S)2{P, P¢). Let
M, be a maximal subgroup of & containing C(S). By Lemma 26.14,
N(@2(Z(P)=M,. Hence MESM,, so M =T, 2P° and so P = P°
and G € 1.

Since PV is not a T.I. set in G, it follows that &, is cyclic.

Suppose MeM', M+ 1, and C(M)Z M. Since every subgroup
of & is normal in M, it follows that MeP. Furthermore,
(MY N T(PR) =<1), so M is of order p, and Cop(M) = <{M)> x B x &,
where B is a non identity cyclic subgroup of %, and B2 2,(Z(P)).
(Notice that since M¢ M, Cy(M) S WM'.)

Let M, be a maximal subgroup of & containing C(M). Then a
S,-subgroup of M, is abelian, by Lemma 26.14, so {<M>x®B is a
S,-subgroup of IM,, by Lemma 26.6. By Lemma 26.12 BH(IN,) is a
Frobenius group.

Let € be a complement to H(I,) in I, which contains Cg(M).
Since BH(I,) is a Frobenius group, it follows that (M) x 2,(B) < L.
This implies that LS M, so that L = M N M,.

We next show that (||, | H(N,)|) = 1. This is equivalent to
showing that (||, | H@)|) = 1. Suppose false and ¢ is a prime
divisor of (|&|, |H()|). Since pex*, q divides p+1 or p— 1.
Since p divides |, : H(AR)|, and BH(IM,) is a Frobenius group,
gem, — w*. Thus, if Q@ is any element of & of order ¢, then C(Q)
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is contained in a unique maximal subgroup of ®. Let Q be an
element of € of order ¢, and let M, = M(C(Q)). Then GG, =M,. Since
gem, —r*, M, is conjugate to W, in @. Since €S, is a Frobenius
group or &, =1,E, is a p-group. We can thus find G in ® such
that IM¢ = W,, and we can suppose that {&¢, M, B> is a p-group.
This implies that GfS M, so that GeM. Since (M, B) is a S,-
subgroup of M, we have G¢S (M, B). Since G, =M and GeM,
CTSIM' N<M, B), and so 2,(C¢) = 2,(B). But now [2,(C?), G =1,
contrary to Q°e H(I,) and 2,(B)H(I,) a Frobenius group. Hence,
(M, |HIY) |) = 1.

By construction, C(M) =S M,. We next show that Ny (KMD) is a
complement to H(IM,) in M. Since L =M N M, it follows that
<M> <8, since <M, B> <8 and {MD>S C(H(M,)). Thus, &= Nyp(KIM).

We next show that two elements of S’ are conjugate in & if
and only if they are conjugate in M. Let M, M,cM*, and M = M?,
Ge®. Since &, is a T.I. set in @, we can suppose M, M,eB. If
Me fI(EIR), then C(M)= M, so PN M is non cyelic, and so G e M.
We can suppose M ¢ fI(iIR). In this case Cy(M) is a S,-subgroup of
C(M). Now C(M)2<{2(Z(D)), 2(Z(P°)), so we can find Ce C(M)
so that .Q,(Z(SB"))";C;,B(M ). As observed earlier, this implies that
Q(Z(P%)° = 2(Z(P)). Since Q(Z(P9))’ = X(Z(P))*°, and M =
N(2(Z (%)), we have GCeIM. Then M = M so M and M, are
conjugate in I, namely, by GC, since C e C(M).

Let M, ---, M, be a set of representatives for the conjugate
classes €,, ---, €, of elements in M which are in M* and satisfy
C(M)ZLIM, 1 <1 =m. As we saw in the preceding paragraph, C(M,)
is contained in a unique maximal subgroup of ®, for each 1, in fact,
N(KM;)) is the unique maximal subgroup of ®& which contains
CKM)). Let ;= NKMD), 1<i=<m, and suppose notation is
chosen so that %, --.,N, are non conjugate in ®, while N; is con-
jugate tosome N; withl <i<n,if n +1<j<m. Set O, = H(R),
1=i=m, so that (19:],|9;)=1if 1 <4,5<m,i+3j.

Let

% = U Cp (H) — 9t .
He&)f
Since M. SN, it follows that N(R,) = RN, Also, R, = H:(: N M)
and ;N M =1. If N MW, then N, N M is abelian, and in
fact M N M = {M> x B; x &, where B; is a cyclic subgroup of P.
Since (B; x &,)9; is a Frobenius group,

(26.8) = U M9 U{1},

meupt

so is a T.I. set in ®.
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Suppose N, NMZLWM'. Then N, N W AN, NWM, and N, N M =
N, NIWM)-F, where FNW =1, and FM,> is a Frobenius group so
that || divides p — 1. Now § normalizes B; x &, (B; can be so
chosen.) If $¥B;S, is abelian, then FB,;S,9; is a Frobenius group by
Lemma 26.21, (together with F<{M,> a Frobenius group), and ‘fé.- is a
T.I. set in @. If ¥B,S, is non abelian, then since § is prime on
P, and F is prime on H;,F is prime on B;S:H;. If |F| is not a
prime, then [, B,8,] centralizes ;. Since &, is cyclic and every
subgroup of &, is normal in M, we have &, =1. But N(B,) <=M
since 2,(B;)S Z(W'). Thus, we can suppose |F| is a prime. If §
centralizes B;, Lemma 26.21 implies that N, is of type I. Thus, we
can suppose that FB,; is a Frobenius group. Hence {¥B,S, is a
Frobenius group, as is FLM)HB,S,. Since B,D; is a Frobenius group
and ¥B; is also a Frobenius group, O; is a nilpotent T.I. set in .
Hence §* = C@‘(%) is a non identity cyclic subgroup and ¥%* satisfies
the hypotheses of Lemma 26.22 with the obvious factorization FF* =
T x F*. But EC, also satisfies the hypotheses of Lemma 26.22, so
IL* and CE, are isomorphic. In particular, p divides |FF*|, so
divides |%*|. This is absurd, since p divides |B;| and B,H; is a
Frobenius group with Frobenius kernel 9;2%*. Hence, this case
cannot arise. Hence, E)A?,- is a T.I. set in @, and in fact (26.8) holds.
Since 9; is a S-subgroup of N;, we have N, = N (‘32‘-).

Since N; and N, are not conjugate in &, 1 <1+, 5<n,71+ 3, by
construction, we have (|9:|,|9;|) =1 if © #+ 5. The factorization of
C(M,) is now immediate, 1 <k <m. We have already shown that
(WM, |9:]) =1. Thus, PV is tamely imbedded in &.

Hypothesis 26.1.

(i) Se_#Z and &' is a S-subgroup of ©.

(ii) |S:&"| =q 18 a prime and L* 18 a complement to &'
m S,

(iii) &' s mot milpotent.

(iv) 9* = Ce(D").

LEMMA 26.25. Under Hypothesis 26.1, $* 18 cyclic and Q*H*
satisfies the hypotheses of Lemma 26.22 with the factorization
Q*H* = Q* x D*; N(Q*) 18 contained in a unique maximal subgroup
Tof B GNT =Q*O*; Q*=T; every element of _# 18 of type I or
18 conjugate to S or I,

Proof. Since & is not nilpotent, ©* # 1. Let ¥ be any maximal
subgroup of ® containing N(Q*).

Let # consist of those » in @(&') such that either pex* or
p ¢ (%) or pen(H(S)), and let 1 be a Q*-invariant S;-subgroup of
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S, and let © be a S;-subgroup of &'. We will show that U is
nilpotent and that 9  &.

Choose pe@ and let P be a Q*-invariant S,-subgroup of &. If
pen* or p¢n(H(S)), then S has p-length one, by Lemma 26.17.
Hence, &' centralizes 0,. ,(&)/0,(S), so & has a normal p-complement.
If p¢n(D*), then by 8.16 (i) or Lemma 18.4, & centralizes
0;..,(©)/0,(®), so in this case, too, &' has a normal p-complement.
Hence, U is nilpotent and $ < &. Since &' is not nilpotent, $ # 1.
FurAthermore, O*NUESW. By construction, w(®)=rm, — 7*, so
N(®)S© for every non empty subset  of ©F. Thus, © is a T.I.
set in ®. Since D*NUSW, Lemma 26.14 implies that N($)SS
for every non empty subset A% of $**. Thus H*Q* = H* x Q* satis-
fies Hypothesis (ii) in Lemma 26.22.

Let 9** =&'NT29*. T is not conjugate to &, either because
L* is not a S,-subgroup of @ or because L*<=T'. Thus, H** N HZ) =
1. If *C $**, then O* L ¥ since [Q*, 9**] # 1. But in that case,
some S;-subgroup of ¥ normalizes $**, so Q* is a S,-subgroup of ©..
But in that case, Q* S N(Q*)'ST'. Hence, D* = &' N g, so H*Q* =
S N<E. Since N(fg)g@ for every non empty subset % of O* it
follows that $* has a normal complement in , say ,, and Z, is a.
S-subgroup of ¥. Suppose Q*&ZT'. Then T, NI is disjoint from
Q*, 9*(E, N T’') is a Frobenius group, and T, = (¥, N T)Q*. Further-
more, a P*-invariant S,-subgroup Q of T, has a normal complement
in T, and Q is abelian, by Lemmas 26.10 and 26.11. Thus Q* is a
direct factor of Q, and Q* C Q, since L*Z T’ and N(Q*) =2, Ifa S,-
subgroup of & is abelian, then N(9*) dominates Q, so Q*=&,
which is not the case. If a S,-subgroup of ® is non abelian, then since:
<, N ¥ is nilpotent, O* is contained in the center of some S,-subgroup-
of @. This is absurd, since N(Q*) S T and Q is an abelian S,-subgroup
of T. Hence, Q*=%.

Again, let & be a S,-subgroup of £ normalized by 9*, and let.
L be a S,-subgroup of ¥, normalized by $*. Then either L =1 or
$*8 is a Frobenius group. In both these case, we conclude that
D QZ. If B does not centralize Q, then by Lemma 26.16, ge 7, —
n*, so ¥ is the unique maximal subgroup of & containing N(Q*). If
B centralizes L, then Q* S/, so if ge 7w, T is the unique maximal
subgroup of ® containing Q*. But if g¢m, then Q* 4T, so of
course ¥ is the unique maximal subgroup of & containing N(Q*)..
Thus, in all cases, ¥ is the unique maximal subgroup of ® containing:
Q*.

We next see that if p,, p, are primes then every subgroup of
9* of order pp, is cyclic. We next show that * N U S Z (D).
Suppose false and F = 9* N U, L Z(H*) where U, is the S,-subgroup.
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of U. If rer,Um, then since U, =&, it follows that rex, and 1,
is the non abelian group of order 7* and exponent 7, so that |9} | =
r. Since $* N U has a normal complement in ©* and every subgroup
of * of order p,p, is cyclic, $F & Z(H*). Thus, we can suppose that
re€m,. By definition of 7, we also have rexn*. Apply Lemma 8.17
and conclude that ¢ divides » — 1. Since $* is a Z-group, Lemma
13.4 applied to LQ*U, acting on the S,-subgroup of & implies that
1. centralizes the S,-subgroup of &’; since H* =S U, it follows once again
that O S Z(9*). Hence, $* = (D* N N) x (D* N D) with eyelic H* N U.

If 9*NHES F(S), then H* is eyelic. Suppose H* is non eyelie.
Since U is nilpotent and since &'/F(®) is nilpotent by Lemma 26.4,
it follows that 7(9* N ) contains a prime s such that a S,-subgroup
of &/F(©) N 9 is non abelian. Hence, Cg(ll) contains a non abelian
S,-subgroup. By construction, sem, — 7*, so C5(1) € 2Z7. This implies
that &’ is a T.I. set in ®.

Since * is assumed non cyclic, hence non abelian, and since
every subgroup of $* of order p,p, is cyclic, it follows that | D* : *'|
is not a prime. By Lemma 26.23 (i), %, is a nilpotent T.I. set in G.
Set g=1[6|, |&|=m, |T,|=m, [O*|=h, |Q*|=q. If G, G,
G,€®, the sets Gi'&"G,, G:'¥!G,, G(H*Q* — O — Q*)G, have pair-
wise empty intersections. Hence,

gzZL m-1)+-ZL m-1+-Lr-1@g-1,
‘ mq m,h hq
so that
1 .1 .1

mq mh ~ hq

Since m, = 3h, m, = 3q, the last inequality is not possible. Hence,
H* is cyelic.

Let £ be a maximal subgroup of & which is not conjugate to
either & or T. If ¥ is not a S-subgroup of £, then Lemmas 26.10,
26.11 and 26.21 imply that & is of type I. If & is a S-subgroup of
€ but £/ is non cyclic, Lemma 26.21 implies that & is of type I.
If € is a S-subgroup of £, £/2’ is eyeclic, and |2:%’| is not a prime,
then by Lemma 26.23, & is of type I or & contains a subgroup 8 =
B, % B, which satisfies the hypotheses of Lemma 26.22. But Q*9*
also satisfies the hypotheses of Lemma 26.22, so 3 is conjugate to
Q*H*. Since B, S H(®) can be assumed, either (| 3,[,|LQ*|) #1, or
(8.1, 19*]) # 1. The first case yields & = ¢ G ®, the second case
yields & = &%, G,€® and we are done in this case. Lemmas 26.22
and 26.23 complete the proof.



936 SOLVABILITY OF GROUPS OF ODD ORDER

LEMMA 26.26. Under Hypothesis 26.1 < i3 either of type V, or
(1) |9*| =p 1s a prime.
(i) % satisfies

@ |[T:T'|=p, and T’ is a S-subgroup of <.

(b) T’ i3 not nilpotent.

Proof. By Lemma 26.25, Q*<S I’ and 9* is cyclic. As
O*NUESW and n(9) &7, — n*, it follows that N(D) =S for every
non empty subset @ of . Since SN T = Q*H*, this implies that
* has ¥’ as a complement. If |9*| is not a prime, ¥’ is nilpotent,
by Lemma 26.3. This implies directly that T is of type V, condition
(i) in the definition of type V following easily, since ¥’ is non abelian.

We can suppose that ¥ is not of type V. Hence, (i) is satisfied.
Since ¥’ is not nilpotent, (ii) (a) and (ii) (b) also hold.

Lemma 26.26 is important, since if T is not of type V, then ¥
satisfies Hypothesis 26.1, as does S.

LEMMA 26.27. Under Hypothesis 26.1, one of the following holds:
() NUWZLS; (i) & is a tamely imbedded subset of &, and U is a
S-subgroup of ®.

Proof. Suppose NU)=&. If & isa T.I set in ® we are done.
Hence, we can suppose that &' is not a T.I. set in ©.

Since &’ is not a T.I. set in & and since  is a T.I. set in
® (@(9)Sn, — *, so Lemma 26.5 (ii) applies), U # 1. We first treat
the case in which U is non abelian. Let 1 = R x R,, where R is a
non abelian S,-subgroup of R, and R, is the S,-subgroup of U. We
show that & is the unique maximal subgroup of ® containing R.

Suppose RSQ,Le_»#. By Lemma 26.1, N(2.(Z®R))<LNES.
In particular, NR)S 8N S, so R is a S,-subgroup of ®. If & = &¢,
G €®, then by Sylow’s theorem, R is conjugate to GRG in &, R =
ST'GRG™'S, so that S'Ge NR)SS, and GeS. Hence, we can
suppose £ is not conjugate to &. Clearly, £ is not conjugate to T,
since ¢/ |T:Z’'|. Hence, 2 is of type I. But then RS H(Q), so that
£ = N(R) =&, contrary to assumption. Hence, R is contained in &
and no other maximal subgroup of ®. This implies that U is a S-
subgroup of G.

Choose Se@* N &% Ge® — &. There are such elements S and
G since &' is not a T.I. set in &. If S is not a -element, then
S, = S"e N H* for some integer #, contrary to the fact that $ is
a T.I. set in @. Hence S is a 7F-element and we can suppose that
Sell. If S¢R, then S,=S"c RN S" for some m, and C(S,) con-
tains a S,-subgroup of both & and &¢ which is not the case. Hence,
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SeR. Since R was any non abelian Sylow subgroup of U, it follows
that R, is abelian.

Let e 7, C(S)S8. A S,-subgroup of £ is non cyclic. Let
R be a S,-subgroup of £ containing Cy(S). If rem, then by Lemma
26.7, N(Cx(S) &S, so R = Cx(S). If rem, the same equality holds
by Lemma 26.14 and the containment N(Cy(S)) S N(2(Z(R))). Thus,
 is not conjugate to &. Since R is non cyclic, £ is not conjugate
to $. Hence, 8 is of type I, and this implies directly that & =
HR®)ERNS), SN HE =1. Since a S,-subgroup of & is non abelian,
Lemmas 26.12 and 26.18 imply that

{ U e} - m@ = BEKSY,
meg @t

and it is obvious that H(®){S>*'is a T.I. set in @& with & as its
normalizer. We have verified all the properties in the definition of
a tamely imbedded subset except the conjugacy condition for &’ and
the coprime conditions. By definition of H(8), together with the
fact that &' is a S-subgroup of @, it follows that (| H(R)|, |&'|) = 1.
If (|H(®)|, |_*]|)#1, then 8 is conjugate to X. This is not the case, as
R is non cyclic. Thus, if £, ---, &, is a set of representatives for the
conjugate classes of maximal subgroups of & which contain C(S) for
some Sin & and are different from &, it follows that (| H(%,)|, | H(E;)|) =1
for © #+# j. It remains only to verify the conjugacy condition for
elements of &% Let S,S, be elements of & which are conjugate
in . We can suppose that S and S, have order r and are in R;
otherwise it is immediate that S and S, are conjugate in . Let
S = G7'S,G, then C(S) 2<{2(Z(R)), 2.(Z(R°))>. Since N(2(ZR))<
&, it follows that S and S, are conjugate in &. (It is at this point
that we once again have made use of the fact that the subgroups in
7 (R) have two conjugate classes of subgroups of order ».) Thus, &
is a tamely imbedded subset of & in this case.

We now assume that U is abelian. We first show that U is a
S-subgroup of &. Otherwise, 1 is not a S-subgroup of N(1,) for
some non identity S,-subgroup U, of N. Let N(U,,=8e_». Then
£ is not conjugate to &, since | 8|y # |S|;. Suppose & is conjugate
to . Since UL* is a Frobenius group, we have US . Thus ¥’ is
not nilpotent, since by hypothesis N(1)=&S. Hence, ¥ is not of
type V. By Lemma 26.26, |9*| = p is a prime. Since |[Q*| =q is
also a prime, it follows that if ¥ is a S,-subgroup of T’ normalized
by $*, then $*¥ is a Frobenius group, (B # 1, since ¥’ is not
nilpotent). If (1) S 7(V), then since N(N) =S, it follows that U is
conjugate to L. But p divides | N(®): C(B)|, and so p = ¢q, which
is not the case. Hence () Z7n(B). But r)S7a@)NnT)<
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7(B) U {g}, so ¢ e (1), which is absurd since &' is a ¢’-group. Hence,
2 is not conjugate to either & or ¥, so ¢ is of type I. Since Q* is
of prime order and Q*U is a Frobenius group, U< H(R). Since
NU)< S, we have 1 = H(8). Hence LS N(1) &S, which is absurd.
Hence, 1 is a S-subgroup of ®. This implies directly that N(U,) S &
for all non identity Sylow subgroups U, of &.

Since U is an abelian S-subgroup of &, and © is a T.I. set in ®,
the condition N(I1) S & implies that two elements of & are conjugate
in ® if and only if they are conjugate in &.

Suppose Se@&"* and C(S)ZS. Then S is a #-element, and we
can suppose Sell. Let Le _»#, C(S)=Q. Since U is an abelian S-
subgroup of & and since U< C(S) = Q, it follows that € is not con-
jugate to & or T. It is now straightforward to verify that & is
tamely imbedded in G.

LEMMA 26.28. Under Hypothesis 26.1, either & or T is of type
II. If © s of type II, then

U Cs(H)

medHt

18 a T.I. set in &. Both & and T are of type II, III, IV or V.

Proof. First, suppose ¥ is of type V, but that & is not of type
II. Suppose N(W)&®&. By Lemma 26.27, & is a tamely imbedded
subset of . As U is a S-subgroup of & in this case, we have
(1©'|,|¥'|) =1. By Lemma 26.24, ' is a tamely imbedded subset
of ®. We now use the notation of section 9. Suppose Se S Te I
and some element of s is conjugate to some element of 2A,. This
implies the existence of €€ _# such that | : H(®)| divides (|&'|, |T'])
=1, which is not the case. Setting ﬂ@=@*£)* — O* — Q*, it
follows that no element of I is conjugate to an element of 2 or
A,. We find, with b = [9*|, s =|&'|, t =|¥’|, that by Lemma 9.5,

(h —1)g —1) s—1  : t—1
> —_—
(26.9) gz z g+ o g+-—=9,

which is not the case. Hence NU)ZL&S. If U, were a non abelian
S,-subgroup of &, then N(2,(Z(1,)))=S, by Lemma 26.14. Since
NU)ES N(2(Z(1,))), this is impossible. Hence U is abelian, and
m(l) < 2, Thus, & is of type II in this case, since the above in-
formation implies directly that $ is nilpotent.

Suppose now that T is not of type V. Then from Lemma 26.26
we have T = *BY, where QO is a normal S,-subgroup of T, H*B is
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a Frobenius group with Frobenius kernel %, and 8 is a non identity
q’-group. Since Q* is of prime order ¢q, it follows from 3.16 that
L contains a subgroup L, such that Q, < &, Q/Q, is elementary of
order ¢”(p = | 9*|), and L centralizes Q.

We next show that %’ centralizes L. This is an immediate
application of 3.16. If N(B)=S <, then T is of type III or IV accord-
ing as B is abelian or non abelian. If neither & nor ¥ is of type
II, then both &’ and ¥’ are tamely imbedded subsets of ®, by Lemma
26.27, since both & and ¥ satisfy Hypothesis 26.1. Once again,
(26.9) yields a contradiction.

If & is of type II, then © is a T.I. set in &. Suppose

X, Ye U Co(H)

medHt

and X = GYG. Choose H, e CxX), H,eCy Y)Y, Then C(X)=
{H, G'HG). If (X)=®&, then Ge S, since Hisa T.I.set in . We
can suppose C(X)<Z &, and without loss of generality, we assume
that X has prime order r, Xel. If a S,-subgroup of 1 is non
cyclic, then by Lemmas 26.12 and 26.13, C(X)&&. We can suppose
that the S,-subgroup U, of U is cyclic, so that (X)) = 2,(11,). Since
N &S, it follows that NKX))ZS. Choose 2e._# with
NKX) e If X)no* # 1, it follows readily that C(X)= S, so
we can suppose C(X) N * = 1. In this case, C@(X )Q* is a Frobenius
group, and this implies that Cb(X)gH(S), which is not the -case.
The proof is complete.

LEMMA 26.29. If %e _# and 8 18 of type 1, then

U CyH)=28

aem®t

18 a tamely tmbedded subset of &.

Proof. We first show that H(R) is tamely imbedded in G.

If H®) is a T.I. set in & we are done. If H(¥) is abelian,
the conjugacy property for elements of H(R) holds. Suppose H(R) is
abelian, Le H(®), and C(L) £ 8. Let Ne _»# with C(L)&N.

Suppose N is of type I. Then NN L is disjoint from H(N), since
HRSNRNL. Let &be a complement for H(M) in N which contains
NN Lemmas 26.12 and 26.13 imply that € =N N L.

If 8, --.,8, is a set of representatives for the conjugate classes
of maximal subgroups of & constructed in this fashion, then (| H(¥,)]|,
|H(8;)|) =1 for i #75. Also, (|H(Z)|,|H(®)|) =1. Suppose (| H(Z)]|,
| Co(L) ) # 1 for some Le H(R), and some ¢. We can suppose that
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L has prime order r. Let s be a prime divisor of (| H(Z;)|, | Co(L)|),

so that sew(¥) — n(H(®)), Since £ is of type I, this implies that a

S,-subgroup & of & is non cyclic so that sex*. Since & does not

centralize a S,-subgroup of €, s < r. But now Lemma 8.16 implies

that the S,-subgroup of £ centralizes a S,-subgroup of H(Z;), which

is not the case. Hence, (| H(R)|, | Co(L)[|) =1 for every L e H(R).
By construction

&= U )~ HEY

HEH(E,)

contains a non identity element. From Lemma 26.13 we have N (fé,-) =
L, and @,- is a T.I. set in ®. Thus, if H(R®) is abelian and every N
with the property that Ne_# and C(L)SN for some Le H(R) is
of type I, then H(®) is tamely imbedded in .

Suppose N is not of type I. Since H(R) =N, it is obvious that
N is not of type V. It is equally obvious that N is not of type III
or IV. Hence, N is of type II. Since H(R) is a S-subgroup of G, it
is a S-subgroup of R, and it follows that M N L is a complement to
H(R). Since | H(R)| is relatively prime to | H(®)| and to each | H(S;)|,
we only need to show that | H(R)| is relatively prime to | Ca(L) |,
LeH(¥®). Let ¢g=|N:N|, so that ¢ is a prime and N N L contains
a S,-subgroup Q* of M. Since 7(HMN)) &S 7w, — 7*, it follows that if
is a Sg-subgroup of &, w = 7w(H(N)) N 7(L), either K =1, or RH(Q) is
a Frobenius group. Thus (| H®R)|, |C(®)]) =1 for L € H(R)', and H(R)
is a tamely imbedded subset of ®. Since C(L)<S 8 for every element
of

{ U c®@)—H®,

HEH)

by Lemmas 26.12 and 26.13, the lemma is proved if H(R) is abelian.

We can now suppose that H(L) is non abelian, and is not a T.I.
set in @. Let R be a non abelian &-subgroup of H(2), and let
HE®) =RXxR, Since H(Q) is not a T.I. set in & Lemmas 26.14 and
26.13 imply that R, is a cyclic T.I. set in &. It follows directly
from Lemma 26.12 that H(R) is a tamely imbedded subset of &.

It remains to show that  is a tamely imbedded subset of ©.
This is an immediate consequence of Lemmas 26.12 and 26.13.

LEmMMA 26.30. If © is a nmilpotent S-subgroup of ®, then two
elements of © are conjugate in & if and only if they are conjugate
m N(D). -

Proof. Let Le _#, N(O)S2. If DS H(®) and L is of type I,
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we are done. If S H(R) and & is not of type I, we are done. If
HLH®R), then DN HE®) =1. If L is of type I, $ is abelian, and
we are done. If 8 is not of type I, then & is of type III or IV, and
we are done.

We now summarize to show that the proofs of Theorems 14.1
and 14.2 are complete. By Lemma 26.30, the conjugacy property for
nilpotent S-subgroups holds. If every element of _# is of type I, we
are done by Lemma 26.29. We can therefore suppose that _# con-
tains an element not of type I. Choose e _#, £ not of type I.
By Lemma 26.21, if pe m(%/%'), a S,-subgroup of £ is cyclic. This
implies that &' is a S-subgroup of ¥. First, suppose |£:%'| is not a
prime. Then by Lemma 26.23,  is of type V or satisfies the con-
ditions listed in Lemma 26.23. Suppose that L is not of type V, and
@ is a complement to H(Y) in 8. Let p be the smallest prime such
that a S,-subgroup &, of & is not contained in Z(€) and choose
e #, N(2(,)=8. By Lemmas 26.12 and 26.13, £, is not of
type I. Lemma 26.21 implies that £ is a S-subgroup of &, and £,/¥;
is eyeclic. By construction, ¥; is not nilpotent, and also by construec-
tion L, is not conjugate to €. We will now show that [&,:8]| is a
prime. Otherwise, since £, is not of type I or V, £, satisfies the
conditions of Lemma 26.23. In this case, both H(®) and H(Z,) are
nilpotent T.I. sets in @ and & N &, satisfies the hypotheses of Lemma
26.22. Let/= |8, 4=|%,|%:H®)|=e |&:H®)| =¢, 9 =|0]|,
so that

(26.10) gg(3—1)(61—1)g+/—1g+/1_1g’
661 /7 e /lel

which is not the case. Hence |,:%;| is a prime, so that ¥, satisfies
Hypothesis 26.1. But then Lemma 26.25 implies that & is of type
V. Thus, whenever € _# satisfies the hypotheses of Lemma 26.23,
L is of type I or V.

Suppose every element of _# 1is of type I or V, and there is
an element 8 of type V. Let pen(¥/¥’), and let &, be a S,-subgroup
of 8. Choose &, so that NE,)=8,e_»#. Then & is not of type I.
Suppose &, is of type V. By Lemma 26.20, & and £ are tamely
imbedded subsets of &. Since (| €|, |&!]) =1, it follows that ; and
A, do not contain elements in the same conjugate class of G, Le &,
L,e®. Setting g=[6|, |[¥|=4[8|=4, [8:8]|=¢ [2:8]=0¢,
then (26.10) holds, by Lemma 9.5, which is not the case.

We can now suppose that _# contains an element £ not of type
I or V. Lemmas 26.21, 26.23 and the previous reduction imply that
" is a S-subgroup of &, £ is not nilpotent, and |[f:%'| is a prime.
Lemmas 26.25 and 26.28 complete the proof of Theorem 14.1.
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As for Theorem 14.2, Lemmas 26.28 and 26.29, together with
Theorem 14.1, imply all parts of the theorem, since if & is of type
II, III, IV, or V, g is any tamely imbedded subset of & which
satisfies N (@) = £, and W = W, L, is a cyclic subgroup of & which satisfies
the hypothesis of Lemma 26.22, then adjoining all L(® — W, — W,) L,

Leg, to € does not alter the set of supporting subgroups for §, as
C(W)c=Qforall Wel®@ — B, — W,. The proofs are complete.



CHAPTER V

27. Statement of the Result Proved in Chapter V

The following result is proved in this chapter.

THEOREM 27.1. Let & be a minimal simple group of odd order.
Then ® satisfies the following conditions:

(i) » and q are odd primes with p > q. ® contains elementary
abelian subgroups P and Q with |B| = p°, |1Q|=¢q*. P and Q are
T.I. sets in ®.

(i) NP) = PUL*, where PU and UQ* are Frobenius groups with
Frobenius kernels B, U respectively. |Q*|=gq, |U| = (»* — 1)/(p — 1),
RS Qand (p*—1)/(p—1),p—1)=1.

(i) If P* = Cy(R*), then |P*| = p and P*Q* is a self-normal-
1zing cyclic subgroup of &. Furthermore, C(P*) = PL*, C(Q*) =
QP*, and P* = NQ).

(iv) C@) is a cyclic group which is a T.I. set in &. Further-
more, L* S N(U) = N(C()), NQ)/CW) is a cyclic group of order
pq and N() is a Frobenius group with Frobenius kernel c).

In this chapter we take the results stated in Section 14 as our
starting point. The notation introduced in that section is also used.
There is no reference to any result in Chapter IV which is not con-
tained in Section 14. The theory of group characters plays an es-
sential role in the proof of Theorem 27.1. In particular we use the
material contained in Chapter III.

Sections 28-31 consist of technical results concerning the characters
of various subgroups of . In Section 32 the troublesome groups of
type V are eliminated. In Section 83 it is shown that groups of
type I are Frobenius groups. By making use of the main theorem
of [10] it is then easy to show that the first possibility in Theorem
14.1 cannot occur. The rest of the chapter consists of a detailed
study of the groups @ and ¥ until in Section 36 we are able to supply
a proof of Theorem 27.1.

28. Characters of Subgroups of Type 1

Hypothesis 28.1.

(i) X 1s of Frobenius type with Frobenius kernel © and comple-
ment &,
(ii) € = AB, where A is abelian, B is cyclic, and (|A|, |B|) = 1.

943
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(iii) &, is a subgroup of & with the same exponent as & such
that G i8 a Frobenius group with Frobenius kernel 9.

LEMMA 28.1. Under Hypothesis 28.1, X has an irreductble charac-
ter of degree |&,| which does mot have $ in its kernel.

Proof. If A is eyclic, then X is a Frobenius group and the lemma
is immediate. We may assume that 2 is non cyclic.

Let ©./D(9) be a chief factor of AH with H, & H. Let A, =
Co(D,/D(9)). Then A/, is cyclic. Since X is of Frobenius type, the
exponent of A/, is the exponent of A. Hence, |E: A, | =|CE;|. Let
9, be the normal closure of 2, in & Then %, is abelian. Let g be
a non principal linear character of ©,/D(9). Then J(¢) = HU,, so
Lemma 4.5 completes the proof.

LEMMA 28.2. Suppose L is of type I, and € = X satisfies Hypo-
thesis 28.1. Suppose further that Z(€) contains an element E such
that Co(E) £ & and Cyx(E) + 9. Then the set & of irreducible
characters of & which do not have © in their kernel is coherent.

Proof. By Lemmas 28.1 and 4.5, it follows that Hypothesis 11.1
and (11.4) are satisfied if we take D, =1, 8 =8, d =|E,| and let
< play the role of &~

Since E is in the center of @, it follows that $'Ce(E) < 8. Thus,
by assumption, $/9’ is not a chief factor of €. Therefore,

(28.1) $:91>4|CP+1.

Let 2(9)={\]8=1,---,n;t=1, .-+, k}, where the notation
is chosen so that X\;,(1) =X\;(1) if and only if ¢ =j, and where
M(l) < -+ < Ag(l). By (28.1) we get that (11.5) holds with $, = '
and by Theorem 11.1 the lemma will follow as soon as it is shown
that &7(9’) is coherent.

Set 4 = My(1)/d for 1 <1 < k. Then each 4 is an integer and
1=4< +++ < 4. By Theorem 10.1, the coherence of .S/ (9') will
follow once inequality (10.2) is established. Suppose (10.2) does not
hold. Then for some m with 1 <m =k,

(28.2) > 4

1=1

A

24, .

Every character in .$7(9') is a constituent of a character induced
by a linear character of . Therefore,
(28.3) 4 =|€:G,].

Let '5 = /9’ and let '51 = Cs(E), 62 = [‘F@v E]. Thus, "5—:3 = 61 X '52
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and §; # 1, ¢ =1,2. If 9, is the inverse image of D, in 9, then G,
is of Frobenius type and satisfies Hypothesis 28.1. Two applications
of Lemma 28.1 imply that n, > 4|G: G,|. Hence, (28.2) does not hold
for any m, 1< m < k. The proof is complete.

29. Characters of Subgroups of Type III and IV

The following notation will be used.

S = &'Q* is a subgroup of type II, ITII, or IV. Q* plays the
role of T, in the definition of subgroups of type II, III, and IV
given in Section 14. 9, U, and 8, have the same meaning as in these
definitions. T = T'W, is a subgroup of type II, ITI, IV, or V whose
existence follows from Theorem 14.1 (ii) (b), (e).

Let 7n(9) = {py, -+, »,} and for 1 <1 <t let P, be the S,,-sub-
group of . Define

@,——-unC(sBs)’ léiét,
(S;:ﬁ@.'.

Let |[9]=h, |U|=u, |0*|=4¢,|C|=c,1<i=<t and |C|=c.
By definition, ¢ is a prime. '

4 is the set of characters of & which are induced by nonprincipal
irreducible characters of &'/9.

& is the set of characters of & which are induced by irreducible
characters of & that do not have © in their kernel.

The purpose of this section is to prove the following result.

THEOREM 29.1.

(i) If & 1is of type III then & U.S% is coherent except possibly
1f |D| = p* for some prime p and € = 1.

(i) If & isof type IV, then & U.S% is coherent except possibly
1f || = p* for some prime p, € =W and &% is not coherent.

Hypothesis 29.1.,
S 1s a subgroup of type III or 1IV.

Throughout this section, Hypothesis 29.1 will be assumed. Thus,
by Theorem 14.1 (ii) (d), < is of type II. Consequently, , has prime
order p. Let p=1p, P=FP, and W, = P*. Thus, by 3.16 (i),
NS CE®) for 2=t =<t Since U Z C(D), this yields that 1 & C(P).
As U does not act trivially on P/D(P), Lemma 4.6 (i) implies that
Cy(P*) =€, c .

For any subgroup 9, of €, let .57(9,) denote the set of characters
in %4 U & which have the same degree and the same weight as some
character in 55U & that has 9, in it kernel,
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LEMMA 29.1. Hypothesis 11.1 is satisfied if & in that hypothesis
is replaced by S U &7, H 1s replaced by o€, 9, is taken as 1), £
is replaced by S, & and & are replaced by &', and d = 1.

Proof. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the fact that & is a three step group. Condition (iii)
is immediate and Condition (vi) is simply definition (consistent with
the present definition). Since UQ* isa Frobenius group, . contains
an irreducible character of degree ¢. Hence, Condition (iv) is satisfied.
The group & satisfies Hypothesis 13.2. Hence, by Theorem 14.2,
Hypothesis 13.3 is satisfied with £ =&, % = S, and =R=¢&, and
with & replaced by S U.%”. By Lemmas 13.7, 13.9, and 13.10,
Condition (v) of Hypothesis 11.1 is satisfied. The proof is complete.

LEMMA 29.2. If S°((9C)) is coherent, then KU & 18 coherent.

Proof. As N Z C(P), U does not act trivially on P/D(P). Since
nQ* is a Frobenius group, 3.16 (iii) yields that |B:D(P)| = p'. As
either p =3 and ¢g=5or p=5and ¢=3, (5.9) yields that

€ : (PC) |Z |B:DP) | 20" >4 +1=4|S:F|'+1.

Hence, (11.5) is satisfied with $, = (£€).” By Lemma 29.1, Theorem
11.1 may be applied. This implies the required result.

LEMMA 29.3. If <2((HCY) is mot coherent, then &" = LEC.

Proof. Letb=|9C:8"”|. We have P* S &”, as P* & &' and Q*
centralizes B*. Hence, &/&"” is a Frobenius group. Let d,< .-+ <d,
be all the degrees of characters in 7(($€)) and let -4, = d./q for
1<m <k. Then for each m, 4 is an integer and 4, = 1. Every
character of &/&” is a constituent of a character induced by a linear
character of §C. Thus, 4 =< u/c for 1 =m < k. There are at least

(-1

————————————

q

irreducible characters of degree q¢ in &7 ((9€)). Thus, if S~ ((HC)) is.
not coherent, inequality (10.2) must be violated for some m. In par-
ticular, this implies that

<%b—1) 2, <2%
q c

A

IA
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Therefore, b — (c/u) < 2¢, so b< 29 + 1, sincec < u. As 96/S"” is a
normal subgroup of the Frobenius group &/&”, we have b = 1 (mod q).
Since b and ¢ are both odd, this implies that b = 1 as required.

LEMMA 294. If S7((9€)) is not coherent, then =B, P =
D), |B:F|=p, P NDEP) =1 and € =1,

Proof. By Lemma 29.3, &' =9C€. If 2<1 <t then UDP S
PB.C(B:), so that p;||&':S&"”|. Hence, t=1and H=P. € =W fol-
lows directly from the fact that $€ = &” < SW. If |B: D(P)| > p°,
then since Cgx(L*) = P* is eyclic, Lemma 4.6 (i) implies that some
non identity element of PB/D(P) is in the center of PU/D(P). Thus,
p divides |U9:&”| which is not the case. Since 1 does not act
trivially on B/D(P), 3.16 (iii) now implies that | P: D(P)| = p°. Since
B* has prime order and lies outside D(P), we get that D(P)UL* is
a Frobenius group. Hence, by 38.16 (i), D(P)U is nilpotent. Conse-
quently, D(P)/T is in the center of PU/P'. As the fixed points of
1 on P/P’ are a direct factor of P/P’, and since U has no fixed points.
on P/D(P), we have P' = D(P). The lemma is proved.

LEMMA 29.5. If S7((9€)) is not coherent then P is an elementary
abelian p-group of order p°.

Proof. In view of Lemma 29.4 it suffices to show that P’ =1.
By 3.16 (i), U< C(¥'). Thus, if P’ + 1, there exists a subgroup P,
of P’ such that P, < PU and |P': P,| =p. If U acts irreducibly on
PB/P', then P[P, = Z(P/PB,). Hence, P/P, is an extra special p-group
and |P: P | = p® for some integer b contrary to Lemma 29.4.

Suppose that U acts reducibly on P/P’. Since the irreducible
constituents of this representation are conjugate under the action of
L%, all constituents have the same dimension. As |P:P'| = p? and
¢ is a prime, this yields that they must all be one dimensional. There--
fore, there exist elements P, ---, P, in P such that

PP =PPIPD X oo X LY
and
U"PPU=P:"P, Uell, 1<it=<gq,

where s, ---,8, are linear characters of U (mod p) with s, ,(U) =
8,(Q*UQ’) for Uec Ul and a suitably chosen generator Q of Q*. Since-
|Q*U| is odd, s;s; # 1 for any 4,5 with 1 <4, j <q. Hence, if 1,7
are given, there exists U e U such that s (U)s(U)# 1. For 1<k=<g¢
let P] be an element of P’ such that
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U-'PB,U = PixT P, .

Since P'/P, S Z(P/B,), we get that

[P, P;] = UT[P;, P;]U = [P P/, P}y Pj]
= [P, PP = [Py, P77 (mod %) .

Since s;(U)s;(U) # 1, this yields that [P, P;]e P, for 1 <1, j<q.
Since P =<8, -+, P, we get that P’ S P, contrary to construction.
Thus, P’ = 1 as required.

LEMMA 29.6. If Z((DC)) i8 not coherent and € # 1, then &% 18
not coherent.

Proof. Suppose that € 1. Assume that &, is coherent.
Let ¥4 =% Let % ---,% be the equivalence classes of
L ((HC)) — &% chosen so that every character in &, has degree /,q
for 2<m <k, and 4 < --- < 4. Suppose |Ji,.57 is not coherent.
By Hypothesis 11.1, and Lemma 29.1, all parts of Hypothesis 10.1
are satisfied except possibly inequality (10.2). Since .#((H€)') is not
coherent, inequality (10.2) must be violated for some m.

Every character in |J%., .54 is a constituent of a character induced
by a linear character of §&. Thus 4, =< (u/c) for 1 < m < k. Hence,
violation of inequality (10.2) yields that

v—1 9, <22,
q . c

Since ¢ =1 (mod 2¢) and ¢ # 1, this implies that

c c c c
Hence %, .57 is coherent. Since F((HC)) = UL,.54, the proof is
complete.

The proof of Theorem 29.1 is now immediate. Lemmas 29.2, 29.4
and 29.5 imply statement (i). Lemmas 29.2, 29.4, 29.5, and 29.6

imply statement (ii).

30. Characters of Subgroups of Type II, III and IV

The notation introduced at the beginning of Section 29 is used
in this section. The main purpose of this section is to prove the

following result.
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THEOREM 30.1. Let & be a subgroup of type II, III or IV.
Then .&¥ 18 coherent except possibly 1f &S is of type II,  is a non
abelian 3-group, PU/C is a Frobenius group with Frobenius kernel
HCIE, u <3 |9:9|=23 and T is a subgroup of type V.

All lemmas in this section will be proved under the following as-
sumption.

Hypothesis 30.1.

(i) © 18 a subgroup of type II, III, or IV.

(ii) &7 18 not coherent except possibly if © is of type II.
(ili) VW has exponent a.

For any subgroup £, of & let .57(9,) be the set of characters in
% which have 9, in their kernel. Notice that this notation differs
from that used in Section 29.

LEMMA 30.1. The degree of every character in S is divisible
by aq.

Proof. Every character in .&” is a constituent of a character of
& induced by a nonprincipal character of . For any character 6 of
D let 4 be the character of HU induced by #. Set U, = I(6) N 1.
Let [U:U,|=b. If & is of type II or III, then by Lemma 4.5 it
suffices to show that if 6 # 1, then a|b.

Let & be the kernel of 6 and let He © — & such that HR € Z(D/R).
Then & < HU, and U'HRU = HR for UeWl,. As (u,h) =1, if Ue11,
then U centralizes some element in HR. Hence, U, & &. Let 1, =
{U*|Uen}. Then U, char U and U, S U, < &.

Suppose 1, = 1. If & is of type II, then & is a T.I. set in ®
by Theorem 14.2, Hence, N(1) & N(Il,) & & contrary to definition.
If & is of type III, then by Theorem 29.1, UQ* is represented irre-
ducibly on . Since U, < UQ*, 1, is in the kernel of this represen-
tation. Thus, U, & C(9) contrary to Theorem 29.1. Thus, U, = 1.
‘Therefore U* =1 for Uell and so a|b in case & is of type II or III.

If & is of type IV, we will show that Hypothesis 11.1 and (11.2)
are satisfied with $, in that hypothesis being taken as our present
9D, { being taken as &/, D and & being taken as &'/, and @0 being
taken as &'. Certainly (i) is satisfied. Since &/9 is a Frobenius group
with Frobenius kernel &'/9, (ii) and (11.2) are satisfied, and the
remaining conditions follow immediately from the fact that &/9 is a
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Frobenius group. The present .55 plays the role of .~ in Hypothesis.
11.1 (iii).

Notice now that Hypothesis 11.2 is satisfied. By Lemma 11.2
and the fact that &5 is not coherent it follows that &'/ is a non
abelian r-group for some prime r whose derived group and Frattini
subgroup coincide. But U= &'/$. Since € =1, U/€ is of exponent.
r, 80 a =7r. As U has no fixed points on £, it follows readily that
every non linear character of & has degree divisible by 7, as required.

LEMMA 30.2. For 1 =i =<t¢, |P:: DPB)| = p! and U/C; has ex-
ponent a,

Proof. If & is of type III or IV, the result follows from Theo-
rem 29.1. Suppose & is of type II. Then & is a T.I. set in © by
Theorem 14.2. Let a; be the exponent of /€, for 1 <7 <t¢. Let
W, ={U%|Uel}). Then I, S €, <& and 11; char . Thus, if U; # 1,
then N(I) & N(U;) € &, contrary to definition of subgroups of type II.

Suppose | P; : D(P:) | > pf for some ¢ with 1 < ¢ < ¢. Since Cg (Q*)
is cyclie, this implies the existence of a subgroup , with ¥, S 9, O
such that $/9, is a chief factor of &. By 8.16 (i), $U/9, is nilpotent.
Thus, U S & and N () & &, contrary to definition.

LEMMA 30.3. For 1 =1t < t, either a|(p; — 1) or a|(p! — 1) and
(@, p; —1) =1. In the first case, B;/D(PB;) is the direct product of q
groups of order p;, each of which 18 normalized by N. In the second
case, U/€; 18 cyclic of order a and acts irreducibly on B,/D(P,).

Proof. By Lemma 30.2, 1Q* is represented irreducibly on B,/D($;)..
As U < UQ*, the restriction of this representation to U breaks up-
into a direct sum of irreducible representations all of which have the
same degree d. By Lemma 30.2, d|q and so d =1 or d = q.

If d =1, the order of every element in 1/E; divides (p; — 1)..
Hence, by Lemma 30.2, a|(p; — 1).

If d =gq, then 11 acts irreducibly on PB,/D(PB,). Thus, U/C; is.
cyclic. By Lemma 30.2, |1:C;|=a. Therefore, a|(p? —1). Let
U/€; =U). Then the characteristic roots of U are algebraically
conjugate over GF'(p). Hence, this is also the case for every power
of U. If (a, p; — 1) # 1, then some power U, = 1 of U has its charaec-
teristic roots in GF(p) and thus is a scalar. This violates the fact
that UQ* is a Frobenius group.

LEMMA 30.4. Suppose (a, p; — 1) =1 for some 1, 1 <1 <t. Let
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O =PI B,
JF#E

and let | P, : Bi| = p™. Then m! = myq for some integer m;. Further-
more, “(9,) contains at least

%{(pﬂ”“ a_ e, (p™ — 1)}

1rreducible characters of degree aq and at least (p? — 1) characters
of weight q and degree aq.

Proof. By Lemma 30.3, U/€,; is cyclic. By Theorem 29.1, & is
not of type IV, so 1l is abelian. Hence, H11/9,€; is a Frobenius group.
By Lemma 380.2, |11: €;| = a. Furthermore, since UQ* acts irreducibly
on PB,/D(B.), D = D/, is the direct product of ¢ cyelic groups of the
same order pr. Thus, gm: = m!, and |Cg(Q*)| = pri. By 8.16 (iii)
every non principal irreducible character of $€,/9,€; induces an irre-
ducible character of HU/H,C; of degree a. Since U is abelian, this
implies that every irreducible character of $€;/$, which does not have
9 in its kernel induces an irreducible character of DU/, of degree
a. Hence, H11/9, has at least

(o1 — e,
a

distinet irreducible characters of degree a.

Since &/, satisfies Hypothesis 13.2, Lemma 13.7 implies that all
but p™ — 1 non principal irreducible characters of HU/D, induce irre-
ducible characters of &. The result now follows.

LEMMA 30.5. Suppose that a|(p; — 1) for some © with 1 <1 < t.
Let

@1 = 151 ;_l;[i %:‘

and let |PB;: Pi| = pz";. Then m; = milq is an integer and (9.
contains at least

(Pt —1) u
a au’

wrreducible characters of degree aq, where || = u'.

Proof. For any subgroup X of &, let X = £9,/9,, By Lemma

30.3,  contains a cyclic subgroup P, which is normalized by 1 such
that
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| Bir | = pi

and such that = B, x 9, for some subgroup $, which is normalized
by U. Since UQ* acts irreducibly on PB,/D(PB;), it follows that m; =
mi/q. Let 1, be the kernel of the representation of 1 on PB,. Then
/1, is cyclic and so |1 :U,| < a. There are at least

(p}"",—l) |, |
(/)

distinct linear characters of $U,/9, which do not have P, in their

kernel. Each of these induces an irreducible character of DU of
degree |1:1,|. Thus, by Lemma 80.1, |I1: 1,| = @ and there are at
least

@ —1)-u
a-a-u

distinet irreducible characters of U of degree a which have 9, in
their kernel, and as characters of & have 9, in their kernel. If one
of these induced a reducible character of & or two of these induced
the same character of &, then Q* would normalize 9, contrary to
the fact that UQ* acts irreducibly on P.,/D($)).

LEMMA 30.6. If & contains mo irreducible character of degree
ag, then t =1, Pi=D(P), e =u= (' —1)/(p, — 1), and ¢ =¢, = 1.
Furthermore, (') is coherent.

Proof. By Lemmas 30.8 and 30.5, (a,p; — 1) =1 and @ divides
(@ —1)/(p;: — 1) for 1 < ¢ <t. Suppose that for some 3, -

(pi™ — 1)c; —(pr—-1)=0.

a
Then

@ =1

(pr — 1)

Therefore, ¢; =1, m; =1, and a = (p{ — 1)/(p; — 1). Thus,

(30.1) (pg’""a— e, (pr—1)=0.

Now Lemma 30.4 implies that (30.1) holds for 1 < i <¢. Thus, ¢ = 1.
Hence,c =c¢, =1, u=a=(p*—1)/(p — 1), p = p,. Also, m, =1, and
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so B = D(Py).

If a character 6 in & U .% is equivalent to a character in .&7(9'),
then its degree is prime to | 9|, so © & kerd. Thus, the equivalence
relation in Hypothesis 11.1 has the property that the present set
SA(9') is a union of equivalence classes. Therefore, .5(9’) consists
of (p — 1) reducible characters of degree ag. Theorem 14.2 implies
that Hypothesis 13.83 is satisfied. Hence, Lemma 13.9 implies that

F(9') is coherent.

The remaining lemmas in this section will be proved under the
following stronger assumption.

Hypothesis 30.2. _
(i) Hypothesis 30.1 is satisfied.
(i) &7 is mot coherent.

LEMMA 30.7. If S2(9') is mot coheremt, then =%, € =1,
a=@pm—-1/2, p=p, u#a, and DP)=P.. The degree of every
character in F(9') is either aq or ug, and 7 (9') contains exactly
2uja irreducible characters of degree aq.

Proof. Let d, < --+ < d, be all the degrees of characters in
S((HCY). Define 4 =d;/ag for 1 <4 < k. By Lemmas 13.10, 30.1
and 30.6, all the assumptions of Theorem 10.1 are satisfied except
possibly inequality (10.2). Every character in & ((9€)’) is a constituent
of a character of & which is induced by a linear character of €.
Hence, d, < qu/c, and so 4 = u/ac.

Choose the notation so that a|(p; — 1) for 1<i=<¢,and (a, »;— 1) =
1 for t,+1<i<t If S2((DC)) is not coherent then inequality
(10.2) is violated. Lemmas 30.2 and 30.3 imply that for {, + 1 = 1 <t,
¢; = u/a. Thus by Lemmas 80.4 and 30.5, there exists m with
1 <m £k, such that

& u | (pri—1) Lo fu (™ —1) _ (pri—1)
Z-";' ! T 2 { qa q }

Therefore,

(30.2) Z(p, =1 . ﬁ“_(ﬂ___l)___g /m_‘l_g.?_g_z,
8 aw L qa u - ¢

For
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1 < % < to, (p?‘. —_ 1) > 2p(m,-—1) .
a

By Theorem 29.1, ¢ = w’. Thus, (30.2) implies that
(30.3) L=1 Ift, =1 thenm =1 ¢t=1.

Assume first that ¢, =0. If £=1, then since ¢ < p? and a <
@i — D/(p. — 1), (30.2) yields m, =1. Thus, every character in
S((9€)) has degree aq. Therefore the definition of subcoherence
implies directly that .S7((9€)) is coherent contrary to assumption.
Suppose now that ¢ = 2. Then (30.2) yields that (p, — 1) + (p, — 1) <
2q. Therefore,

(30.4) p; #1 (modq), 21=1,2.
Further, (30.2) also implies that

1 -1 1 @®m-1)
05 e -0 @1 =7

It follows from (30.4) that

(30.6) 1 w-1 _1_1@®m-1) (mod q) .

Each term on the left of (30.5) is an integer. Hence, if p, > p,,
(30.6) yields that .
1 -1 5 1 -1
— =q+ —
a (p, —1) a (m—1"°

contrary to (30.5). Consequently, ¢, # 0.

Now (30.2) and (30.3) imply that ¢ =1, so that © = P,. We also
conclude that m, = 1, so that D(P,) = Pi{. Furthermore, ¢ = ¢, = ',
and (p, — 1)/a = 2. Since ap, is odd, we have p, — 1 = 2a. Finally
we get that 4, = ufac and so m =k. If k=m > 2, or if (D))
contains more than 2u/a irreducible characters of degree ga, then (30.2)
is replaced by a strict inequality which is impossible as (p, — 1)/a = 2.
Thus, £k =m =2, and so d, = ug/c and the degree of a character in
S ((9€)) is either aq or ug/c. If Sisof type II or III, then (HC) =
9’ and the result is proved.

Suppose that & is of type IV. Since the degree of any character
in &Z((9C)) is either ag or ug/c, /€ is generated by two elements.
Since € = ', Il is generated by two elements. Thus, if we set 9, =
9, replace H and & by &'/9, and replace £ by & in Hypothesis 11.2,
then by Lemma 29.1, Hypothesis 11.2 holds and by Lemma 11.3 and
Theorem 29.1, we conclude that & = $°(9’) is coherent, contrary to
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assumption.
LEMMA 30.8. $7(9') is coherent.

Proof. By Lemma 30.7, it may be assumed that © =P is a p-
group for some prime p, that D(P) = P, and that € =1. Suppose
that .&7(9’) is not coherent. Let .54 be the set of irreducible charac-
ters in S7(9’) of degree aq. Then by Lemma 30.7

(30.7) =2 =D
a 2

Let .4 be the set of irreducible characters in S7(9’) of degree ug. The
group &/9’ satisfies Hypothesis 13.2. Hence, by Lemmas 13.5, 13.7
and 30.7, there are (p — 1) reducible characters in & of weight ¢
and degree ugq which have £ in their kernel. As the sum of the
squares of degrees of irreducible characters of S/9’ is p'uq, we get
that

(30.8) ugq + | Al ¢’ + (p — Dew’ + | SA| ¢’ = plug .

Since U is abelian and is generated by two elements, we also have
(30.9) u=<a?.

Now (80.7), (30.8) and (30.9) yield that

(80.10) R ik ¢ 1)::(1— 2qa — 1

= o'~ D~ -1 - o—1r,

4

Hence, by (5.8), .%4 is non empty.

Let &% ={\,|1<s=mn;} for t=1,2. The character \, is in-
duced by a linear character of some subgroup &, of index a in &',
Define

(30.11) ax = (T@O — M)

wheré T@O is the character of & induced by lg,. Since &, { &, it
follows that 1g, induces pPgg, on &', Since Q* does not normalize
S,, (30.11) is seen to imply that

||a||’=a+1+(q—1)-‘;—.

Since & is tamely imbedded in ® and a vanishes on & —@A, we get
that
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(30.12) uaf||==||an==a+1+(q-—1)“7.

Furthermore,
(a7, A — 7\';:') = (@, \y; — \i) =0

for all values of 7 and j.
Suppose that (a°, \;;) # 0 for some 7. Then (ar, An) #= 0 for all
t. Hence (80.10) and (30.12) imply that

P —1 _(p—l)_(p—1)£a+1+(q_1)_a1
ga’ a? g

J— 2
=2=1 14 @-n2.
2 U

Thus
(30.13) 2(1 + .-+ + pY) = p"; 1

éq———(p_l){—z—+ p';'1+p;1 +1+(q—1)%2—}

Therefore

Hence

8 K 4pit < q(l + %) <q.

Thus ¢ = 3 by (5.1). Now (30.13) becomes

3 4 5 ' 2a?
2 N < O _1{___ 2 (n—-1 14+ 22 U
(1+p+p)_—2(p ) » 1+6(P )+ 1+ }

Thus
FUtrimster—1+2 -1+ 2y,

This implies that

Lp<pySp
3p=p+6p+

2
2ap.
U
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Therefore (1/2)p* < (1 + (2a’/u)), or equivalently (1/2)p = 1 + (2a*/u).
Thus (30.7) yields that

2q? 4’ _ (p— 1

= <p+1<3a.
p—2  (p—2)

This is impossible since a |%, @ # v and both ¢ and u are odd. Thus,
(30.14) (@, \%) =0 for r;€5.

Define B = (u/a)\;, — Ay € 4(S”). Suppose that (87, \f;) = (u/a) — b.
As 7 is an isometry on _%(S5”), this yields that

B \L) = X5, —b for all .
a
Therefore,

(30.15) B =(L b M—bZr+T+4,

1#1

where I is a linear combination of elements in .5 ° and 4 is orthogonal
to £°U.S%". Since (87, M\, — Ap) # 0, it follows that ||| = 1.
Since

(30.16) Il =nair= (%) +1,

(80.7) and (30.16) yield
o (-8 + (- (2

a

This implies that

lldll’+2l;-b2— 2%b§0,

or b» < b. Since b is an integer, b=0or 1 and 4 = 0.
Suppose b = 1. Then (30.15) becomes

(80.17) 8 = (l‘- _ 1) N — SNG4+ T
a i
As a, B vanish on & — @, we have

(30.18) (@, B) =(aB)= —-;i .

Since a’, \; — \;) = —1, we get that
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(30.19) ar=(x — 1\, + 2 ;‘, A+ 4,
151

for some integer # and some 4, which is orthogonal to .&%. Now
(30.14), (30.17), (30.18) and (30.19) yield that

_l=(_a%—1)(x—1)—x(2%—1).

a

Reading this equality mod u/a, we get
0= —(m—1)+xs1(mod1‘-).
a

Thus u = a, contrary to Lemma 30.7. Hence, b = 0. Consequently
B = (ula)\y + I', and so I" = +5; for some 7. Since B, M — M) = 0,
Maj = Ny OF Ay. This implies directly that AU S is coherent. Lemma
13.10 and Theorem 10.1 now yield that (9’) is coherent. The proof
is complete.

LEMMA 80.9. & s of type II.

Proof. If & is of type III or IV, then Theorem 29.1 yields that
© =1. Thus, by Lemma 30.8, .5 is coherent. Hence, Hypothesis
30.2 implies that & is of type II.

LEMMA 30.10. If & contains an irreducible character of degree
aq, then Hypothesis 11.1 is satisfied with 9, = 1, =6, 8=6, =
& and d = a.

Proof. By Theorem 14.2, Condition (i) is satisfied. Condition (ii)
follows from the definition of three step group. Conditions (iii) and
(vi) are immediate, while Condition (iv) holds by assumption. The
group & satisfies Hypothesis 13.2. Hence, by Theorem 14.2 Hypo-
thesis 13.3 is satisfied with £ =8,2=6, 8 =& and 8 = &. By
Lemmas 13.7, 18.9 and 13.10, Hypothesis 10.1 is satisfied. Thus,
Lemma 10.1 yields that Condition (v) of Hypothesis 11.1 is satisfied.
The proof is complete.

LEMMA 30.11. If & contains an irreducible character of degree
aq, then

|19:9' | =4a’ + 1.

Proof. By Hypothesis 80.2, .57 is not coherent. Thus, Lemmas
30.8, 30.9, and 30.10, together with Theorem 11.1 yield the result.
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LEMMA 30.12. For 1=t=t, (a,p,—1)=1 and PUEC; is a
Frobenius group.

Proof. Suppose that a|(p; — 1) for some ¢. Then Lemmas 30.2
and 30.11 yield that p! < 4a’¢*+ 1 < (p; — 1)’¢* + 1. Thus, pi* < ¢
Therefore, (5.1) implies that ¢ =8. Hence, p, =5 or 7. Thus, @
divides 4 or 6. As ais odd and (a,q) =1, this implies that
a =1 which is not the case. Therefore, by Lemma 30.3, 1/C; is
cyclic of order @ for 1 <:i<t. If P,W/C, were not a Frobenius
group, then for some b < a, {U?|Uell} =1, would lie in &. Since
U, # 1 and 1, char U, this implies that N(U) & N(11,) S &, contrary
to Lemma 30.9.

LEMMA 30.13. t=1, p, =38, a < 3" and P = D(P).

Proof. By Lemma 30.8, £ # 1. Choose the notation so that
PBi#1l Let B=PuOPu--- DB, =PI D Bty Where P[P, .y, is
a chief factor of & for 1 <7 <n. Thus, P/B, .+, is of class two
and so is a regular p-group. By Lemma 4.6 (i) Q* centralizes an
element of P, — P,;1, for 1 <7 < n. Since Cp,(Q*) is cyclic, this
implies that PB,/P, ... has exponent p*. Let U/€, = {(UD>. Then the
regularity of B/, .+, yields that U has the same minimal polynomial
on B,/D(PB,) as on P/P,.... Hence, by Lemma 6.2, a < 3¥’. Now
Lemma 30.11 implies that if | B,: Bi| = p™?, then

t
(80.20) pM Il v =43¢ +1.
=2
Since 3 < p,, (80.20) implies that
poe [T pt < 4¢* + 1.
=2

Hence, by (56.9), m =1 and ¢ = 1. Thus, (30.20) becomes
(30.21) pl <4.3¢ + 1.

If p, = 11, (80.21) implies that

3«<<&)'<4q=+1
38/ = )

Thus, 3 *< ¢* and so ¢ < 5 by (5.1). Hence ¢ = 3 and (30.21) yields
1331 = 11* < 4.3° + 1 < 1000, which is not the case. If p, =7, then
(30.21) and (5.6) imply that ¢ < 7. Thus, ¢g=5o0or ¢q=3. If ¢ =3,
then
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pi-1 gy

D, — 1
and a < 37 < 9. Since (¢,a) =1 and a |57, this cannot be the case.
If ¢ =5, then

Pl 9801

D, — 1
is a prime. Thus 2801 = a < 3¥* < 27. Suppose now that p, = 5.
Then by (5.7), ¢ < 13. Thus, ¢ =38,7, or 11. Let r be a prime
factor of a. Then r < 3”*and 5? =1 (mod r). Thus, r = 1 (mod 29).
If g=3, then r =1 (mod6) and r < 8%, which is impossible. If
gq="T, then r <3”<50 and r =1 (mod 14). Thus r =29 or 43.
Since 5" = —1 (mod29) and 5 = —6 (mod 43), these cases cannot
occur. If ¢ =11, then r < 3" < 487 and r = 1 (mod 22). Thus, r =
23, 67, 89, 199, 331, 353, 397, or 419. Since 5" =1 (mod r), the quad-
ratic reciprocity theorem implies that (r |5) = 1, so that » = +1 (mod 5).
Thus, r =89, 199, 331 or 419. Since 5" =55 (mod 89), 5" = 92
(mod 199), 5" = —2 (mod 331), 5" = —40 (mod 419), these cases cannot
occur. Hence, p, =3, and the lemma is proved.

If & is not coherent, then Lemmas 30.8 and 30.12 imply that
|2, | is not a prime. Hence, T is of Type V. The other statements
in Theorem 30.1 follow directly from Lemmas 30.9 and 30.13.

31. Characters of Subgroups of Type V

In this section & = I'TW, is a subgroup of type V. Let S be the
subgroup of & which satisfies condition (ii) of Theorem 14.1. By
Theorem 14.1 (ii) (d) © is of type II. The notation introduced at
the beginning of Section 29 will be used.

7 is the set of all characters of ¥ which are induced by non
prineipal irreducible characters of 2’. For any class function a of ¥’
let & be the class function of £ induced by «.

For0<i1=q¢—1, 07 =< w,— 1let 7, be the generalized charac-
ters of © defined by Lemma 18.1 and let v;; be the characters of
defined by Lemma 13.8.

Hypothesis 13.2 is satisfied with = %, = T’ and W, replaced
by 2,. By Lemma 13.7 ' has exactly ¢ irreducible characters which
induce reducible characters of . Denote these by v; for 0 <i<q —1,
where v, =1z, Let {;=Y; for 0<7t=<q— 1. Since ¢ is a prime
the characters v; are algebraically conjugate for 1<i=<gq—1.
Therefore

v(1)=y(1) forl<i=<q-1.
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LEmMMA 31.1. S2(9') contains an irreducible character of S ex-
cept possibly if w, 18 a prime and HU 18 a Frobenius group.

Proof. If & is not a Frobenius group then there are strictly
more than w, classes of &'/’ whose order is not relatively prime to
] ©|. The result now follows from Lemma 13.7.

Suppose that & is a Frobenius group. By Lemma 6.2 and 3.16
(ili)  is abelian and |9|= wi if the result is false. Then Lemma
13.7 implies that & contains exactly w, — 1 conjugate classes which
are in . Therefore

191-1 g
u

Hence

_191-1_ [9]-1
U = w, —1 = o[ — 1 >1/|—-§|.

‘This implies that $ is an elementary abelian p-group for some prime
p. Since T, is cyclic w, is a prime as required.

LEMMA 31.2. Let

ai; = (WDIg — L), %) -
Then a;; #0 for 1 <1<q—1, 05w, — 1.

Proof., Lemma 10.3 implies that by Lemma 9.4
(31.1) @MW1y — &, Toig) = (DI — L), ) = as;

Since 7),, is rational on ¥’ by Lemma 13.1, a;; = a; is independent of
4. Thus (31.1) implies that

q—1
(31.2) Nojigr = bpz' — Q; E{ Ving: + dig ,

for some integer b, where a is an integral linear combination of
irreducible characters of T each of which vanishes on 0.

Let Qe Q*. Let p be a prime dividing w,, let P be an element
.of order p in W, and let p be a prime divisor of » in the ring of
integers of <. Let w;; have the same meaning as in Hypothesis
13.1. Thus by Lemmas 13.1 and 18.3

(8L.3)  7iPQ) = 0, (PQ), a(PQ) =10, vy(PQ)=cw,y(PQ),

where ¢ = +1 is independent of 2. Therefore
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(31.4) g Vo(PQ) = ¢ 3;_"; ©0(PQ) = ¢ 5;,‘: 0(Q) = —¢ .
In view of Lemma 4.2 (81.8) and (31.4) imply that
70:(Q) = 70;(PQ) = 0,,(PQ) = 0,;(Q) =1 (mod p)
(BLE) T vul(@ = —e (mod p)
(@) = a(PQ) =0 (mod p) .
Thus (31.2) and (31.5) yield that 1 =ea; (modp). Thus a; # 0 as

required.

The main purpose of this section is to prove that .7~ is coherent.
Theorem 12.1 will play an important role in the proof of this fact.
The lemmas in this section will from now on satisfy the following
assumption.

Hypothests 31.1.
7 18 mot coherent.

By Grun’s theorem /X" is a Frobenius group. Hence by Lemma
11.2 ' = Q is a ¢-group. Define

(31.6) |1Q: Q| =¢, |1T:Q|=w,=e.

Let 1 =¢ < ¢1 < --- be all the integers which are degrees of
irreducible characters of Q. Let

(31.7) V(1) = ¢’ , n>0.
By Lemma 13.10 Hypothesis 12.1 is satisfied. Let .7, be defined
by (12.3) for 0 < s < &.

LEMMA 31.3. Suppose that b = 2c¢c for some integer c. Then e
18 mot a prime power.

Proof. Suppose that ¢ = p* for some prime p. Then by Lemma
11.5 ¢°+1=2p", f,=c¢ and Q contains a subgroup Q, which is
normal in ¥ and satisfies |Q': Q,| =¢q and Q* =S Q — Q. Therefore
n =1 and .7 contains 2(¢° — 1) irreducible characters A, \,, -+ of
degree e. Define

a='in—x1, B=q¢N —C.
By Lemma 9.4 we have that
@L8) Jla|f=e+1, [|B|P=¢"+e, (a,B)=—¢.

Furthermore
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(ar’ A — A‘;) = 651 - 8;1 ’
(B7, Mi — Nj) = ¢%(0s, — 0y)

Suppose that (a*, \i) # 0 for some ¢ with 2 <7 < 2(¢° — 1). Then
(31.8) and (31.9) imply that

(31.9)

¢ +1
2

Hence ¢° + 3 = 49° — 4, or 7 = 3¢° which is not the case. Therefore

tl=e+l=|la|Pz1+20-1)—1.

(BL10) a =1lg—NM+I, (ILA)=0 for 1=1=<2(¢°—1).

Equation (31.9) also yields that for some integer x

2(¢°—1)

(31.11) Bt =¢q¢\N —«x '2_1 A+ 4,

“(M,A)=0 for1<¥=<2¢g-1).
Furthermore Lemma 13.8 implies that for 2<s8 < q — 1,
(31.12) 4,5-0)=6,0-0O=BLL-0=e.

Since B* vanishes on ® and (87, 1g) = 0 Lemma 13.2 yields that

e—1

q—1 e—1 q—1
(31-13) 4= Z‘l‘aio % Nii + ’z;laoi 2})77.-; + 4, ,

where (4o, 7;;) =0 for 0 <2=<¢g—-1,0=<j=<e—1. Now (31.12) and
(31.13) imply that

Qo —ap==x1 for 2=s=qg—1.

Define a = a,. Then (31.13) implies that
(61.14) (2 + 1)+ (g — 2)a’ + ‘f:lag,.

+ 5@t 1+a)+@—a+a)) s 4.

For any value of j the term in the last summation in (31.14) is non
zero. Furthermore (a + 1) + (¢ — 2)a’* # 0. Thus (31.14) implies that
if there are exactly k& values of 7 with a,; # 0, then

(31.15) k+e=<|4d]|*, kis even.

The last statement follows from the fact that (3,;, 4) = (%,;, 4) since
B* and thus 4 has its values in &,. By definition

@1g — G = ¢ — M + (@™ — M) = gar + £

Lemma 31.2 implies that for any value of j with 1 <j<e—1
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(31.16) (@, ;) 0 or (B, 7M;)+0.
Now (31.8), (31.11) and (31.15) yield that
(¢ — =)+ 22¢° — 1) — 1} = ¢*,
or
2(¢° — 1)2* < 2¢°x .

Therefore

o<ses—L _<o2.
¢¢—1
Suppose that « # 0, then z =1. Now (31.8) and (31.11) imply
that ||[4|P< ¢ +e—{(¢— 1+ 2(¢ —1)—1} =e+ 2. By (31.15)
this implies .that k=0 or k=2. Assume first that k¥ =0, then
(81.10) implies that ||| < e — 1. Hence by (31.16)

e—1
I = Z =+ 7701 .
=1

This implies that (8%, I') = 0. Consequently (31.8), (31.10) and (31.11)
yield that

—¢=(@,B)=(—M,f)=2z—¢=1—¢

which is not the case.

Assume now that ¥ =2. Choose 1,2 with 11 <2 <e—1
so that a,; # 0 for j =1,2. Thus %y = Y, G = G = 1 and by
(31.16)

a'zlg—Xf+_Zoiﬂoi+ro, | G| =2.

J#1,2',

Since B8 has its values in &, and 7, has its values in &, (7, 87) # 0
for any algebraic conjugate 7,; of %y. By Lemma 13.1 7, has at
least (p — 1) algebraic conjugates. Hence p =3, therefore q # 3.

Since a* vanishes on % Lemma 13.1 implies that for 1 <s <gq —’1
0= (a1 — Do — Do + D) =1+ Loy = Nuo + ) — (o, ') -
Hence if (I, 7o) = 0 then
2=|I|Pz@—-1)>2.
Therefore (I'y, o) # 0. Hence .

e—1

[‘=12=1i770,-

Consequently (81.8), (31.10) and (31.11) yield that
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— =@, B) = (—M, Ak 2=s—¢x2=1—¢=2.

The assumption that = #+ 0 has led to a contradiction in all cases.
Therefore (31.8), (81.11) and (31.15) imply that

B=gr+4, ldi=ec.
Thus a,; = 0 for 1 <5 < ¢ — 1. Thus (31.14) implies that
(@ 1)+ (g — 2)a’e = e.

Hence a =0 or g=383and a =1 =0. Thus B~ =¢°\{ —( or ¢ =3
and 8° = ¢°\f + {i. In either case this implies that the set of charac-
ters consisting of \;, 1 <1 <2(¢° — 1) and {,, 1 < 8 < q — 1 is coherent.
This includes all characters in & which have {Q, in their kernel.
Since |Q:Q,| = ¢*** > 4p® the result now follows from Theorem
11.1 with §=28=8=9, =2, and 2= Z.

LEMMA 81.4. & 18 coherent.

Proof. By Theorem 30.1 w, is a power of 8 if . is not coherent.
By Lemma 31.8 b is odd. Thus the lemma follows from Lemma 11.6.

LEMMA 81.5. For 0 <1< mn — 1 let \; be an irreducible charac-
ter of T with \(1) = eq”i. Let Q, be the mormal closure of L* in
. Let 1 =q%< .- < ¢ be all the degrees of irreducible characters
of Q/Q,. Then ITIQ, 18 a Frobenius group. For any value of 5 with
0<7=<m let 6; be an irreducible character of T|L, of degree eq’i.
Define

a = ’ID - XO ,
Bi=q'Ti-an,_,—\; for1<i1<n-—-1,
v; = @9 %-10;_, — 0; for 1<j<m.
Then
(;8:,770,)=0 fO’r 0§t§6—1, lé_’bé’n—l,
(Y5, M) =0 for 0st<e—1,1Zj=m.

Furthermore if e 18 a prime then one of the following possibilities
must occur:

e—1
ar=1@_7\'3’+2770t7

t=1

e—1

=15+ % + 57 and 26 +1=[D: '],

-1
@ =1g+ SN+ T,

=1
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with (I',7,,)=0for 0<8=<q¢q—1,05t<e— 1.

Proof. For11=n—-1, 157 m let
ar=roo+Aoov BE=[’60+ASO’ 7;'=roj+do:‘,

where each 4;; is a linear combination of the generalized characters
7,. and each I';; is orthogonal to each of these generalized characters.
Since for 1=8=<¢q —1, ({, — ()" is orthogonal to a*, B and 7% and
all of these vanish on Q@, Lemma 13.2 implies that

qg—1 e—1 e—1

(31.17) 4;; = aylyg + a Z Z Nae + Z Qot Z Ve — Qoo gg /N

s=1t=

where {a} U {a,.} is a set of integers depending on (7,7). Since
M — X, @) #0, || 4wl <e. Since (\f — X, B5) # 0, (65 — G5, v7) # 0,
Theorem 12.1 implies that

(31.18) || 4;; 11 < e for all (2, 7).

Assume first that (¢, 5) # (0, 0). Then a, = 0. Thus (31.17) and
(31.18) imply that

(q—l)a’+(q—1)2(a+aoz)’+ Zam:

If a # 0 then for each value of t either a,, # 0 or a + a,, # 0. Thus
(¢ — 1)a? £ 1 which is not the case. Hence a = 0 and so

(81.19) = 5 0 3 us -

As _Z(5)° is orthogonal to _#%4(.7 )" Lemma 31.4 yields that for all
(1, 9)
(&.(1)6; — & (1)65,4:5) =0 for L=<k, K <e—1.
By (31.19) (4., §7) = *a.q. Hence
E(L)ao — &u(1)ay = 0.

Suppose now that a, # 0 for some t. Then a, # 0 for all ¢ with
1 <t<e. Hence (31.18) and (31.19) imply that

0(6—1)<QZ%¢ =
which is not the case. The result is proved in case (7, ) # (0, 0).

Let (¢,7) = (0,0). Then a, =1. By assumption &,(1) = &,(1) for
1<k=<e—1, since ¢ is a prime. By (31.17)
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(dooy £5) = +{a(@ — 1) + apug —aw(g — 1)}, for 1=k =<e-—-1

where the sign is independent of k. Since (dy, & — &) = 0 this yields
that a,, = a,, for 1 <k <e — 1. Hence (31.17) and (31.18) imply that

@—1a’+(—1as, +(e—1)g—1)a+a,—1) ' =e—1.

If a,, # 0 this yields that a =0 and a,, =1 and the result follows.
If a,, = 0 then we get that

@—Da*+(—1)g—1)ae -1y =e—1.

Hence @ = 1 and the result is proved also in this case.

LEMMA 31.6. Let . = \,_, have the same meaning as in Lemma
81.5. Define

Ba =B =q"wn-1\ (.

Then (87, 7y) =0 for 0 <t <e— 1.

Proof. Let .7, be the equivalence class in .7~ defined by (12.3)
which contains \. If ¢, is in .7, then the result follows from the

coherence of .7,. For any i, let a;,/¢e be the number of characters
of degree ¢’ie in .7, and define ¢ as in (12.4) by

(31.20) c =3 a,q"m,

where ¢’me is the minimum degree of any character in .7,.
Let

(31.21) Br=d,+4+ 1T,

where 4,€ # (.7;°), 4 is an integral linear combination of the gener-
alized characters 7,, and I" is orthogonal to .7," and to every 7,,.
Theorem 12.1 yields that

(31.22) 41+ I = 2e .

B° vanishes on T and (B, 1g) = 0. Furthermore ({; — ¢, 4) =e for
2<8=<q—1. Therefore Lemma 138.2 implies that

q—1 e—1 e—1 q—

(31.23) 4=€T N+ 0% S0+ 3 Gu 50

where ¢ = +1.
Since _%4(5”)" is orthogonal to _%(.77)" Lemma 31.4 yields that

)i — Eu()8i, 4) =0 for 1<k, K <e—1.,
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By (31.23)
(i 4) = 2{e + (¢ — Dayw + qau} ,
where the sign is independent of k. Therefore
§E() {e + (¢ — Day + qag} = &(1) & + (¢ — 1)ay + qau}
for 1 <k, ¥ <e. By (81.22) and (31.23) we see that

(BL20)  Siah + (@t o + (@ — Dal+ 3, (€ + G+ )
+ @23 @t ) =4I s 2.

If a, # 0 and a,, + € # 0 then for each t at most one of a,, a,, + a,
€ + a, + a, vanishes. Hence (81.24) yields that

(@p + &) + (@ — z)afo =2.

This is impossible as either a,, or a, +¢ is even. If a,, # 0 then
(31.24) implies that

e—1

250 +@-D+ @D 5@ -2,

If g+8,then2al + (¢ —2)(a,, — € =2for1 <t<e. Henceq—2=
2 which is not the case. Thus a,, =0 or ¢ =8 and a,, + ¢ = 0. Thus
we get

(31.25) (&, 4) = £{xe + qau}
S e + qay} = & (U){xe + qa,} for 1=k, K <e.
Assume that the result is false. Then a, # 0 for some value of
t. We will next show that a, #0 for 1 <t <e. If this is false

then there exists j such that a,; = 0. If v is any character in &
then (v(1)¢; — &,(1)Y", 4+ I') = 0. Thus (31.25) implies that

1.26 c 4+ =21
(31.26) (v,4+ 1) &)

Thus &,(1)|v(1) for every v in &”. Let a be the exponent of U. By
Lemmas 30.1, 30.4 and 30.5 £;(1) = aq. Thus &’ is in the kernel of
¢;. Define

o={t|1=t<e &)+ &M},
By (31.25)

+{&Q) — &;Q)}
PG forlst<e,

Aoy =
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Thus (31.22), (31.28) and (31.26) yield that
%@y 2 T + — SHEWD — &M 2 SvQ7 + Z A,

where z = 4/9 if ¢ # 8 and z =16/25 if ¢ =3, and 7 ranges over
the irreducible characters in .&¢. By Lemma 13.7 there exist irre-
ducible characters £, of & which induce the characters §, for1 =t <e.
Consequently

2eg 2 521 + 5 5, 1) 2 2 {S 2" + 5 1Y)

where y ranges over the irreducible characters of &’ which are distinct
from all ¢, and do not have © in their kernel. Therefore C(9) S 9
otherwise since |®| is odd there are at least 2egq characters X of
degree at least a. Furthermore

2ea’q = x{u(h — 1) — a’*(e — 1)} .

This implies that

(31.27) yeqa* = {‘276;1_ +e— l}a’ > u(h — 1),

where y =4 if ¢ =38 and y =5 otherwise. Let 1C$,cC 9, where
D <. Let by, =D, ha= 1D:9:], &= |C©1(Q*)I and e, =| C@Ibl(g*) B
Since & is of type II ae, < 2h, and @ < u. Thus (31.27) implies that
h, — 1 < 2yqge,. Since h, = p*'e, for some prime p dividing h, we get
that »*' < 2yq. Thus ¢ =8 by (5.1). Hence p*= 24 which is not
the case as p = 5. Hence no such group 9, exists. Thus 9 is an
elementary abelian p-group for some prime. Therefore ¢ =p is a
prime and &,(1) = &(1) for 1 <t < e. Consequently @, = @y =0 for
1 <t < e contrary to assumption.
Returning to (81.24) we see that

e—1
Za?n <e-+ 1.
t=1

Therefore a, =1 for 1 <t <e¢— 1. Thus
(81.28) ay=+1 forl<t<e—1.
Now (31.24) implies that

(81.29) (@p + &) + (@ — 2)aj,

+ (e — D{(@w + € + an)* + (¢ — 2)(@y + au)’}
<e+1,
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Suppose that ¢ #8. Thus ¢ =5 and a, =0. Then (31.29) im-
plies that (¢ —1)(¢ —2) < e + 1. As ¢ =5 this implies that 8¢ — 3 <
¢ + 1 or e =< 2 which is not the case. Therefore

(31.30) q=3.
By (81.29) either a,, =0, ay = —(a;, + €)ora, + & =0, a, = —a,.
Now (31.28) and (31.28) imply that

4= i{.Z_l Te — Y i 77.:}

t=0 t=1 =0

or
4= i{iﬂ?u - 22”-‘} .
This is equivalent to

4= i{7]10 - :E:; (70 + 772¢)}
(31.31) or

4= i{7730 - Z—.‘; (70 + 771:)} 3

Since (8" — B, I') = 0, I is a real valued generalized character. Thus
IC|*+#1. By (81.831) ||4]|]* = 2¢ — 1, hence by (31.22) " = 0. Now
(31.21) implies that

n—1 agle

(31.32) B =glvinont — @ 5 5 ¢TI + 4,

where for m < ¢ <m — 1, \;; ranges over the characters of degree
eq’i in 7.

Suppose that .5 contains an irreducible character v. Then by
Lemma 31.4

(vQ)6; — &), B)=0 forl<t=<e—1.

As 7 is rational valued on elements of Q, v* # \f; for all 7,5. Thus
(31.31) and (31.32) imply that

+2v1) = (v)é, ) = )", ) =0 .

Therefore .&¥ contains no irreducible characters. Hence by Lemma
31.1

(31.33) e=1p, P a prime,

Now Lemma 381.3 implies that b is odd, where b is defined in
(81.6). As |[4]’=2p —1 > 2p — 2 Theorem 12,1 implies that if ¢ is
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defined in (81.20) then
(31.34) c=0 (modgq) or c=9p'.

Assume first that m # 0 in (81.82). Let a be defined as in Lemma
31.5. Suppose that

p—1
a’=1@i7\-§+§{7]m.
Then (31.31) and (31.32) yield that

0=(a,B8)=x(p—1).
Thus by Lemma 31.5

2
(31.35) @=1gEN+ XM+, ITL|'=p-38.

Then

n—1 &5/P

(81.36) Fy=rTyn+y > > ¢ Im\y,

i=m j=1

where (I, Mi;)) =0 for m=<i1=<n—1,1=<j =< (a;/p). Suppose that
y = 0. Then (31.31), (81.32) and (31.36) yield that 0 = (a*, B°) = +1.
Hence y + 0. Thus by (31.35) and (31.36)

Thus (31.34) yields that
(31.37) ¢c=0 (modq).
Equations (31.31), (31.32), (31.35) and (31.36) imply that
0 = (a0, B°) = +1 + ygq'nTn1g'n1-"m — gy &
p
Hence (31.37) implies that 0 = +1 (mod q). This contradiction arose

from assuming m # 0.
Assume now that m = 0. Then

c=¢"—1+ ’_‘E___‘,la;q”-‘ .
Hence ¢ # 0 (mod ¢). Thus (81.34) and 3.15 imply that

(31.38) c=p', ¢+ 1=0 (modgq¥») .
Now (31.81) and (31.32) yield that
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@It 4 p = || 87| = @MV — 207 + x’—g— +2p—1.
Therefore
(81.39) xc + p(p — 1) = 22q”’»p .
By (81.38), (¢ + 1) > pg’». Thus (31.39) yields that
f(x) = a*(pg’» — 1) — 2z¢’p + p(p — 1) < 0.

It is easily verified that f(x) is a monotone increasing function for
=2 and f(2) =p(»—1)—4>0. Thus < 2. By (31.39) = > 0.
Hence x = 1. Now (81.39) becomes

¢+ p(p—1)=2¢"p,
or equivalently
(31.40) p—p1l+2¢*)+c¢c=0.
Therefore (1 + 2¢’*)* — 4c = 0, hence
4c < 497 + 4¢'» + 1 < 8¢V~ .

Thus ¢ < 2¢*’». As ¢ is even, (31.38) now yields that ¢ = ¢"» — 1,
Now (381.40) becomes

¢ — 2 p+p—-p-1=0,
or

@*—p—-1)(¢—p+1)=p.

As p is a prime one of the factors is £1 and the other is *+p. As
the factors differ by 2 this implies that p + 1 = 2. Hence p = 3.
Since p # ¢q (31.830) implies that p # 8. This contradiction establishes
the lemma in all cases.

THEOREM 31.1. 7 18 coherent.

Proof. Suppose that .7~ is not coherent so that Hypothesis 31.1
is assumed. Let a, 8;, 7;, M, 0; have the same meaning as in Lemmas
81.5 and 81.6. Choose A\, = 6,. Then

(81.41) (@1 — 007 = ga + 3 a7 765 .
(31.42) (@"h = ) = 3065

=1
(31.43) (@930, — 8;) = S ¢y for 1S j<m.

=1
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Lemmas 31.2, 31.5 and 31.6 together with (81.41) imply that

e—1

a'=1@“7\'5+t_§%:

or

e—1

a'=1@+7»6+‘5__‘;77m

and 2¢ +1=|Q:Q'|. If the latter possibility occurs then by Lemma
10.1 it may be assumed after changing notation that in any case

(31.44) a'=1g — N + g’}oe .

Now Lemma 31.5, (81.43) and (31.44) imply that

(31.45) —q% = (a*, (q%6, — 6,)")
= (—6§, (q°6, — 6,)), for1=s=m.

Since || (¢?*0, — 6,)" ||* = ¢*** + 1 and ((¢°*0, — 6.)", (6% — 63)) = —1, (81.45)
implies that

(31.46) (g6, — 6,)" = q*0; — 67 for 1 =s=m.
Lemmas 31.2 and 31.5 and equations (81.42) and (31.44) yield that
(31.47) —q'r = ((qf")\-o - Cl)rr af) = ((q!”)‘-o - Cl)r’ - )‘-5) .

By Lemma 13.10 {¢;|1 <¢<q — 1} is subcoherent in 7. Since
I (@7*xo — &) |I* = ¢¥» + e it follows from (31.47) that

(31.48) @M —C) =a"» — (1.

Let Q, have the same meaning as in Lemma 31.5. Then there
exists a subgroup Q, of Q, such that Q,/Q, is a chief factor of T
and | Q,: Q.| =¢. Let 7 (Q,) be the irreducible characters of T of
degree eq’, 0 < 7 < m. Then (81.46) implies directly that 77 (X)) is
coherent. Hypothesis 11.1 is satisfied with = @=R=90 and T =
. If 7 is not coherent then Theorem 11.1 implies that |[Q: Q| <
4¢* +1. As ¥/Q, is a Frobenius group this implies that Q, = Q'.
Therefore /L, is an extra special g-group. Thus |[Q:Q'| = ¢* for
some integer c. Define

TQ)=)Ull=sisq—-1}.

Then .77 (Q,) consists of all characters in .7~ having the same weight
and degree as some character in .~ which has L, in its kernel. By
(81.48) .77 (L) is coherent. Thusif .7~ is not coherent Theorem 11.1
implies that
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(31.49) ¢ =|0:0,|<4’+1.

Lemma 13.6 applied to the group W,Q/Q, implies that e¢|q¢°+ 1 or
¢|g°—1 and |W,|=e. As e is odd this yields that 2¢ < ¢°+ 1 in
any case. Thus by (81.49)

q20+1§462+1§(qc+1)2+1<2q26.

This contradiction suffices to prove Theorem 81.1.

COROLLARY 31.1.1. If \, 18 an irreducible character of ¥ of
degree w, then :

~ wg—1
(12'_)'0),:1(5—7\'54' ; Mot +

Proof. Let a = iz, — % and let a, = (a7, ). By Theorem 31.1

(31.50) g — &) = »)a + @N, — &)
=y, N — & + vi(Q)a" .

As 7, is rational on ', (%, M) =0. By Lemma 18.9 (%,, (i) = 0.
Thus (31.50) implies that

((Dlg — &), %) =aw(1) forlst<w,—1,

Hence by Lemma 31.2 (@, 7,) # 0 for 1<t s w,— 1. As | .9 |>2,
(@, 1) =1, (@, A\ — N) = —1 and ||a@"|* = w, + 1 we get that

w,—l

a’=1@—7\.§+ tg,livog .
As ar vanishes on & Lemma 18.2 now implies the required result.
COROLLARY 31.1.2. & 8 a F'robenius group and w, 18 a prime.

Proof. Suppose that .5 contains an irreducible character 4.
Choose &; in &“(9'). Then (0(1)¢; — £;(1)67) e A(5”). If &7 is not
coherent § may be chosen in $(9’) by Theorem 30.1 and Lemma 31.1.
Hence by Corollary 31.1.1 and Lemmas 18.9 and 30.8,

0 = (B(L); — £,1)6°, Ag — Mo))
= 0(1)(i :2:7]{5» wé_:;%t) = +6(1).

Therefore .5 contains no irreducible characters. Lemma 31.1 now
implies that &' is a Frobenius group and w, is a prime,
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32. Subgroups of Type V
THEOREM 32.1. @& contains no subgroup of type V.
Proof. Suppose that the result is false and T is a subgroup of
type V. %’ is tamely imbedded in & by Theorem 14.2. For 0 <1< mn

let £; have the same meaning as in Definition 9.1 and let %A, be
defined by (9.2). Let &, be the set of elements in & which are

conjugate to some element of A, for Le |Jr,&:. By Lemma 9.5
1 1
118, = L S, 146)
(32.1) IR
1 1
1.(T)= — (1 — ——).
= 127 Sl = - (1= 17)

Let A be an irreducible character of degree w, in .¢~. By Theo-
rem 31.1 and Lemmas 10.3 and 9.4

(32.2) AM(T)=a+ NMT) for TeZH,

where a is independent of 7. Now Theorem 31.1 and Corollary 381.1.1
imply that @ = 0 in (82.2). Thus A (T) = NT) for Te<Z'%. Hence
Theorem 31.1 and Lemmas 10.3 and 9.5 imply that

2____ T =1 - W
@28 g S VM@ = 2 Sz M) =g

Let 28 be defined by Theorem 14.1 (ii) (a) and let & = T — T, — O*.
Define

®, = J GBG .
qe®

Thus Theorem 14.2 (ii) (a) implies that

(32.4) l gj=1-L_ 1,1
18 w, ¢  quw,

Let ®, be the set of elements in & which are conjugate to some
element of . Since  is a T.I. set in G,

1
32.5
(32.5) I(&II@’l l@l ——(9/-1).

Define

@ozﬁ_@l—@g—@an
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Then (32.1), (82.4) and (32.5) imply that

1 1 1 1 1 1
— |21 -(1—- = —=+ =) — -
I@I| ol 21 ( W, q+qwz> (w, w,ITI)
1 1 1 1 1 1
32.6 - — ==— -+
(82.6) <qu qu|©|) g  wg qu W, | T
1 1 1 1 1
+ > T T3~ 30
qu| 9| ¢ 3¢ 3¢ 3¢
By (32.3)
1 w w
(82.7) —— S, V@) P =1—(1—- 2 )=—L.
|®| ( l$|> ||

By Corollary 31.1.2 w, is a prime and U is a Frobenius group.
Hence by Lemma 13.1 %y, «-+, %, ., are algebraically conjugate
characters whose values lie in «*,,. Every element whose order is
divisible by w, lies in &, U ®,. Thus 7,;(G) = 7,(G) is a rational integer
for Ge®, and 1<j=<w,—1. Now Corollary 31.1.1 implies that
1 —2\(G) + (w, — 1)7,(G) =0 for Ge®,. Hence \(G) = 1(mod 2) for
Ge®, Therefore |\(G)|=1for Ge®, Now (32.6) and (32.7) imply
that

w, | 1
|Z'| = 3¢

or

(32.8) 3qw, > |T'| .

Since T # 1, (82.8) yields that 8w, > |T':¥”| and |T”|=q. Thus,
®, acts irreducibly on ¥'/T”. Therefore ¥’ is an extra special group.
Let | :3”| = ¢*. Then by Lemma 13.6, w, < (¢° + 1)/2. Thus (32.8)
implies that ¢* < (8/2)(¢° + 1) < 2¢°. Hence ¢° < 2 which is not the
case. The proof is complete.

COROLLARY 32.1.1. Let & be a subgroup of type II, III or IV.
Let & have the same meaning as in Section 29. Then & 1is
coherent.

Proof. This is an immediate consequence of Theorems 30.1 and
32.1.

33. Subgroups of Type I

LEMMA 33.1. Let R be a maximal subgroup of & and let L have
the same meaning as in section 14. If L is of type 1 with Frobenius
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kernel © let &7 be the set of all irreducible characters of ® which
do mot have O in their kernel. If L isof type II, III or IV let &
be the set of characters of { each of which 1is induced by a mon
principal irreducible character of ¥ which vanishes outside Q. Let
Q, have the same meaning as in section 9 and let A, be defined by
(9.2). If ne_<” then \° can be defined. Furthermore \° is constant
on A, for Le U, L.

Proof. Since |®| is odd Lemmas 10.1 and 13.9 imply that \*
can always be defined as {\, \} is coherent.

If Leg, then A, = {L} and there is nothing to prove. If Le&g;
with ¢ # 0 let , be a supporting subgroup of Q such that C(L) S N; =
N©®,). If R, is of type I then the result follows from Lemmas 4.5
and 10.3. By definition R; cannot be of type III or IV. If N; is of
type II then the result is a simple consequence of Corollary 32.1.1.

The main purpose of this section is to prove

THEOREM 388.1. Ewvery subgroup of type 1 is a Frobenius group.

All the remaining lemmas in this section will be proved under
the following assumption.

Hypothesis 33.1.
® contains a subgroup of type I which is not a Frobenius group.

If Hypothesis 33.1 is satisfied the following notation will be used.

o is a set of primes defined as follows: p;€o if and only if ®
contains a subgroup IM; of type I with Frobenius kernel &; such that
a S,,-subgroup of M,/K; is not cyclic.

p = p, is the smallest prime in . M =W,; & = K.

B, is a S,-subgroup of I,

P is a S,-subgroup of & with P, & PB.

L is a maximal subgroup of & such that N(2,(B,)) S 8.

%7 has the same meaning as in Lemma 33.1.

If € is of type I let U be the Frobenius kernel of 8. Let 8 =
¢ with uUNE =1.

If 8 is of type II, III or IV let $ be the maximal normal nilpotent
S-subgroup of @. Let 11 be a complement of  in £ and let T, be
a complement of ¥ in € with B, & N).

LEMMA 33.2. & is the unique mawimal subgroup of & which
contains N(2,(%,). Furthermore £ is either a Frobenius group or
Q 18 of tyve III or IV and R can be chosen to lie in U,



978 SOLVABILITY OF GROUPS OF ODD ORDER

Proof. By Theorem 32.1 £ is not of type V. If L is of type II,
III or IV then P, S & since P, is not cyclic. Since H is a T.I. set
in @ it may be assumed that B, S 1.

There exists Pe 2,(,) such that C(P) & M. Thus either P =
By or Z(*P) is cyclic and Z(P) & By. If a S,-subgroup of U is abelian
then 9B, is the S,-subgroup of U. Hence 2,(B,) char 1 and so N(11) &
N(2,(B,)) € 8. Therefore & is of type III or IV and P =B, S 1.
By definition £ is the unique maximal subgroup which contains
N(2,(B,)). If the S,-subgroup of U is not abelian then ¥ is of type
IV and it may be assumed that PSS U. Then 2,(P) & € and in this
case also ¥ is the unique maximal subgroup of & which contains
N(2,(B).

Suppose that 2 is of type I. Let %, be a S,-subgroup of £ with
B E B,. If pen(€), then P, is abelian. Thus, P, = B, and so P, =
B. Hence, P is an abelian S,-subgroup of &. By construction,
N(EP) = 8. Hence, P< ¢, by Burnside’s transfer theorem. Since
|| is odd, if an element of N(P) induces an automorphism of P of
prime order q, then ¢ < p. By the minimal nature of », a S,-subgroup
of 8 is cyeclic. Let P*=PNC1). Since L is of type I, P* is
cyclic. We can now find a prime ¢ such that some element N()
induces an automorphism of order ¢ on P/P*. Let O be a S,-subgroup
of & permutable with P. Since ¢ < p, Q normalizes PB, and L is
cyclic. Since QU is a Frobenius group, 2,(X) centralizes P/P*. Let
Po = Cp((L)). Then P =P*Py, and [Q, B5] & P*.

Let £* be a maximal subgroup containing N(2,(X)). The minimal
nature of p implies that Q S 8*'. Hence, by Lemma 8.13, Q centralizes
every chief p-factor of £* so Q centralizes P3¥, which is not the
case. We conclude that p ¢ m(€). Therefore pen(ll). Hence PESU.
U is not a T.I. set since P is not a T.I. set in @. This yields that
either penf or m(ll) = 2. In either case this implies that every
prime divisor of |€| is less than p. The minimal nature of p now
implies that & is a Frobenius group.

The previous parts of the lemma imply that if 2, is a maximal
subgroup of @ which contains N(£2,(%,)) then &, is a Frobenius group
and p divides the order of the Frobenius kernel of £,. If P is abelian
then =P, and L =8, = N2(B,)). If P is non abelian then L =
£, = N(Z(B)). The uniqueness of £ is proved.

LEMMA 83.8. There exists an irreducible character \ € & which
does not have P in its kermel such that N1)|(p — 1) or M1)|(p + 1).

Proof. Let A be a character of £ which does not have P in its
kernel and is induced by a linear character of U if ¥ is a Frobenius
group and by a linear character of ¥ if ¥ is of type III or IV,
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Either P =B, and so m(P) =2, or Z(P) is cyclic. In either case
this implies that if g e = (N(P)/C(P)), ¢ + p then ¢|(p + 1) or ¢|(p —1).
If 8 is of type III or IV then \(1) = |, | is a prime and the result
follows. Suppose that € is a Frobenius group. If pen} then |G| =
A1) has the required properties by assumption. If » ¢ 7* then O is
abelian since  is not a T.I. set in . Thus P =P, and m(P) = 2.
Suppose that ¢, ¢,€7(€) where ¢,|(» — 1) and ¢,|(» + 1). Then an
element of € of order ¢, acts as a scalar on P. There exists Pe Pt
such that N(KPD>) & M. Thus M contains a Frobenius group of order
g, which is not the case. Therefore every prime in #(®) divides
(p — 1) or every prime in 7(€) divides (» + 1). Since (p +1,p —1) =
2 this yields that |€||(» +1) or |€||(» —1). The lemma follows
since A1) = | €.

LEMMA 33.4. Let N be the character defined inm Lemma 33.8.
Then

A(L) = ML) for Le®

Proof. Set e =|2:%|. Observe that if € is a Frobenius group,
then since pexn*, it follows that ¥ =1U, so that A1) =e. This
equality also holds if € is of type III or IV,

Set a = (Ts' — A) so that a* = 15 — \* 4 4, where 4 is a gener-
alized character of ® orthogonal to 1gz. Let =X, .-+, X\, be the
characters in & of degree e. Since e divides (p + 1)/2 or (p — 1)/2,
it follows that f >e+ 1, and so (4,\}) =0, 1 <1< f.

We next show that .&” is coherent. If % is a Frobenius group,
the coherence of & follows from Lemma 11.1 and the fact that &
is of type I.

Suppose £ is of type III or IV. Then Hypothesis 11.1 and (11.2)
are satisfied with the present £ in the role of £,  in the role of
9o, and ¥'/H in the role of . By Lemma 11.1, we may assume that
|| =4|2: %+ 1. Hence, |¥:¥|=p" and ¢ = (p + 1)/2, so
that P=U. If P is non abelian, then e divides (»p — 1)/2. Hence,
we may assume that P is abelian of order p* and L is of type III.
By Theorem 29.1 (i), no element of P centralizes . This implies
that if f,, ---, ¢, are the characters in .&” of degree pe, then f’' = 2p.
Hence, (4, 115) =0, 1 <5< f'.

Let 8= (p\, — 1), so that 8" = pA] — @ DN — f + 4,, with
(4,\)) =0. If =0, the coherence of & follows from Theorem
30.1. As ||B|P=p*+1, and f=2(p — 1), it follows that 0 < 2 < 2,
and ||4,|*< 2. Hence, 2 =1 and (4, #5) =0. But now (a7, 8°) =
(@,8)= —p=—(p—1)+ (4, 4,), so that (4, 4) = —1. This is not
the case as 4 and 4, are real valued generalized characters of &
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orthogonal to 1g. The coherence of & is proved in all cases.
Since (4, A7) = 0, the lemma follows from Lemmas 9.4 and 33.1.

LEMMA 33.5. Let \ be the character defined in Lemma 33.3. Then

1 4 ] k'(1)’
Wzﬁs“" (K)| < W .

Proof. Let ®, be the set of all elements in & which are conjugate
to an element of A, for some Le®. Let S, be the set of all ele-
ments in @ which are conjugate to an element of A, for some K € &!.
No subgroup of & can be a supporting subgroup for both € and M.
If & were a supporting subgroup of IM then p would not be minimal
in the set . Thus ®, is disjoint from &,. Therefore by Lemmas 9.5,
4.5, 10.3, 33.1 and 33.4

1 1 1

gy 28 VU P = e B, (V@) P < 1= 5 T, MG
=1‘T§_|Z§"”(G"'= —le—lé?;glk(G)l’

MDY _ ML)

=1-—-(1-— = .

(1-350) =%

LEMMA 383.6. Let M = &F where F = WM N L. Then there exists
Foan (BN Z(F))} such that Co(F) L &'. Furthermore M satisfies
Hypothests 28.1.

Proof. If L isof type I, then ¥ & U. Thus, § is nilpotent and
hence abelian. The result follows from 38.16 (ii) and the fact that
P, is not cyclic.

Suppose L is not of type I. If ¥ £ UD, then we may assume
that W, = §. Then WP, is a Frobenius group and WP, = F. By
3.16 (ii), T, centralizes an element of K. Since |W,| is a prime,
this contradicts the fact that It contains a Frobenius group of order
|WR|. Thus, FSUD. Let F=FNH. Since 9 is a T.I. set in G,
we get that ${, is a cyclic normal S-subgroup of ¥. If &, =1, then
% is abelian and the result follows from 3.16 (ii).

Assume now that &, #1. We may assume that § = F(F N W).
If Q,(B,) does not centralize ¥, then there exists P* = 2,(B,) such
that §,B* is a Frobenius group. Hence, Cg(P*) # 1 by 3.16 (ii). But
in this case, 3* lies in no normal abelian subgroup of ¥ contrary to
the definition of groups of Frobenius type. Thus, 2,(B,) centralizes 3.
Since F NU is abelian and F = F(F N N), this implies that 2,(P,) &S
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Z(%). The lemma now follows from 3.16 (ii).

LeMMA 33.7. Let _# be the set of all irreducible characters of
M which do mot have R im their kermel. Let N be the character
defined tn Lemma 33.3. If _# 18 coherent then \* is constant on .

Proof. Let O, -+- 9, be a set of supporting subgroups of M in
®, and let N; = Ng($:). By definition,

M= U Cn(K).

Suppose Me ¥ and Cy(M) Z M. We will show that Me®. For
otherwise, some power of M is M-conjugate to an element A of Ft.
Since & is a supporting subgroup of some tamely imbedded subset of
©, it follows that Cy(4) S M. Hence, M is in &',

We next show that R; is of type I or II, 1 <1 <s. Suppose N;
is not of type I. Then N; = H.(N; N M), and we assume that N, N WM =
QNN NF). Since ; is a supporting subgroup of iﬁt, we may
choose M in M so that Cuy(M) =N, Cx(M) L M. By the first paragraph,
Me K. Hence, ;N R # 1. If Ny(N: N ) S N, then by a well known
property of nilpotent groups, we have =N, N R, so that M S N,,
which is not the case. Hence, Ng(T: N R) & N;, so N; is not of type
IIT or IV; R, is of type II.

Let a be the least common multiple of the orders of all elements
of 8. We will show that @ |8)=(@, |HD=11=:<s. If Qis
of type I, then £ is a Frobenius group, so a divides |11|, and we only
need to verify that 8 is not conjugate to M or N;,1 <2 <s. As
none of the groups M, N,, -, N, is a Frobenius group, this is clear.
Suppose L is of type III of IV, so that & = Sgll%l,i’% = YU. Since
none of M, N, ---, N, is of type III or IV, we have (D], |R]) =
(9, 19:))=1,1=1=<s. Since Ny(11) & &, it is trivial that (1|, |R]) =
quf, [9:0)=1.

We appeal to Lemma 10.4 and conclude that A\* is rational on &
and on every supporting subgroup of Mm.

Let ; be a supporting subgroup of M and let @ be a character
of $; with (a, 1g,) = 0. Let p,, ¢, be irreducible characters of 9; with
M9, = M9, = @. Then ||(¢t, — ££)*||* = 2 and no irreducible character
of & appearing in (£, — f£,)* is rational on ;. Thus, (A7, (£ — £)*) = 0.
If N, is of type I, then Hypothesis 10.2 is satisfied with our present
M in the role of 8. If N, is of type II, then a complement to H; in
N: is abelian, and again Hypothesis 10.2 is satisfied. Hence, by Lemma
10.2, A" is constant on the cosets of O; in N, — O;, and in particular
is constant on all the sets A,, Me M. As _# is assumed coherent,
an appeal to Lemma 10.5 completes the proof of this lemma.
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Theorem 33.1 will now be proved by showing that Hypothesis 33.1
leads to a contradiction.

Choose Pe P} and KeC(P)N K. By Lemmas 33.1 and 33.4

(33.2) A (KP) = M (P) = MP) .

Let b be a prime divisor of p in &. By Lemma 4.2
(33.8) A (K) = A(PK) (mod p)
(33.4) MP) =n1) (modyp).

Now (33.2), (33.3) and (83.4) yield that
AM(K) =\ (PK) = MP) =M1) (modp) .
By Lemma 10.4 \°(K) is rational. Thus
A(K) =M1) (mod p) .
Since M1) < (» + 1)/2 by Lemma 33.3, we get that
(33.5) IM(E) | =M1 — 1 for Ke$¥, Cy(K)+#1.

If every element in & commutes with an element of 98¢ then (33.5)
implies that

(33.6) IN(K)| = ML) —1 for Kef*.

If not every element in & commutes with an element of P! then
A" is constant on &' by Lemmas 28.2, 83.6 and 33.7. As (33.5) holds
for at least one element in & we get that (33.6) holds in any case.
Now Lemma 33.5 and (83.6) imply that

M1 S {8 -1} _qp
HIREET ML) — 1F.

This can be written as

[TM: R {1 —1} fe—1\2 .
(33.7) 2 > K] ( - >, where ¢ = \(1) .

Since [2:2NWM|>1 and LNM is a complement to & in M, (33.7)
yields that

Lo 8- 2y e 2y

Hence 3|R|/4>|®| —1or |®| < 4. Thus |R| = 3 and a S,-subgroup
of ® is cyclic contrary to the simplicity of ® and the fact that |®|
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is odd. This contradiction completes the proof of Theorem 83.1.
THEOREM 33.2. ® contains a subgroup of type II.

Proof. Suppose false. Then by Theorems 14.1 and 33.1, every
maximal subgroup of ® is a Frobenius group. Let 9 be a maximal
subgroup of & and let & be a complement to the Frobenius kernel of
M. We will show that € is abelian. Suppose false.

Let o be the set of primes p such that for some maximal subgroup
M, with Frobenius kernel 9, and complement G,, a S,-subgroup of @, is
not in Z(C,). Let » be the least prime in 0. We may suppose that
a S,-subgroup P of & is not contained in Z(€). Then PNE =1. Let
IR, be a maximal subgroup of & containing N(2,(*B)). Since 2,(P) =
Z(C), E = IM,. If P is contained in the Frobenius kernel £ of m,,
then so is [P, €] # 1. This is impossible as & does not centralize B,
while & is nilpotent. Hence N R =1. Since M’ < f, it follows
that %P is not contained in M, and that a S,-subgroup of M, is cyelie.
Hence, by Burnside’s transfer theorem, ® is not simple. Since this
is not possible, & is abelian.

Let Ge®. Let M be a maximal subgroup of ® containing C(G).
It follows that C(G) is nilpotent. Hence, ® is solvable by the main
theorem of [10]. The proof is complete.

34. The Subgroups © and %

By Theorems 32.1 and 33.2 ® contains two subgroups & and T,
each of which is of type II, III or IV and which satisfy Condition
(ii) (b) of Theorem 14.1. The following notation will be used throughout
the rest of this chapter. This differs slightly from that introduced
previously.

=0, T=PT, |Q*|=gq, [P*|=p.

Thus p and q are both primes. Let P be the S,-subgroup of & and
let Q be the S;-subgroup of . Then P* < P, O* = Q. Let

W=PO*, V=B P*— Q*.

Let 11 be a complement of B in & and let BV be a complement of QO
in ¥, By 3.16 (i) 1 and B are nilpotent, thus

ucrp =6,
peP?

if & is of type II and
Uc=g,

e}
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if T is of type II. Let
€= Cu(%) ’ D= Cszg(’a) .

If & is of type IIl or IV let N* =U. If & is of type II then
a maximal subgroup I which contains N(11) is not conjugate to &
since M is not g-closed. Hence by Theorem 33.1 M is a Frobenius
group. Let U* be the Frobenius kernel of M. Thus U & U*. Define
B* similarly. Let

€l=¢c, [D]|=d, |[Ul=uc, [B]=nrd,
[u*|=wu, [B*|=v'd, |G|=4.

& is the set of characters of & which are induced by irreducible
characters of & which do not have P in their kernel.

7 is the set of characters of ¥ which are induced by irreducible
characters of ¥’ which do not have Q in their kernel.

The set &7 as defined here is a subset of the .57 as defined in
Section 29. Thus by Corollary 32.1.1 & and .7~ are coherent.

, 7, are the sets of irreducible characters of N(U*), N(T*)
respectively which do not have 1*, B* respectively in their kernel.

For0<t:<q—1,0=3=<p-—1, n,; are the generalized characters
of @ defined by Lemma 13.1; p,; are the characters of & defined by
Lemma 13.3; v;; are the characters of ¥ defined by Lemma 13.3. For
0<j7=<p-—1,¢& is the character of & defined by Lemma 13.5. For
0=1=q—1,¢{ is the character of ¥ defined by Lemma 13.5.

If 8 &, c®, where ®, is a maximal subgroup of @ and if «
is a class function of &, then & denotes the class function of ®, induced
by @. Whenever this notation is used &, will be uniquely determined
by the context.

Throughout this section mo distinction 18 made between S and T.
Any result in this section about one of these groups is automatically
valid for the other by symmetry.

LEMMA 34.1. Ehther

p'—1
p—1

(/]

and U/€ is cyclic or U/C 1s the product of at most ¢ — 1 cyclic groups
and u|(p—1)y"1, For 1<j=<p-—1 & 18 induced by a linear
character of PE, &;(1) = uq. FEither PN i3 a Frobenius group with
|B| = p* and
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or &“ contains an irreducible character of degree wq which 18 induced
by a linear character of LC.

Proof. If P* & D(P) then by 3.16(1) PU/D(P) is nilpotent. Thus
BU is nilpotent contrary to assumption. Hence P contains a subgroup
B, such that P*N P, =1 and P/YP, is a chief factor of S. Hence
NQ* is represented on the elementary abelian group L3/B,. By 3.16 (i)
Bl is nilpotent. Therefore UQ*/€ is faithfully and irreducibly
represented on PB/P,. By 3.16 (iii) | P: B, | = p .

Let PB/Bo = PoPB*/Bo X By/Po, where O* S N(P,). By Lemma 4.6 (i)
Ny(By) E Cyp(By/Bs). Thus Ny(B,) E Cy(P) = €. Hence any non principal
linear character of PC/P,& induces &; for some j with 1 < j < p — 1.
As p is a prime the characters &; are algebraically conjugate for
1<j7j=<p—1. Thus §;(1) =wuq for 1<j<p—1. Let & =+, for
v; & linear character of PC/PB,C.

Suppose that |PEC: D(PE)| > p°. Then PE contains a subgroup
9 #= B,C such that PEC/D is a chief factor of S. Let A be a non
principal linear character of P€/9. Then 4 induces an irreducible
character of & of degree uq.

Suppose that U is represented reducibly on P/%B,. Since U  UL*
the irreducible constituents of this representation all have the same
dimension. This dimension is 1 since ¢ is a prime. Thus 1/€ is the
direct product of k% ecyelic subgroups for some integer k, each of which
has order dividing (» — 1). No element of 1/€ is represented as a
scalar as UQ* is a Frobenius group. Therefore k¥ < g and | (p — 1)
The irreducible constituents of the representation of /€ on P/P, are
distinct since UQ* is irreducibly represented on L/B,. Let P/, =
By X ++» X P, where P,,, = Q*P,Q* for some generator Q of L* and
such that U normalizes each ;. Let

P=]IP
=1

with PLe Y, P, =Q'P7'Qand Q*PQ' = P,,, for 2<1<q 1. Sup-
pose Uell and UQ’ centralizes P for some j. Let U'P,U P# then

P (UQ)*PUQ) = Q11 Prq.

Then QPQ’ = P,.;. If j +# q then P,,; is conjugate to P,. Hence
P;i ig conjugate to P;* which is impossible as |UQ | is odd. Therefore
j=4q. Then UP,U=P, for 1 <1 =<q and so Ue€. This proves
that no element of (UQ/C) leaves P fixed. Let £, be a non principal
linear character of PB/P, with ker ¢, =P, X -+ x B,. Let ¢, = 8
then ¢t = 'ty - - - 1, induces an irreducible character of & of degree
uq.
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Assume now that U is irreducibly represented on B/B,. Then U/€
is eyclic since U/€ is abelian. If a subgroup of 11/€ acts reducibly on
B/P, then it is represented by scalar matrices. As UQ* is a Frobenius
group every non identity subgroup of U/€ acts irreducibly on P/P,.
Thus /€ permutes the subgroups of order » in PB/P, and no element
of (/C)* leaves any such subgroup fixed. Hence

u_zi__l._
p—1

Suppose now that .&” contains no irreducible character of degree uq.
By an earlier part of the lemma this implies that | B€ : D(PE) | = p°.
Thus € =1 and |P: D(P)| = »°. Since D(P) N P* = 1, we must have
D) = P'. By 3.16 (1)) P'U is nilpotent. If P’ #1 then there exists
a subgroup P, of P’ such that [P : P, | = p. Hence P'/P, is the center
of P/, since U acts irreducibly on B/Y’. Thus P/P, is an extra special
p-group. This implies that ¢ is even which is not the case. Thus
P =1. Hence PU is a Frobenius group. Consequently U contains
(p* — 1)/u irreducible characters of degree v. Lemma 13.7 now implies
that

LEMMA 34.2. Either BU i8 a Frobenius group with | P| = p* and

p—1
p—1

U =

or QB is a Frobentus group with |Q| = q* and

q* —1

v = .
qg—1

Proof. If the result is false then Lemma 34.1 implies that &
contains an irreducible character A of degree ug and .~ contains an
irreducible character 6 of degree vp. Every character in .7 ° is rational
valued on P by Lemma 10.4. Since |®| is odd this implies that every
generalized character of weight 1 in .&“ is orthogonal to .77°. Define

a=k—517 :8=0_C1-
Then a(1) = B(1) = 0 and (a’, B7) = 0. Thus

0= —¢,6 — ) = (£ 57 £ 2 7)

= (M, 7w = x1.
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This proves the lemma.

LEMMA 343. For 1j5j=p—1

S 17(X) 2 ue | B —
XE(RE)

Proof. Since PC is a T.I. set in @ and .7 is coherent the Frobenius
reciprocity theorem implies that for 1=57=<p—1

Noi(X) = &(thof(X) + (X)) for Xe(PE),

where « is a generalized character of &'/, and € = 1. Therefore
2 7 X) = 2 (i X)a(X) + foi(X)a(X)}

CToM (BE)
THDRP¥6 JTENS Y6 o TR
pe¥

(BE)

This implies that
(34.1) mf:";s | 96:(X) ! = —24,(1)(1) + cu| B| —
B 5 (O] — al)
By Lemma 34.1, 2u + 1 < ||, thus
—2tts(Da(l) + %] 3 |a(C) | — a1y
2 %13 |a(C) | — 2u + D)a(1)’
= |$I(§Ia(0)|’go.

The result now follows from (34.1).

LEMMA 34.4. For 11=<q—1
S X)) P = {| Bl —1}c.
XEPE-E

Proof. Since PC is a T.I. set in G the coherence of .7 and the
Frobenius reciprocity theorem imply that 7;(X) = a(X) for X e PC — ¢,
where « is a generalized character of &'/. Therefore forl1<=t1<¢—1

(34.2) > nuX)P=_ 3 |a(X)]
xePE-¢ TePe-¢
={Bl- 1}261|a(C)|’-

If PeP*, QeQ* and q is a prime divisor of ¢ in &, then by
Lemma 4.2
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Nw(P) = 7:(PQ) = 1 (mod q) .

Thus the expression in (34.2) is non zero. The result now follows
from the fact that

S a(C)P=0 (mode) .
[
LEMMA 34.5. Suppose that & contains an irreducible character

N of degree uq which is induced by a character of PE. Then

2 INVX) P> uge | B — (ug)* — 2uq.
repe?

Proof. As PC€ is a T.I. set in @ the coherence of .5 and the
Frobenius reciprocity theorem imply that

V(X)) = MX) + a(X) for Xe(PO),
for some generalized character @ of &'/P. Therefore

S IVEX) = 2 M+ S MX)aX) + MX)a(X)}

pe)¥ pe)? pe ¥
(34.3) + Z’ |a(X) |* = uge | B| — (ug)* — 2M1L)e(1)
(BE)

+{P -1} X |a(C) + 3 |a(C) .
5 ct

If |a(l)| = q then by Lemma 34.1
2 1) a1) | = 2ug|a(l) | = 2ua(l) < {|P| — L} a(1) .

Hence the result follows from (34.3) in this case. If |a(1)| < ¢ then
20(1)| (1) | < 2ug® thus (34.3) also implies the result in this case.

LEMMA 34.6. Let ®, be the set of elements in & which are mot

conjugate to any element of PC, Q or . Suppose that & contains
an irreducible character N of degree uq. Define

A ={G|Ge @, \'(G) #+ 0}
AL ={G|GeG, 7(G) # 0}
A = {G |G B, Pu(G) # 0, Nn(G) = 0 (mod (¢ — 1))} .
Then
G=AUA,UY,.

Proof. Suppose that Ge®, — (A, UA,). Let a =& — \. Then
(6. —2)(G) =0 and

G- =S, — .

1=0
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Since G e ®,, 7:(G) is rational. Thus 7,(G) = 7,(G) for1 =1 =¢ — 1.
As G¢ A, U A, we must have that

(34.4) 0= Z 7:(G) = Pu(@) + (¢ — 1)7u(G)
= 7u(G) (mod (¢ — 1)) .

Suppose that 7,(G) =0. Then since a’(G) =0 we must have that
N:(G) =0 for 0 <1 <q — 1. Hence by Lemma 13.1

0= (1@ — Mo — N + 7]11) (G) =1- 7}10(G)

contradicting the fact that G¢2,. Hence 7,(G) # 0 and by (34.4)
G € %, as required.

LEMMA 34.7.

(i) If ¢ =5 then |PB| = p* and uf/c > 9p"~'[20q.

(ii)) If p,q =5 then ¢ =1 and u = (13/20) p*~'/q.

(i) If p=38 and ¢ +# 1 then u =121,9 =5,¢c =11.

(iv) Ifq=38thenc=1o0rc="T. Furthermoreu > (p’ + p + 1)/13.

(v) If q =3 then P is an elementary abelian p-group and |P| =
pPorp=T,¢c=1and |P|="T.

(vi) If q =8 and ¢ =17 then u > (p* + » + 1)/2.

Proof. If PUis a Frobenius group with |P| = p*, u = (p* —1)/(p — 1)
then all the statements in the lemma are immediate. Suppose that
this is not the case. Then by Lemma 384.1 .5 contains an irreducible
character » which is induced by a linear character of PE. By Lemma
34.2 QOB is a Frobenius group with |Q|=¢" v=(¢* —1)/(¢ — 1),
d=1.

PE, O and % are T.I. sets. Let G, 2, %Ay, A, have the same
meaning as in Lemma 34.6. Then

_1_|@°|=1_(1__1__l+_1_>
g »p q pq
(34.5) ————{|Ple—1 — 1}
I‘BI | |
=l+_1__1_-1_1+ 1.1
p q pg qu pv  quc|P|

Since \* is rational valued on &, by Lemma 10.4, Lemma 34.5 implies
that
Limis 2@ PS1- g S !

(34.6) | P | ue qd et

uq 2q
< + .
|Ble | Bl e
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If Lemma 34.8 is applied to T then Lemmas 13.1 and 34.4 yield that

Ligi=sLlsi@rp
g g ¥,

1 1 1 1
347 =1—(1 —=——=—+ — {vg? —v* {SB 1}c
) ( P q m> pvg® b= ISBI ®1=
_1 1 yv 1. 1
a DP9 pe® uq |PBlug

Lemmas 13.1 and 84.3 also imply that

%wmé(q—_ll)—,%%mm(mr
(34.8) é?&_—ll_)’{l_( _%_% %)
~ o T @181 — )
- (qilr{(q;zl)* 1T

Lemma 34.6 and (34.5), (34.6), (34.7) and (34.8) now imply that

L, 1 1 oy 1 11 _ u

que | PB|  pug? ¢ p3 qu |Ple

2q 1 v
+ + + + = - — =
|B|e |Blug  pg®> q¢ pg qu

1 u
* palg —1 qc|Pl(@—1p"°

Since v = (¢” — 1)/(g — 1), this can be simplified to

1 (w+2q , (c—1) 1 1
p |PBle Iiquuc p(g—1) pg*(qg —1)
(¢g—1) 1 w
249 + pq® +pq(q—1)+qc|58|(q—1)’
(34.9) —(w+2q  (c—1) u

| B e |Blque  qc|PB|(g — 1)

(¢+1) L e-1)-1
pg(q — 1) pg*(q — 1)




34 THE SUBGROUPS & AND £ 991

By Lemma 34.1 u < (p* — 1)/(»p — 1) and | B| = p*; thus (34.9) implies that

1 _(m+2q  (g+1) 1
1 ®Ble -1 c(p—1 — 1)
e Y pe(¢ —1) e —1alg—1)
+-L oy 1
p'q  pg*!

Let || = p"« then
(34.11) Z =c¢ = 1(mod 2q) .
Suppose first that p, ¢ = 5. Then (34.10) implies that

uq 2q 3 1 2
+ .
pxe + pxc T 10p + 80(p —1) b'p

lIA

1
p

Hence by (5.2)

1 uq 1 3 3/2 1/2
= + .
P < pac + 40p + 10p + 80p 80p
Therefore
34.12 g u 18
( ) xc p? > 20p
Therefore
1 13p*? prt
34.13 u .
( ) xC > 20q > 2q

Suppose that cx # 1. Then by (34.11) ¢x > 29. Thus (34.12) implies
that

13 1w 1 1

200 "2 p "2 (p—1)
Thus 13(p — 1) < 10p or 3p < 13 which is not the case. Hence ¢ =

¢ = 1 and (34.13) completes the proof of statement (ii) of the lemma.
Suppose now that p = 3. Hence (84.10) yields that

1 _ (u+ 2)q (¢+1) 1 1 1
34.14 _— S .
( ) 3 cxd + 3q(q — 1) + 2q(q — 1) + 3% * 3¢

As ¢ = 5 this implies that

1l1_q u 1 1 (2¢° + 1) 1
3=cx3"+10+160+ 3% +75'

Hence by (6.3
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q w1 1 _ 1 1 _ 1
cx 3¢ 3 10 160 20 175
160 —-48 —3—-24—10 _ 175 3
> 480 T 480 > 20 °
Thus
g g
34.15 Mo 8 8
( ) cx > 20 ¢
This yields that
2q 9 .33
cx > 10 u > 5 °

Hence 4q > cx.
Assume that cx #+ 1. Then (34.11) implies that

(34.16) cx =29+ 1.
Suppose first then ¢ = 11. Then (34.14) implies that

1<qu+2+1+1+2q1 1

3 ¢cx 3 55 210° 10.3® cx 3° + 300

Hence

Therefore

q 3"5>2.5 1

4 2> L0 5 2

cx ~ u 18 18 2

contrary to (34.16). Suppose that ¢ =7. Then cx =15 by (34.16).
Thus # =3 and ¢ =5 since # is a power of 8 and (¢, 3) = 1. This
contradicts (34.11). Hence ¢ = 5. Thus by (84.16) cx = 11. Hence
2 =1 and ¢ =11 since x is a power of 3. Thus statement (i) of the
lemma follows from (34.15) and statement (ii). If ¢# 1 then ¢ =5
and ¢ =11. By (34.15)
11.3° £ (11

(34.17) u>-i)-0—>2 =(p—1)y".
Hence by Lemma 34.1 u|(3° — 1)/2 =121. Thus » = 121 by (84.17).
This completes the proof of statement (iii) of the lemma.

Assume now that ¢ = 8. Lety = (»* + » + 1)/u. (¥ is not neces-
sarily integral) Then (34.9) implies that
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2
_1_<3(p +p+1) n 6 n 1
P cxyp’ cxp®  3p*u
@+p+1) 2 1
+ .
12cxyp® + 3p + 2p371
Therefore
1 371(p*+ p+ 1) 6 1 1
3p < 12cxyp® + cxp® + 3p*u + 2p3%1 ’
or

3T +p»+1) , 18 1 1
34.18 1 :
(34.18) S mr - T ar w3

Suppose that cxy = 13. Then (34.18) implies that

31 P +p+1) oy _19 1
52 P P’ 52

Therefore 37(p* + » + 1) > b1p® — 52-19, or
14p* — 37p — 52:19 — 37 < 0.

Therefore, p < 11. Hence p =5 or p = 7. Since (6, %) =1, Lemma
34.1 now implies that w|p*+ p + 1. Thus |31 if p =5 and |57
if p =7. Hence one of the following must occur:

p =25, u = 31, y=1, cx =13
or
p="1, u =19, Yy =3, cx=5H.
By (34.11)
cx =17, p="T7 orcr=13.
If cx = 13 then by (34.18)

2
3 @+p+1) 19 . 1

1 .
< 52 p? 13p* 52

Hence p < 5, which is not the case. Therefore we have shown that
either cxy <18 or p=T7,u =19,y =3 and cx = 7. If cxy < 13, then
y <18, and by (84.11) ¢x =7 or cx = 1. Thus in any case

(34.19) u> p’+1§+1 ex=1 orcx="1.

This proves statement (iv) of the lemma.
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If 2 # 1 then (34.19) implies that c =1 and =7, hence p =7
and |P|="T. Since (u,6) =1, Lemma 84.1 implies that |57, thus
w =19. If D(P) # 1 then U acts irreducibly on B/D(P) and centralizes
D(B). If P is non abelian this implies that D(P) = Z(P). Hence P
is an extra special p-group contrary to the fact that |P:D(P)| = 2’
Thus B is abelian. Hence |P:2,(P)| =< p. If 2,(P) # P this implies
that UL is represented on 2,(P) and so U acts irreducibly on 2,(P)
contrary to D(P) S 2,(P) and U & C(D(P)). Thus P is elementary
abelian. Statement (v) of the lemma is proved.

Suppose that ¢ =7 and y = 2; then (84.18) implies that
37 (p”+p+1)+ 19 1

+

1 .
< 56 P’ 79 54

Therefore, p < 5 which is impossible. Hence if ¢ =7 then y < 2.
This proves statement (vi) of the lemma and completes the proof of
Lemma 34.7.

LEMMA 34.8. If q=5 then PU/C is a Frobenius group and
u| (@ — 1)/(p — 1).

Proof. By Lemma 34.7 (i) |P| = p°. Thus if PU/€ is not a
Frobenius group then by Lemma 34.1 » |[(» — 1)/2]*'. Thus by Lemma
34.7 (i)

pq—l 9,pq—1
2~ To0g

Therefore ¢ > 27?.(9/10) which is not the case, since ¢ = 5.

LEMMA 349. If p,q=5 then c=1, |P|=p" and either u=
(»—1)/(p—1) or p =1(mod q) and u = 1/q [(»* — 1)/(» — 1)].

Proof. By Lemma 34.7(ii) c = 1. Lemma 34.8 implies that |P| =
p*and u|(»* — 1)/(p — 1). Letux = (»* — 1)/(p —1). If p =1 (mod q)
then

%= ﬁ"‘_ll = 1 (mod 29).

Thus # = 1 (mod 2g). If p=1(mod g) then (p*—1)/(» —1) =0 (mod q).
Hence  =0(mod q) as (u,q) =1. Thus in any case x = 2¢ if the
result is false. Now Lemma 34.7 (ii) implies that

p—1 =ua:g2qug£p"“.

p—1 10

Hence
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p">p"—1;%§—p°—%p““.

Thus 13 > 3p contrary to the fact that p = 5.

LEMMA 34.10.

| N(B*):B*C(B*)| = p or pg ifp,q=50r p=38,q="7
=3o0rl150r33 ifp=8,q=5
=p,3p or Tp 1f ¢ =8.

Proof. Let € be a.complement of B*C(B*) in N(V*) which contains
B*. Every Sylow subgroup of € is cyclic and every subgroup of prime
order is normal in € by 8.16 (ii) and Theorem 383.1. Thus & & N(P*) =

Q*PE. Hence € =P* or |€E| =pg9 or € & P*€C. The result now
follows from Lemma 34.7.

By Theorem 33.1 U* is tamely imbedded in & unless 1* = U and
CgB(ll) # 1. By Lemma 34.7 this can only happen if »p =7 and ¢ = 8.
In that case let 2 be the set of characters of & which are induced
by non principal irreducible characters of &'/P. In all other cases let

Z,= 7¢/. Define 77" similarly. Then % (%)" and _%(?")" are always
defined.

LEMMA 34.11. Suppose that 27~ is coherent and p > q. If

dv* — 1 > v—1
| N(B*) : B* | Y

and

dv* —1 > u—1
| N(B*) : B* | q

then | N(B*):8* | = pq. If furthermore | N(B*):B*| = pq then 1/p <
pg[v*d.

Proof. Let e =|N(B*):B*|. Let y€ 2 with (1) =e. Let
a =14 — . Then || |!=|a|’=e¢+ 1. Define :
.8@ = ig*s;g(g — o, /83; = ng*ggg — VY.

B, By vanish on & — &, T — &, respectively. As &, and &, are T.I
sets in ®

6420 1881 = I8 lP = 2+ 2, I83I=lllr =22 + 2.
Furthermore by Lemma 13.8
(34.21) Bg=1ly*x M+ Iy, B =15+ M+ I'g
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where I'g, I’y are real valued generalized characters of @ which are
orthogonal to 1y. The assumed inequalities and (34.20) imply that
(v, Bg) = 0= (y7,B83). Thus if a' =15+ ¥ + I'g then

= (a7, Bg) =1 + (Yo, I'gg) (mod 2)
0=(a’,83) =1+ (N, I'p) (mod 2) .

Since I'y is rational valued on T this implies that
(77"0’ r}B) = (770.1'9 ['53) =1 (mOd 2)
for1<1<q—1,1=<j7=<p-—1. Hence by Lemma 13.1

Qg — %0 — Dos + Nijy @) = 1 + (3o, ')
+ (770:1" 1153) + (716.1'9 Fq;) (mOd 2) .

Thus (7, I'g) #0 for 1<1<¢—1,1=<j=<p—1. Hence
e+l1=|a|*=pg+1.

Suppose now that e = pg then

||M|

Let & be the set of elements in & which are conjugate to some
element of A, with VeB** Since ¥ is coherent by assumption,
(34.22) Lemmas 33.1 and 9.4 imply that ¢ (VC) = ¥(V) for VCe¥,,
Ve B**, Furthermore Lemma 9.5 and (34.22) imply that

q—1 r—1
(34.22) @ =lgk 4k N0k X et

84.23) LS [v@] = LS 4@ =1~
g d o "
By Lemma 9.5
— —_—— = = _W—_l)_
(34.24) |@ | = z@., 16(6) = —= d 5 16 = T

Let ®&, be the set of elements in & — &, which are not conjugate to
any element of W, PE or OD. Now (84.22) implies that if Ge @,
then +*(G) is rational and

0=a(G@) =1+ ¥(G) (mod?2).
Thus |¢¥*(G) "= 1 for Ge®,. Hence (34.23) implies that

g >y @d*-1H (_1 1,1
*d l@l pqv*d <1 P q+pq)

_I1BC -1 |99 -1
qu | PBle v |Q|d
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"Therefore
Pq 2_1__‘__].__ 1 1 n 1 1 n 1
v ™d  p q@ pg pg pev*d qu qu|Ple
1 1
w  wiold’

Since v >2¢, v>2p and p>q=3

1+1+1+1<

Pq »q qu v

Quloa
lIA

1,
q 14
thus the required inequality follows.

LEMMA 34.12. If U* 4s cyclic then U* is a T.I. set in & unless
m* =Uu and NU) S S.

Proof. Since U* is a cyclic S-subgroup in N(I1*), U* is a S-subgroup
«of ®. Suppose that 1* is not a T.I. set in ® and let 1+ U* N G-'U*G =
U,cu*. Then {NU*), N(G'U*G)} & N(1l,). Since N(I*) is a maximal
:subgroup of @ this implies that {I*, G'U*G} = N(1*). Thus G'U*G =
U* and U* is a T.I. set in G.

35. Further Results About & and ¥

The notation of Section 34 is used in this section. However we
-will destroy the symmetry of & and ¥ by choosing the notation so that

(85.1) g<p.
The next three lemmas are restatements of Lemmas 34.7, 34.8,

34.9 and 34.10.

LEMMA 85.1. If q=5thenc=d=1,v=(¢* —1)/(qg—1), |PB|=»"
and |Q| =q°. Either u= (p*—1)/(p — 1) or p =1(mod q) and u =
1/q[(®* — 1)/(p — 1)]. Furthermore PU and OB are Frobenius groups.

| N(U*): U*| =q or pg and | N(B*):L*| =p or pq.

LEMMA 85.2. Suppose that ¢ =3. Then |Q| = 3,

v, 9 .87

d 20 »p

and QB(D is a Frobenius group with v|(8* —1)/2. Either d =1 or
d=11,p=5 and v =121. Furthermore ¥ = ¥; and

| N(B*):B*| = p,3p or Tp.
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LeMMA 35.3. Suppose that ¢ = 8. Then

| NU*): *C(1*) | = 8 or 3p ifo=T
=38,150r 33 if p=5.

Furthermore one of the following possibilities occurs:

(i) e¢=1,u>@+p+1)/18, P is an elementary abelian p-group
with |P| = p® or |P| =T

() e=T7,u>@+p+1)2, P is an elementary abelian p-group
with | P| = p.

LEMMA 35.4. FElither q=8,p=5,v=11,u = 81 or

v—1 >u—1.
D q

Proof. By (5.12)

e =D o @1
qg—1 »-—1

Therefore if v = (¢* — 1)/(g — 1) then by Lemma 34.1

v—1 _1+--4¢7—1_ q@g*—1)

P P p(g — 1)
F-1 4
q—1 __ - —
>p(p 1)= p—1 gu 1'
qg(» — 1) q q

Suppose now that v # (¢ —1)/(¢ —1). Then ¢ =3 by Lemma 85.1. By
Lemma 35.2 v|(8* —1)/2 and v > 9/20-(3*7'/p). Thus if (v —1)/p <
(v — 1)/g then by Lemma 384.2

9 g1
20 p Sp’+p
P = 3 v

Hence p <11. Thusp=5orp="T7. If p="7 then v|(8 — 1)/2 = 1093.
As 1093 is a prime this implies that » = (3" — 1)/2 and the result follows
from the first part of the lemma. If p =5 then v|(3° — 1)/2 = 121.
Thus » = 11 and »|31. Thus w = 81. The proof is complete.

LEMMA 35.5. 27 18 coherent.

Proof. Suppose that & is not coherent. Then by Lemma 11.2
v*d is a power of some prime r. As B/D is eyclic » = 1 (mod p). Thus
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(35.2) r>2p>2q.
Let |B*: D(B*)| = r*, then n = 3 by Lemma 11.8. By Lemma 11.1
(85.3) ™ < 4| NEB*):B*P+1.

Suppose that | N(B*) : 8* | = Tp. Then p # 7 and (85.2) and (35.3) imply
that r* < 200p* < 507*. If n = 4 this yields that r < 7. Then p = 8
by (85.2) which is not the case as p > ¢q. Hence n = 8. Thus Lemma
11.4 implies that »* < 2»(7p) + 1. Hence by (85.2) r* < 14p < Tr and so
r < 7 which is impossible.

By Lemmas 35.1 and 35.2 we may assume now that | N(B*) : B*| <
pq. Thus (35.2) and (35.3) imply that

™ S4p'¢ + 1< 2p) < r,

thus » = 8. Hence Lemma 11.4 implies that

,r3
'r3§2'rpq+1<—2-.

This completes the proof in all cases.

LEMMA 35.6. d =1. If|N(B*):B*| < pq then v* =v or p =5,
q=3,’v=11,v* =121.

Proof. If | N(B*):8*| > pgthenc# 1. Henced =1 by Lemma
34.2. Assume now that | N(8*):8*| < pq.
Assume first that d +# 1. By Lemmas 85.1 and 85.2 d =11, ¢ =
3,p=>5 and v=121. By Lemma 84.2 u =(5*—1)/(5 —1)=381. Thus
dv* — 1 11° — 1 11’ — 1 v—1

= —
| N(B*):8*| — 15 > 5 P

and

dv* — 1 > 11: -1 > 81—1 _u-—1 .
| N(B*): B* | 15 3 q
Hence by Lemmas 85.5 and 34.11 1/p < pg/v*d.
Thus

1< v*d = p¢="175.

Therefore d = 1.

Assume now that ¢ =8, p=5,v =11, = 31. Let v* =vx. ¢ =
1(mod10) as v =v* = 1(mod 10). If v»* # 11 and o* # 121, then
.2 =21. Thus »* = 21.11.
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-1 _2111-1_ 11-1_ v—1

| N(B*):8*| — 15 > 5 P
and
v* —1 221.11—1>31—1___u—1.
| N(B*) : B* | 15 3 q

Thus Lemmas 85.5 and 34.11 imply that 1/p < pg/v*. Thus 21.11
v* < p’q = 75 which is not the case. Therefore v = v* = 11 or »*
121, and we are done in this case.

By Lemma 85.4 it may now be assumed that (v — 1)/p>(u —1)/q.
If v* = vz, then =1 (mod 2p) since v* = v =1 (mod 2p). Thus

I IA

(35.4) . '=av,5>20>2 ifrx£1.

Therefore

v -1 w1 2vqg — 1 v—1 u—1
= > > > .
| N(B*):B* | pq pq D q
Hence by Lemmas 85.5 and 84.11 1/p < pg/v*. Hence (35.4) and
Lemmas 35.1 and 35.2 imply that

qP—1<@.pv§ 1_0-1)* éﬂ.p’q .

9 9 9
Thus ¢*~* < 2p*. Hence » < 7 by (5.4). Thus » =5. Hence x =11,
¢ =3 and v|121. By assumption v % 11, hence v = 121. Thus 11° <
v* < p’q¢ = 75. This completes the proof in all cases.

LemMMA 35.7.
[NU*):0*C(1*) | = q or pgq .

Proof. 'This follows directly from Lemmas 35.1, 35.2, 35.3 and 35.6..

THEOREM 85.1. If N(U*) is conjugate to N(B*) then the conclusions
of Theorem 27.1 hold.

Proof. By Lemma 35.6 if B* + B then p =5, ¢ = 8 and v* = 121.,
Thus u = 31. Hence u does not divide »*. Thus by Lemmas 35.1
and 35.2, B* = B is cyclic. By Theorem 33.1 N(B*) is a Frobenius
group with Frobenius kernel B*. Hence by Lemma 384.12 B* is a
T.I. set in @. Since O* & N(U*) and p|| N(®B*): B*| Lemma 35.7
implies that N(U*)/1* is a cyclic group of order pq. Thus condition
(iv) of Theorem 27.1 holds. Since B* is cyclic so is 1. Thus € char
U. Hence if € +#1 then NU1) £ & which is not the case. Hence
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¢=1. By Lemma 35.6 d =1. Thus C(Q*) = QP* and C(PB*) = PLQ*.
Hence condition (iii) of Theorem 27.1 holds. If |B]|# p’ or |R| # ¢*,
then N1) €& or N(B) = T respectively. This implies that P is
elementary abelian of order p* and Q) is elementary abelian of order
g°*. Hence condition (i) of Theorem 27.1 holds.

Since U is eyclic and € = 1, PU and UQ* are Frobenius groups
and N(R) =& = PU. Since U* is cyclic every divisor & of |U*|
satisfies # = 1 (mod pg). Thus ((U|, » — 1) = 1. Hence by Lemma 34.1
u||(@ — 1))@ —1). Let (p*—1)(»—1) =y/1|. Suppose that
p % 1(mod q). Then y =1 (mod pq) since

p«—11 = |U| =1 (mod pg) .

Thus if ¥ # 1, then y > 2pq. Furthermore Lemma 35.1 implies that
in this case ¢ = 3. Thus by Lemma 35.3 (i)

13 > p2+|1210|+1 —y > 2pg = 6p

which is impossible as p > 8. Thus y =1and so|U| = (p* — 1)/(p —1). Sup-
pose that p=1(mod ¢). Then ¢|(»*—1)/(p—1). Hencen|1/q[(p'—1)/(p—1)]
since (#,¢) =1. As ¢ < p and u = (p*—1)/(p—1) =1 (mod p) we see
that u # 1/ [(»* — 1)/(p — 1)]. Thusif y # 1, Lemma 85.1 yields that
g =38. Since ¢ =1, Lemma 85.3 (i) implies that u > (»*'+ »+1)/13.
This is impossible since w = 1 (mod 8p). This verifies condition (ii) of
Theorem 27.1 and completes the proof of the theorem.

36. The Proof of Theorem 27.1
In this section the study of the groups & and £ is continued. All

the lemmas in this section will be proved under the following assumption.

Hypothests 36.1

(i) ¢<np.
(i) NU*) is not conjugate to N(B*).

The following notation is used in addition to that introduced in
Section 34.
bz, vE€Z
and
#(1) = | NU*):u*Cc@*)|, (1) =|N@B*):B*|.

If ¢, € 7 then ¢; is defined since |®| is odd. Let Z* = {¢:| d: € Z}.
Then
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g — )y =13— ¢+ Ty + 5, if %+ %,

(36.2) (g — ¥) =1g — ¥* + Iy + 5

(36.8) (lggee — fr0)* =15 £ 9y + Ty + 5 forl<j<p-—1,

(36.1)

(86.9) (Log —¥)* =17+ g+ 5y for 1si<q-—1,

where 5, Egarein _#(%7), #(27°°) respectively, I'y, I'p are orthogonal
to Z77, #°* respectively. Hg, By are linear combinations of the
generalized characters 7,, and I'g, I'y are orthogonal to each 7,,.
Then Iy, Iy, I'y and I'y are real valued generalized characters each of
which is orthogonal to lg. Thus

(36.5) (yy M) + (I, 87) £ 0 (mod 2) ,
(36.6) Iy Tw) + (I'g, ¥°) Z 0 (mod 2) .
(36.7) (Iys o) + (I, ¢°) £ 0 (mod 2) .
It is a simple consequence of Lemma 13.1 that
(36.8) (s M) + (T'yy o) + Ty, M) # 0 (mod 2) .
(36.9) (Lgs M) + (Fgs To) + (I, M) = 0 (mod 2) .

By Hypothesis 86.1 (ii) 2" is orthogonal to &*. Thus
(36.10) (Lyy ¥7) + (g, $°) # 0 (mod 2) .
Since 7 is an isometry (36.1), (36.2), (36.3) and (86.4) yield that
(36.11) 1 My lI* = | N@*):u*cm*) | — 1
(36.12) I gl = | N(B*):8*| — 1
(36.13) 1Tyl < 222
(36.14) 17l = 2= L

LEMMA 36.1. 2 is coherent.

Proof. If & is of type IV then by Lemmas 85.2 and 35.8 ¢ = 1
- or 7 so by Lemma 11.1 the result follows from Theorem 29.1. If S
is of type III then U =1* is abelian and the result follows from
Lemma 11.2. Suppose that %/ is not coherent. Then 7z = %, and
by Lemma 11.2 U* is an »-group for some prime ». Furthermore &
is of type II. Let e =|NU*) :U*| then by Lemmas 11.1, 11.8 and
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11.4 U = D(U*) # 1,
(36.15) |u*:0* | =»* with n =3,
(36.16) r*<4e’+1,n=4 orr*=2re+1and n=3.

Suppose first that U is not cyclic. Then by Lemma 385.1 ¢ = 8.
If ¢ #1, then by Lemma 35.3 € is cyclic and

P+p+1 (&.1_’
w> L2 > (22 )

Thus by Lemma 34.1 /€ is cyclic. Hence U1 is generated by two
elements. If ¢ =1 then Lemma 34.1 implies that 1l is generated by
two elements. Thus U # 1U*. As & is of type II & is a T.I. set in
®. Consequently there exists an element R of order r such that
0 = Cy«(R). Thus Z(1*) is cyclic. Hence » =1 (mod e). This contradicts
(86.15) and (36.16).

Suppose now that U is cyclic. Thus » =1 (mod q). By (86.16)
NU*)/* is irreducibly represented on U*/D(1*). Thus L* acts asa
group of scalar matrices on U*/D(11*). Hence by Lemma 6.4 11* has
prime exponent. Since U is a cyclic subgroup of U* this implies that

(36.17) 0| =7r.
If ¢ > 3 then Lemmas 35.1, 35.7 and (86.15) and (86.16) imply that

pq-ls
(_q_ ) SIUP <4l +1s4pg+1.

Hence p*—* < 5¢° and so
530—10 é qsq—m < p8q—10 < 5 .

Thus 3¢ — 10 < 1 which is not the case.
Suppose that ¢ = 3: If n = 4 then (36.16) and Lemmas 35.3 and

35.7 imply that

(7’ +1§4+ D' cjup<sep+1.

Hence
PP+ p+ 1)< 18(86p*+ 1) < 3.18°p*.

Thus p° < 8.13°. Hence »p < 18. If » = 8 then (36.16) and Lemmas
35.3 and 35.7 imply that

3 2
(p +lgz+ 1) < |11|’§6p.

Hence
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P<@+p+1)7<136p< 13p.

Therefore » < 18 in this case also. Thus »p = 5,7 or 11. By Lemma
34.1 and (86.17) either |U||(p — 1 or |U||p*+ p+ 1. If |[U||(p—1)
then p =11 and |U| =5 since (|11|,6) =1. However in this case

’(p’+1§+1) >10 > |1

which is impossible by Lemma 385.1. Thus |1 ||»*+ » + 1. Hence by
(86.17) if p=5,|U|=81,if p="7,|U| =19 and if p = 11 then || =
7Tor |[U[=19. If p =25 then (36.16) and (36.17) imply that

31° < 36.25 + 1
which is not the case. If p =7 then (36.16) and (36.17) imply that
19° < 36.49 + 1 < 1800 .

Thus 19* < 100 which is not the case. If p =11 and |11| =19 then
(86.16) and (36.17) imply that

15.360 < 19° < 36.121 + 1 < 4800

which is not the case.
Assume now that p =11 and |1|=7r="7. Then (36.15) and
(36.16) imply that

(36.18) 7™=<3.11°+1, 7™ =1 (mod1l).

Since
7 > 10* > 5000 > 36.11? + 1

we must have n < 4. However
7=5T7=2T =3 (mod1l)

contrary to (86.18). The proof is complete.
LEMMA 36.2. ¢ = 3.

Proof. Suppose that ¢ # 3. Then by (86.10) either (I'y, ¥7) # 0
or (I'g, $°)# 0. If u=1/q[(p"—1)/(p —1)], then u # 1 (modp). Hence
by Lemmas 35.1, 356.56 and 36.1,

qg*—1 1 »—1
¢—1 <pg—1 or 21
bq pq

Therefore by (5.11) p*'< (p?—1)/(p —1) < p’¢’. Hence "< ¢*< p?

—4q

=pq—1.
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which is impossible for ¢ = 5.
LEMMA 36.3. ¢ =1, | N(B*):8*| = p or 3p.

Proof. If c#+ 1thenc =Tand u > (p’ + » + 1)/2 by Lemma 35.8.
Since [(p — 1)/2]* < (p* + p + 1)/2 Lemma 34.1 implies that u|p* + p + 1.
Thus v = p*+ p + 1. By Lemma 34.2 v = (8* — 1)/2.

Suppose first that | N(1*):U* |=3. Then by (36.8) I"y;= = (1 + 7x)-
Thus (I'y, 7,) = 0. Hence (I'g, $7) + 0 by (36.5). Since % is coherent
(36.13) implies that

Tu* — 1 —1 _w—1

<||fglf =¥ < ,
=Tyl s —5==—3

which is not the case.

Suppose now that |NWU1*):U*|# 3. Then by Lemma 35.7
| NU*):* | = 3p. Let cu* = 2u = 2(1 + p + »*. Then x = 1 (mod 6p)
since

cu* =u =1 (mod 6p) .

As 1< c¢ =« this implies that x = 6p + 1. Hence by Lemma 85.2
and (36.12)

*
(36.19) e LI 6??;‘ >2u>Tp—12 || Tyl

Since 7/ is coherent this implies that (I'y, ") = 0. Thus by (36.10)

(36.20) Iy, ¥7) # 0.

Since %/ is coherent (36.13) and (86.19) imply that (F‘B' ¢°) = 0. Thus
by (36.5)

(86.21) (I M) £ 0 (mod 2) .
Since 2" is coherent (36.11), (36.20) and (86.21) imply that

v -1 g, g,

~1
=D+ Txay o7 =

Hence by Lemma 35.2

3 —1
2

—1=v—1=v*—1<2p| N(B*):B*| < 149" .

Therefore 3? — 3 < 28p’. Hence p =5 by (5.5). Thus w = 31 and
v = 121. If the S;-subgroup of U* has order 7%, then 7* = 1 (mod 5).
Thus » = 4. Therefore
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u* —1 > 731 — 1 > 94 — v—1 .
3p 15 y/
Thus the coherence of 7/ implies that (I'y, ¢°) = 0. Hence (36.7) yields

that (I"y, 7,) % 0 (mod 2). Therefore (86.8), (36.11) and (36.21) imply
that

L)
|
-
b

Fu=i v;oi' vojj: '10“.

-
<
|
-
b~

-

-
I
-
[
[}
]
-
Il
-
[
Il

contrary to (36.20). Thus ¢ =1 and consequently |N(B*):B*|=1»
or 3p.

LEMMA 36.4. | N(U*):U*CU*)| = 3p.

Proof. If the result is false then | N(1*): U*C(1*) | = 3 by Lemma
35.7. Thus (36.8) implies that I"y = (7 + 7»). Therefore by (36.5)
and (36.10) (I'g, ¢°) # 0 and (I'g, 7) + 0. Since u* = u (36.13) implies
that «* = u and

(36.22) Pg==2d,

where ¢; ranges over Z/. Thus by (36.6) (I', %) is odd. Hence by
Lemma 36.3 and (36.12)

p—1
Fg=b%61 £ 3, 7 + 4y,
where b is odd and 4 is orthogonal to all ¢;, 7,;. Therefore by (36.22)
0= ((gor — )", (G — 99 =121 2001
Since b # 0 this implies that |b|(uw — 1)/3 = 2. Hence u = 7. Thus
by Lemma 35.3 (i) 7 = (p* + p» + 1)/18, hence » < 10. Hence p =5

or p="T. In either of these cases u|(»*+ » + 1) by Lemma 34.1
since (4,6) =1. Thus 7|31 or 7|57 which is not the case.

LeEMMA 36.5. |PB| = p°.

Proof. If |P|+# p* then NN) S Sas Pisa T.I. set in . This
contradicts Lemma 36.4.

LEMMA 36.6. 1 s cyclic.

Proof. By Lemma 34.1 if 1 is not eyclic then 1 = 11, x 11,, where
each U; is cyclic and |U;||(» —1)/2. Let || = (p — 1)/2y; for i =
1,2. If y,y, = 4 then Lemma 35.3 (i) implies that
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P _p+p+1 _ (p—-1) _ (p—-1* _ p
13 < 13 < dyy, - 16 < 16

which is not the case. Thus y,y, < 4. If ¥y, =2 then p =1 (mod 4)
and so |U|= (» —1)*/8 is even. If 3,5, =8 then p =1 (mod3) and
so 3|u which is not the case. Thus yy,=1 and u = [(p — 1)/2]~
Therefore ((» —1)/2, 6) =1. Thus p=11. Furthermore % =1/4 (mod p).
Since u* =1 (mod p) by Lemma 86.4 we have that u* = uxz and 2 =
4 (mod p). By Lemma 34.2 v = (8* — 1)/2. Hence Lemma 86.8 and
(36.10), (36.11) and (86.12) imply that

3p_1 _1

2 u* —1
—- 3p—1.
3 <8 —1 or 3p <3p

(36.23)

The first possibility implies that 3 — 8 < 18p* — 6p. Thus 87~ < 2p°.
Hence p < 7 by (5.4). The second possibility in (36.23) yields that

Q:_l)_z_.x_1§9p9_3p_

Therefore
(p— 1)z < 36p* — 12p + 4 < 36p°.
As p = 11 this implies that

(36.24) x<36( p1)2=36(1+ pil)”g 36(-%%—)<45.

Let © = 4 + 2zp for some integer 2. Then since p = 11 (36.24) yields
that z < 4. Furthermore

(36.25) p<4l; if 222, p<20; if z2=8, p<14.

As p<4land (»—1)/2,6) =1, p=110r p = 23. If p = 23 then by
(36.25) @ = 27 which is impossible as # =1 (mod 8). If p = 11, then
2 =15, 26 or 37. As x =1 (mod 6) this implies that # = 87. Then
% = 25 and so 37 =1 (mod 11) by Lemma 386.4 which is not the case.

LEMMA 36.7. u=p"4+p+1 or u=@+p+1)/3 or u=
(® + » + 1)/T.

Proof. If u|[(» —1)/2] then by Lemmas 84.1 and 36.6 u|(p — 1)/2.
Thus by Lemma 35.3 (i) (»p —1)/2 > (»* + p + 1)/13. Hence
2p* — 11p + 15 < 0 which implies that » < 5. Therefore by Lemma
34.1 "+ p+1=wuy, y an integer. By Lemma 85.3 (i) ¥y < 13. If
r is a prime such that »’+ » + 1 =0 (mod r) then either » = 8 or
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r=1 (mod3). Hence y=1,3,70or 9. If y=9thenp’+p+1=0
(mod 9). Hence p =1 (mod3). Thus p=1,4 or 7 (mod9). In none
of these cases is P+ P+ 1 =0 (mod9). Hence y=1,3 or 7.

LEMMA 86.8. u=u*=9p"+ p + 1.

Proof. Let w* = ux. Assume that # #+#1. «* =1 (mod 6p) by
Lemma 36.4. If u=9p"4+p»+ 1, then u =%* =1 (mod6p), thus
=1 (mod6p) and so x =1+ 6p. If u =+ »+ 1)/3, then x =3
(mod p). Furthermore =1 (mod6) since u =u* =1 (mod 6) and
p =1 (mod 6) since »*+ »+ 1 =0 (mod3). Thus if x =3 + 2p then
1=3+2 (mod6). Hence x =3+ 4p. If u = (P + » + 1)/7 then
2=T7 (modp). If =T then by Lemma 36.6 the S;-subgroup of
N* is generated by two elements. Hence 72— 1 =0 (modp) by
Lemma 36.4. However 7 — 1 =48 and (p,48) = 1. Thusz + 7. Let
=T+ 2p. Then P+ p+1=u=1 (mod6). Hence p =5 (mod 6).
Thus 1 =2 =7+ 52 (mod 6), hence 2 =0 (mod6). Therefore x =
7 4+ 6p. Thus in any case

(36.26) uw* = ux, *x=4p + 3.

Therefore (u* —1)/3p > (u —1)/3. Hence by (36.13) and the coherence
of zv
(36.27) (¢, I'g) =0.

Assume first that (47, I'g) # 0, then by (36.12) and the coherence
of v

u* —1
3p

Suppose now that (¢, I'y) =0. Then by (36.10) (¥7, I'y) # 0.
Hence the coherence of 2 and (86.11) imply that

<3p-—-1.

(36.28)

v* —1
3p

By (36.27) and (36.5) (T, I'y) £ 0 (mod 2). If also (9, I'y) were odd
then by (36.8) (i, ['y) #0for1<:i1=q¢—-1,1=<j=<p-—1. Thus
by (86.11) (v*, I'y) = 0 contrary to what has been proved. Therefore
(T, I'y) = 0 (mod 2). Hence by (36.7) (I'g, ¢°) #+ 0. Thus by (36.14)
and (36.29)

<3p-—-1.

(36.29)

u* —1 'v—ls'v*—l
3p p = P

IA

<9p—3.

Now (86.28) implies that in any case
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(36.30) =1 g5 1,
9p

For any prime r let U, be the S,-subgroup of 1*.
Suppose first that w = p* + p + 1, then z > 6p. Hence (36.30)
implies that

6P +p+1)—1<27p—9.

Therefore 2p* — 7p + 4 < 0 which is impossible for p = 5.
Suppose now that u = (p* + p + 1)/8 then x = 4p + 3 by (36.26).
Hence (36.30) implies that

4P+ p+1)<8lp.

Thus 4p < 81 or p < 22. Since p =1 (mod 3) this yields that p = 7,
p =13 or p =19,

If p=7 then w=19. If |1,|=19" then n=6 as |U,|=1
(mod 7). Thus (36.30) implies that 19° < 27.7° <19*. If p = 18 then
% =61. Let |U,|=61" then # =38 as |U,| =1 (mod13). Hence
(36.30) implies that 61° < 27.18° < 61%. If p =19 then w = 127. Let
| Wy | = 127%, then » = 3 as Uy, | = 1 (mod 19). Hence (36.30) implies
that 127° < 27.19* < 1272,

Assume finally that u = (»*+ » + 1)/7 then 2= 6p + 1. Thus
(36.30) implies that

6(p*’+ p+1) < 27Tp
7 = .

Therefore 6p < 27.7, so <32 Since 2+ 2+1=0 (mod?),
Pp=2(mod7) or p=4 (mod7). Thus p =11 or p = 23.

If p =11 then u =19. Let |U,|= 19" then » = 38 as U, =1
(mod 11). Hence (36.30) implies that 19° < 27.11%? = 287.11 < 19°. If
p=23thenu ="T9. As|U,|=1 (mod23), || =79°. Hence (36.30)
implies that 79° < 27.23% < 793,

Therefore u = u* in all cases. Hence u =1 (mod p) by Lemmas
36.4 and 36.5. Since (p,6)=1, T#1 (mod») and 3 =1 (mod p).
Hence by Lemma 386.7 u = p* + p + 1.

The proof of Theorem 27.1 under Hypothesis 36.1 is now im-
mediate.

Let ¢ = 3 and p have the same meaning as in the earlier part
of this section. By Lemma 85.2 |Q| = ¢*. By Lemma 86.5 | B| = p°.
The other properties of Condition (i) follow from the structure of &
and ¥ and Theorem 14.1. Thus Condition (i) is verified. By Lemma
35.6 C(X) & X. Hence C(Q*) = P*Q. By Lemma 36.3 C(P) = P,
hence C(P*) = PO* by Lemma 86.5. The other properties of Condi-
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tion (iii) follow from the structure of & and ¥£. Thus Condition (iii)
is verified. Lemmas 36.6 and 36.8 imply that 11 = C(1l) is cyclic. By
Lemmas 34.12 and 36.4 1 =1* is a T.I. set in &. Hence Lemma
36.4 completes the verification of Condition (iv).

Lemmas 34.1, 36.3, 36.5 and 36.8 imply that ¥ is a Frobenius
group. Lemma 36.8 implies that |I1| = (p*—1)/(p — 1). Lemmas 36.4,
36.6 and 36.8 imply that if u,||U| then u,=1 (modpg). Thus
((U],p —1) =1. The other statements in Condition (ii) follow from
the structure of & and <.

By Theorem 35.1 this completes the proof of Theorem 27.1 in
all cases.



CHAPTER VI

37. Statement of the Result Proved in Chapter VI

The purpose of this chapter is to prove the following result.

THEOREM 37.1. There are mo groups & which satisfy conditions
(1)-(iv) of Theorem 27.1.

Once it is proved, Theorem 37.1 together with Theorem 27.1 will
serve to complete the proof of the main theorem of this paper. In
this chapter there is no reference to anything in Chapters II-V other
than the statement of Theorem 27.1. The following notation is used
throughout this chapter.

® is a fixed group which satisfies conditions (i)—-(iv) of Theorem
27.1.

| =u=2_1
p—1
nN*=CU) and |U*|=u*.
N* =Up, U= U¥*. Thus U= U)
L, =[Q, P*] so that QL =Q* x Q.

P and Q are fixed elements of P** and Q** respectively.

For any integer » > 0, 2, is the ring of integers mod n. If =»
is a prime power then &, is the field of n elements.

U acts as a linear transformation on P. Let m(t) be the minimal
polynomial of U on PB. Then m(t) is an irreducible polynomial of
degree ¢ over #,. Let w be a fixed root of m(t) in #,«. Then w
is a primitive uth root of unity in %« and o, ®?, ---, w*** are all
the characteristic roots of U on P.

38. The Sets % and &

LEMMA 38.1. There exists an element Y € Qf such that P* nor-
malizes YU*Y !

Proof. LQ* normalizes U* and Q* is contained in a cyclic sub-
group of N(1*) of order pq. Hence some element of order p in C(Q*)
normalizes U*. Since C(Q*) = QP* every subgroup of order p in
C(Q*) is of the form Y 'P*Y for some Ye L, Hence it is possible
to choose Y€ Q, such that Y*B*Y normalizes U*. Since [P*, U]ES P,

1011
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PB* does not normalize U*, hence Y e Qf and P* normalizes YU*Y ',

From now on let
(38.1) Z,=YUY?, Z=YUY?=2ZM"

where Y satisfies Lemma 38.1. Notice that Q* normalizes {Z,>, since
Q* normalizes 1* and Y centralizes Q*. Define v, w € 25,. by

(38.2) P Z,P=2;, Q'ZQ =2’

LEMMA 38.2. If Z,e{Z), a€ %, be 2, then <{Z,) = {Zy*">
unless a =0 and b = 0.

Proof. Z;'P—QZ,Q'P* = Z:***-', Hence P°Q® acts trivially on
{ZoKZy™*>, However if Z, + 1 then P*Q*(Z,> is a Frobenius
group with Frobenius kernel <Z,>. Thus {Z,> = {Zy***-*> as required.

LEMMA 38.3. Ewvery element of PU has a unique representation
in the form P™PUS where ac %, and my(t) is a polynomial of
degree at most ¢ — 1 over 2,.

Proof. There are up® ordered pairs (m,(f),a) with a€ 2, and
m,(t) of degree at most ¢ — 1 over 2,. Thus it is sufficient to show
the uniqueness of (m,(t), @) in such a representation.

If Pmoye = PO U%, Then reading mod Pyields that a = a'.
Since m(t) is irreducible we get that m,(f) = m(t) (mod m(t)). Thus
m,(t) = mi(t) as required.

LEMMA 38.4. Ewvery element of PU — U has a unique representa-
tion in the form U*PYU*, where x,2€ %, and y€ 2,, y + 0.

Proof. If XePU — U and
X =U*P'U* = UnPnU"
then reading mod P we get that * +2 2, + 2,. Hence
Us-=1Pv[J-*+3 — Pn

Since X¢U, y #0. As (u,p —1) =1 we have that z =, and so
Y =Y, 2 =2. The representation is unique. There are u’(p — 1)
ordered triples (x, ¥, 2) with z,z2z€e 2, and y€ 2,, ¥y +# 0. Each triple
gives rise to an element of PU — U and |PU — U| = u*(p — 1). The
result now follows.

LEMMA 88.5. Let %,2,9€ 2, =%, ¥, f, he Z,. Then
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P=U'P*U'P'U* =1

if and only if
(i) y+f+h=0
(ii) 2w’ + z + gowVt* = 0.

Proof. Let R= P*U'P*U’P°U*. Then
R = P77 4+ gU"’"’ Uv+h+r
Thus by Lemma 38.8 R =1 if and only if
Yy+h+f=0, 2+ 277+ gtv" = 0(mod m(?)) .
The first equation allows us to rewrite the second as
xtV + z + gtvt* = 0(mod m(?t)) .

Thus the lemma is proved.

DerFINITION 38.1. The set .o~ is defined to consist of all ordered
triples (a,, a,, @;) such that

(i) a;€ 2, ;0 for 1=1,2,3.

(ii) a,+ a,+ a;=0.

(iii) PUsP*U%PU* = 1.

DEFINITION 38.2. <Z is the set of all elements a, € 27, such that
(a,, a,, a;) € 7 for suitable a,, a,.

LEMMA 88.6. | | =|Z#|.

Proof. If (a,, @, a;) € &7 then by Lemma 38.4 a, and a, are de-
termined by a,.

LEMMA 38.7. (a,, @, as) € . tf and only if

(i) a;€e 2, a; 0 for 1=1,2,3

(ii) a,+a,+a;=0

(iii) 0™ + ot — 2 =0,

Proof. By Lemma 38.5,

PUsP2U»PU*» =1

if and only if a, + a, + a@; = 0 and @™ — 2 4+ w**% = (. This implies
the result.

LEMMA 38.8. If (al, az, aa) S M, then (_ag, _al, _aa) € y.
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Proof. If (a,, a, a,) € & then by Lemma 388.7 w=* — 2 + w® = 0.
As a, = —a, — a, this yields that

W% —24+ @B =0,

As —a, — a, —a, = 0 the result follows from Lemma 88.7.

LEMMA 38.9. For 0 =i <p—1 let €, be the conjugate class of
PU which contains P* and let K; be the sum of the elements in €,
in the group ring of PU over the integers. Let

p—1

K= 3.8 .
i
If ¢ >3, then c,= 2.

Proof. Let 4, (t, -+ be all the irreducible characters of PU/P
and let X, X -+ be all the other irreducible characters of Pu. It

is a well known consequence of the orthogonality relations ([4] p. 316)
that

_ up (P (P?) X P)*x(P?)
o= Bl £ + 3 KOV

Since U is eyclic, 4(P) = t:(P*) = (1) =1 for all 7. By 8.16 1;(1)=w
for all 5. Thus _
(38.3) o =2fut L5 1 PYLPY)

P u i

By the orthogonality relations
;|X;(P‘)|’§ |C(PH)|<p* for 1<i<p—1.
Therefore
(38.4) |3 Li(PYA:(PY)| < (max [7,(P) ) | 1P [* = p*.
By (38.3) and (38.4)
| pfe, — ut| = ™",
Thus
(38.5) e, = u' — p¥i*

Since u = Z;: _11 > p** (88.5) yields that

Cy = E_ — p'll2 > pﬂ—! — pcl2 — pﬂ/’(pql’—! — 1) .
=
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As ¢ > 8 and ¢q is a prime we have ¢ = 5, and the lemma follows.
LemMMA 38.10. | ¥ |=|<Z|>0.

Proof. Assume first that ¢ = 3. Consider the set of polynomials
of the form f,(t) =t + at® + (@ + 6){ — 1 with a€ 25,. There are p
of these and none of them has 0 as a root. Thus if f,({) were re-
ducible for every value of a there would exist a #+ b such that f,(¢)
and f,(t) have a common root c€ . &#,. Then

ac® + (@ + 6)c = bc* + (b + 6)c .

Since ¢ # 0 this yields that a(c + 1) = b(¢c + 1), hence ¢ = —1. How-
ever f,(—1) = —8 #+ 0. Thus there exists some polynomial f,(f) which
is irreducible over &#,. Let a be a root of f,(t) in #,:. Then

@i = —f0) =1, (L+@"H = —f(-1)=8.

Therefore « = w™ for some a;€ 2,, a;#0, and 1+ a=2w"* for some
a, € 2,,a,# 0. Furthermore —w* + 20~ =1. Thus w* + w"t%* —2=0,
Since w1 # 1, a, + a; # 0. Hence by Lemmas 38.6 and 38.7 | & | =
|| > 0.

Assume now that ¢ > 8. Then Lemma 38.9 implies the existence
of a,be 2, with a # 0 or b # 0 such that

U-*PU*U*PU® = P?,
‘Therefore
{(38.6) PUPUPU** =1,

Let a,=b, a,= —a, az=a —b. Then a,+a,+a;,=0. If b=0
then (38.6) becomes P*U*PU® = 1; as PU is a Frobenius group this
implies @ = 0 contrary to the choice of a and b. If a = 0 then (38.6)
implies that PUP'U*=0, hence b =0. If a — b =0 then (38.6)
yields that PU°P*U—P =1 or U® commutes with P?. Thus a =0,
hence also b = 0. Therefore a,, a,, @, are all non zero and by Definition
38.1 and Lemma 38.6 | & |=|<#| > 0.

The following result about finite fields is of importance for the
proof of Theorem 37.1.

LEMMA 38.11. For xec . F, define N(z) = x'*?+ "7 qgnd for
x+ 2 let 2= 2—1— If ae F,0— F,, then for some i, N(a**) + 1,
—

Proof. Assume that the result is false and N(a”') =1 for all 4.
‘We will first prove by induction that
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38.7 o= ZG=Dats g g9
(38.7) —ta + (v +1)

If + =1 (88.7) follows from the definition of . Assume now that
(88.7) holds for ¢ =k — 1. Then

1
—(k—2a + k —1
2_{ (—(k—)l)a+k }
—(k—1a+k
—2(k — Vo + 2k + (k — 2)a — (k — 1)
_ —(k—Da+k
—ka + (k+1)

This establishes (38.7).
Now (88.7) implies that for j =1,

a” =

I a" = = — . .
—Jja + (J+1)

=1

i r':"‘ I ﬂu

{ 1w + (1 + 1)}
Therefore

__L__
H N(@)

=1

N(—ja+3+1)= =1.

Thus

(38.8) N(—aa+a+1) =1 for ae %, .
Define f(t) by

(38.9) fA)=¢—a)t —ar)---(t—a”).

Thus f(t) has coefficients in &, and (38.8) yields that

(38.10) a“f<a+1> a’N(a+1—a)=N(a+1—aa)=1
a
for ae #,, a# 0.

Letb=a:1 for a # 0, thena=b1

T Hence (38.10) yields that

(b—l)"f(b)_l for be #,, b+ 1.

Therefore

(38.11) SO —-0G—-1)y7=0 for be 7, b+1.
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f(@) — (t —1)* is a polynomial of degree at most ¢. By (38.11)
f(t) — (@& —1) has at least (p — 1) roots. As (p —1)>q we must
have that f(t) = (¢t — 1)%. By (88.9) « is a root of f(f), hence a =1
contrary to the choice of @. The proof is complete.

39. The Proof of Theorem 37.1

LEMMA 89.1. There exist functions f, g, and h such that

(i) fand h map 2, X 24 X 25, into 2,

(ii) g maps 2, X Zu X 2, into 25,

(ili) PZ UVP' Uf(z.v.-)Po(z.v.s) Uh(z-v.l) —_ 1 .
Furthermore for x # 0, y + 0, 2+ 0 (iii) determines f(x, ¥y, 2), 9(=, ¥, ?)
and h(z,y, z) uniquely and f(x,y,2), 9(x, ¥y, 2), h(z, Y, 2) are all non-
zero. .

Proof. By Lemma 38.4 the functions exist and are uniquely de-
fined by

pP=U'P'U'P'U* =1

provided that P*U?P* does not lie in U. It is easily seen that if
x+0, y+#0and z+ 0, PUYP* does not lie in 1.

Suppose that f(x,¥,2) =0. Then P*U'P*** = U"*ell. Then
y = —h and U'P**?U~v = P~*e P*. Therefore either y = 0 or z = 0.

Suppose that g(x,¥,z) =0. Then P:U'P*= U-’""* Thus y=
—f —h and UP*U~V = P~*. Hence x =0 or y =0.

Suppose that h(x,y,2) =0. Then UYP*U’P°** =1, Hence
y+ f=0, then U"P*U~? = P~*~*, Thus y =0 or z=0. This com-
pletes the proof of the lemma.

Throughout the rest of this section f, g, h will denote the func-
tions defined in Lemma 39.1. For x € 2°,, Y as in Lemma 38.1, define

Y,=Y'P*YP*.

LEMMA 39.2.

(i) Y,= Y 'P=*YP*=P*YP*Y™

(ii) YP*Y'= Y_P*

(iii) YP°Y'= P'Y,,
Jfor 2,2, 9€ % 5.

Proof. Since Pe P*<= N(Qp) and Q, is abelian, (i) is immediate.
(iii) is a direct consequence of (i). By definition Y ,=Y'P*YP"
Thus Y-} = P*Y'P—*Y = YP*Y'P~* which implies (ii).

LEMMA 39.3. For z¢ £, P*UP*= Y;'U"Y..
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Proof. By (38.2) P*ZP~*=Z""*, By (38.1) Z= YUY". Hence
YP*YUY'P*Y=U"".
Conjugating both sides by P*, we get that
YUY, = P=U""P*.
If both sides are raised to the v*th power, the lemma follows.

LEMMA 39.4.
Y Z2VYZ} = P=Z vy 1 P9y Z—1@y.0 P-s

Proof. Substitute (38.1) into (iii) of Lemma 89.1 to get
P*YZVYP*'Y'Z'YP'YZ'Y =1,
Conjugate by Y 'P* to get
(P*YP*Y )ZYYP*'Y Y)Z/(YP'Y Y)Z'P- =1,
Now use the results of Lemma 89.2 to derive that
Y, Z Y !P*Z'P'Y,Z*"P* = 1

which implies the lemma.

LeEMMA 39.5. If (a,, a,, a,) €., then
V25 Y Y2 Y = Y2 Y

Proof. In the definition of .o~ conjugate (iii) by P?. Then
P UuP*U%PU%P* =1,
or
(P*U%P)(P2U%P®) = P*U~%P?,
Hence Lemma 39.3 yields that
(YUY (YUY, = YUY, .
Since Q is abelian, this implies that
Y, U Y'Y, U'Y,; = Y, U *"'Y;".

Conjugating by Y~ implies the result by (38.1) and the fact that Q
is abelian.

LEMMA 39.6. For (a, a, a,) € & define
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9. = 92, av, —3)

g, =91, —av*, —3)

g = 9(1, a,v*, —2)

k, = h2, a,v, —3) — h(1, —a,v*, —3)v~*
k.= —f2, aw, —8) — h(1, a,¥’, —2)v?

k,= —fQ, a,2®, —2)v*' + f(1, —a,v*, —3)
k=—g,—1.

Then
(39.1) Y, ZM"PY ' = P~ ZMP*Y, 'P*Z*P% ,

Proof. Use Lemmas 39.4 and 39.5 to obtain
P—zz—h(z.alo.—S) ;21 aln'_s)P—o(z,alv,—S)Z—f(z,alv.—S)Ps .
P-1Z-htagpd D Y a8 P —0(Lage®,~%) Z7—1 (1.ag0%,—) P2
— Y, Zow Ya—x Y1 Za,u3 Y{" — Y1 Z—asuﬂ Y3_1
= P-1Z-h1,—agl -3 Yg_ul,—aauﬂ,—a) P—90.—aged,—8) 7 —r(1,—agv?,—3) p3 .
Multiply on the left by Y,u.ep,-9Z"***"*P* and on the right by
P8 Z,ru.—asoﬂ.—s) Pﬂ(l.—aau’,—S)
to get
A-I’a_(l1 ,2,3,_,).8 = Ya(z.alo,—s)C a_(ll.-aso’.—s)
where
A= P—a(z,alu.—a)z—f(2.aw.—8)—h(l.agos.—Z)v_’Pz
B = P—au,a,os.—:)—l 7 —11.690%. -0~ 1+ 7 (1,—age?, —3) Pg(1,~agvl,~3)
C = Z43.0610,—8)—h(1,—az?.—801 D ,
or equivalently
A= P nZkp* B= P*Z*pPn, C=Z%P.
The lemma follows.
LEMMA 89.7. Let (a,, a,, a,)€ . Use the notation of Lemma
839.6. If k,# 0, then there exist elements c,, c,€ 2, such that
(i) k+#0

(ii) &y + ks =k,
(iliy Y-PYP— = P-aY-'P-%Y,

Proof. Conjugate (39.1) by Q. Since P*Q = C(Q), this yields
that
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Y, Z*MPY,' = P~ Z""P'Y,\P*Z"*P% |
Taking inverses we get
Y, PP Z~"Y,* = P~Z*»P~*Y, P Z P,
Multiplying this by (89.1) on the left yields
Y, Z0-omY = PO ZRP Y P Z 0Pt Y, P Z P
Conjugating by P~% yields
PoY, ZO-omY AP0 = ZMP'Y P*Z s PrY, PR 2V,
Use Lemma 39.2 (iii) and (38.1) to get
YPuYYy-whY-typ-ay-!
=YUnY'PY,'P*YU Y 'P*Y, P?YU Y™,
Conjugate this by Y to obtain ,
payt-vwhp-a = UhYPY ' PrYUC Y PFY, P YU .
Multiply on the left by U~* and on the right by U®**s to obtain
U-kapaJi-ohp-avs = W,UB W,
(39.2)
W, =Y 'PY,'P'Y .
Suppose that U*®* =1, Then (39.2) implies that
Payt-wkhp-u = [tk

By Hypothesis k;, # 0, hence by Lemma 38.2, U®** 1, By Lemma
39.1 g, # 0. Thus the above equality cannot hold in the Frobenius
group PU. Hence U*"* %=1, This proves statement (i) of the
lemma.

Let U,= W, U W™, By (89.2) U, is a conjugate of U*"*
which lies in PU. All conjugates of U*"* which lie in U are of
the form

Uks(l—w)u°3w° '
’

with ¢;€ 25, ¢’ € 2;. Hence
(39.3) U,= WUBU W = Wit Uk3(1—w)u°3w°’ W,

for some W,eP. Thus W,W,e N(1). Since Q€ N(1), we get that
Q'W,W,Qe N(). By (89.2) W.Q = QW,, thus Q' W, W.Q = Q' W.QW..
Hence

WQW,'Q = W,W(Q W' W;'Q) e N(1I) .
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However W,Q'W;'Qe P. Since PN NU) =1, this yields that
Qe C(W,). Hence W,ePNCR) =P*. Thus

(39.4) W, = P
for some c;€ 2,. Now (39.2) and (39.4) show that
W, W, eQPB* N NQU) .

Since Pe N({Z)), we have Y 'PY e N(l), thus OQP*NNW) =
{YPY). Therefore

(39.5) W, W, = Y 'PvY
for some ¢,€ 2,. Consequently

(W, W) Ukstmon®es W, = [kttt
If this is compared with (39.3) we see that

(39.6) G+¢=0 ¢ =0.
Using (39.4) and (39.6) in (39.5) leads to
(39.7) W, = P 2YP~%Y .

Comparing (39.2) and (39.7), we get
P-aY-'P~%Y = Y 'P*Y,'P*Y .
Conjugating by Y gives
(39.8) YP-aY-'P- = P'Y,'P* .
If we substitute (39.7) into (39.2) we get
U-rPayt-omp-ntw = P-alkt-wtpo

Multiply on the left by U—***P% and on the right by U-**Puyk»
to get

U—k39°3Pc2 U-*PulJ% = U—wksv"aPc, U-*wpalJhve

Since the right hand side is the left hand side conjugated by Q, we
see that @ centralizes the left hand side. Hence

(89.9) U-**Paly--PnU* = Pa
for some ¢, € 2,. Reading (39.9) mod P yields that
k., = k, + k,v°

which proves (ii) of the lemma. Substituting (ii) of Lemma 39.2
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into (39.8) we get that
(39.10) PY'P* = Y iP-os
Substituting (39.10) into (39.1) leads to

Y, Z"PY,' = P-1Z"Y 'P-a%ZkpPo:

Multiply on the left by P and on the right by P-%, Then using
Lemma 39.2 (ii) and (iii) this becomes

YPnY'ZMPYP-%Y ™ = ZRY P~k
Use Z= YUY to get
YPOUHY'PYP Y = YURY 'Y P~ YUkY -,
Conjugate by Y and multiply on the left by U=*: to get
(39.11) U MPaUmY'PYP~ = Y'Y P~y Uhs
Conjugate by Q@ and take inverses, then
PorY P YU o p-nJkw — [J-kw Y -iPeatos Y.Y.
Multiply by (39.11) on the right to get
PouY PR YU MwP-akaw-D PalfaY-1PYP-o — [Jkt-w
Conjugate by W;* to get

W,P9:Y -1 Y -k P-01 [J ka0 Pos (i Y- PY P-oa T~
—_ IVIUks(l—w) m—l .

Using (39.2) and (89.8), this yields

W, P2 Y'PY{U-*wP-akhw-0pal u} Y- PYP-o w
(39.12) — l]o — U_k,PglUu—w)klP—alkag .
Now by the second equation in (39.12)

U-rwp-ahw-mPnlk = U-kepP-alfae ] [J-*w Pk
Thus the first equation in (89.12) implies that

U-twpake Y 'PYP-2W e C(U,) .

By (39.3) and (39.4), C(U,) = P—11*P¢%, Hence
(39.13) U-* Pk Y PYP-: W = P-al,P%

for some U,el*. We wish to show that U,el. To do this con-
jugate (39.13) by Q to get
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(39.14) Uk’ Puke’ Y1 PYP-0a Wt = P-aUFPo

by (39.7). Multiply (39.13) by the inverse of (39.14) on the right to
get

(39.15) Uk pakw - P-aJkw! = p-alji-wpe

By Lemma 38.2 U, and U} have the same order. Since the left
hand side of (39.15) is in PU, this implies that the order of U, divides
u, thus U,el.

Multiply (39.13) on the left by U, P% and on the right by
W, P2 Y 'P'Y to get

(39.16) U 'PaU-rkwpaUhe = PaW PsY'P'Y .

By (39.7) the right hand side is in C(Q), while the left hand side is
in PU. Since C(Q) N PU = P*, this yields that

(39.17) U, 'P:U ke Pakw = P’
for some ¢” € 2,. Conjugate by Q! to get
U, v 'PaU-*"PulUk = P,
Comparing this with (39.9) yields that
Ur"'P = Uko”Per
so that
U™ = U, ¢,=c".
Using (39.16) and (39.17) this yields
P = PaW PuY'P'Y
or
Poa-aY-PYP %= W,.
Hence by (39.7)
Po-aY-'PYP~% = P~aY'P~%Y ,

This immediately implies (iii) of the lemma and thus completes the
proof.

LEMMA 39.8. Let (a,, a,, a;) € .7, and let k, have the same meaning
as n Lemma 39.6. Then k, = 0.

Proof. Suppose that k, # 0, so that Lemma 39.7 may be applied.
Let
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h, = h(2, a,v, —3)
h, = h(1, a,v*, —2)
hy = (1, —av*, —3) .

By Lemma 38.5 (i)
f@, av, —8) = —a,v—h,

f(@, ay®, —2) = —a,v* — h,
fQa, —av?, —8) = a,v* — h, .

Hence in the notation of Lemma 39.6
k, = h, — hgv!
k, = av + hy — hyv?
k, = av* + hv™' + a0 — hy .
Since a, + a, + a, = 0, this yields that
ks = —av* + hyv™ — hy
k,— k= —av+ hv?— hv?,
Thus
(ky — ka)v =k,
or
k,+ kv'=k,.

By Lemma 39.7 (ii) this implies that k(v —v) =0. If ¢, # —1,
then by Lemma 38.2, (v* — v~!) has an inverse in 2,. Thus k;, =0

contrary to Lemma 39.7 (i). Therefore ¢, = —1. Now Lemma 389.7
(iii) becomes
(39.18) Y'PYP% = P-2aY'PY .

Reading (39.18) mod L) implies that g, =c¢,. Thus (39.18) yields that
Y'PY and P~ commute. Since g, # 0 by Lemma 39.1, this implies

that
P'Y-'PYeQ,NC(P)={1}.

Thus YeQ,N C(P) = {1} which is not the case. Therefore k, =0 as
required.

LEMMA 39.9 Let (a,, a,a)e ¥, let k, and k, have the same
meaning as in Lemma 39.6. Then k, =k, = 0.

Proof. Since k, = 0 by Lemma 39.8, (39.1) becomes



39. THE PROOF OF THEOREM 37.1 1025

(39.19) Y, PY, ! = P~aZ"P*Y 'P*Z*P ,
‘Conjugating by @ and using (38.2) we get that
{39.20) Y, PY;' = P~uZ*MP*Y 'P*Z*"P%
Now (39.19) and (39.20) imply that

ZMP*Y,'P*Z%s = Z¥P*Y,'P*Z™*s |
‘Therefore
(39.21) PY\P*Zs0—0P-kY, P~ = Zk D,

Suppose that k, # 0. Then by Lemma 38.2 k(1 — w) #0. As
{ZY is a T.I. set in ®, (39.21) now implies that P*Y,'P*e N({Z)).
As Pe N(KZ>) this implies that

Y-'P-uYPs = Y, e NKZD) N Q=<1 .

Therefore P% commutes with Y. Hence g, = 0. This is contrary to
Lemma 389.1. Thus k,= 0.

Now (39.21) implies that k,(w — 1) =0. Therefore by Lemma
38.2 k, = 0.

LEMMA 39.10. Let (a,, a, a;) € Y and g, have the same meaning
as in Lemma 39.6. Then g, = 1.

Proof. In view of Lemmas 39.8 and 39.9 equation (89.1) becomes
(39.22) Y, PY,'= P~P*Y'P*P%
Reading (39.22)Jmod £, implies that

l=—g,+2+k+g,

.or using the definition of &
(89.23) —1—-g9g,=k=-14¢,—9,.
Hence g, = g, — ¢, and (39.22) becomes
(39.24) Y, PY;'= P'Y, !, P,

P acts as a linear transformation on Q, It is convenient to use
the exponential notation. Thus Y? = P'YP, so that Y, = Y'*+7*,
(89.24) can be rewritten as

P-Y, PY;! = P-dY;2, Pt

In exponential notation this becomes
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(39.25) Y —1+POP+a-P _ yra-pIi—0ypo1-1 .
Define

(39.26) A=(-14+ PP+ (1 — P%) — (1 — Porn)pa-!
=1—-P)+ PrY(P'—1)— P (P—1),
Since P*Q, is a Frobenius group with Frobenius kernel 2, 1—P is

an invertible linear transformation on Q, By (39.25) A annihilates
Y. Hence also A(1 — P)™ annihilates Y. By (39.26)

AL~ Py* =1 — Pui(P 4 1) 4 Por
=1—Pn+4+1—Pnl1_14 pPo,

Therefore
Yg 1 I’g-1 1 Yn_l = Y(—1+P'3_1)—(—1+P01_1)-—(_1+P01) — 1
2~ 1~ 1 .
Thus
(89.27) Y=Y, Y, .

By Lemma 39.8 _
YL UMY, , = P-ovpury
By (39.27) this yields that
(39.28) Y, LY'U o1~ Y, Y, ,= PP
Lemma 39.2 also implies that
Y, 'U"Y, = P-UP",
Raising this to the v%~1-'th power we get that

(39.29) YUY, = Py P
Now (39.28) and (39.29) yield that
(39.30) Y, L,P U’ pa Y, = P-ordUpPwy

Another application of Lemma 89.3 gives
(39.31) Y;LU*'Y, , = P-o P
Thus (39.30) and (39.31) imply that

Y L[P-a U Py, UTYY,

(39.32) =[P~ dUP e, P-o-d[JPw,D]

Since g, # 0, P-U*" " "'Pai¢gU. Therefore
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[P—al Uv”_'l—lPol, Uvﬂl—I] e qsg .
As P is a T.I. set in @ (39.32) now implies that
Y, e NN =1.

Therefore P1' commutes with Y and so g, = 1. Now (39.27) yields
that Y,, =Y, or

Y-ip-ordYPord = Y-1PYP,

Consequently P-:2YP'-» = Y, Hence g, = 2. Now (39.23) implies
that g, = 1 as required.

LEMMA 89.11. Let <Z have the same meaning as in Definition
38.2. If ac <# then —ae€ &.

Proof. Let a =a,€ &# and suppose that (a,, a, a;)€ . By
Lemma 38.8(—a, —a,, —a;)€ .. Let (—a, —a,, —a;) play the role
of (a,, a,, a;). By Lemma 39.10 g, = ¢9(1, —a,?*, —2) =1, Thus Lemmas
38.5 and 39.1 imply that

(39'33) _a’l’v“i + f(lr —a,v’, - 2) + h(]., —a,lv*’, —2) = O
(39.34) w—a1v3 — 2+ w—¢1°'+h(1.—aw3.—2) =0.

Let b, = —a,v*, b,=r(1, —a,v*, —2) and b, =hr(1, —a,2®, —2). By
Lemma 39.1 b, # 0 for ©=1,2,3. By (39.33) b, + b, + b; = 0. Now
it follows from (39.34) and Lemma 38.7 that (b, b, b;)€ . &. Thus
—av* = —a,v* = b, e Z.

Since @ was an arbitrary element of <# we get that for any
integer n, a(—v)*e <. Thus in particular, a(—v*)?€ <#. Hence
by (38.2), —a = —av** € <# as was to be shown.

It is now very easy to complete the proof of Theorem 37.1.
Define the set & by

& ={w*|aec F}.

Since | &# | = | ¥ |, Lemma 38.10 yields that & is not empty. The
definition of <& and Lemma 38.7 yield that 1¢ % and ae#® if
and only if 2 — ac%. Lemma 89.11 implies that @ € & if and only

1 ¢z Sinceu=1+p+---

if a e &. Therefore if @ € & then 5

+ p*!, we have N(a) = a+?++*" =1 for o€ &. Thus if ¢ has the
same meaning as in Lemma 388.11 then there exists ae ¢« — F,
such that N(a®) =1 for all values of 4. This contradicts Lemma
88.11, and completes the proof of the main theorem of this paper.
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