A Sylow-like theorem for integral group rings
of finite solvable groups

By

W. KIMMERLE and K. W. ROGENKAMP *)

1. Introduction. For a finite group \(G \) and a commutative ring \(R \) we denote by

\[
RG = \left\{ \sum_{g \in G} r_g \cdot g \right\}
\]

the group ring of \(G \) over \(R \). This group ring is an augmented algebra with

\[
\text{augmentation } \varepsilon: \ RG \to R, \ \sum_{g \in G} r_g \cdot g \to \sum_{g \in G} r_g.
\]

By \(V(RG) \) we denote the units in \(RG \), which have augmentation 1. The group of units in
\(RG \) is then the product of the units in \(R \) and \(V(RG) \).

A subgroup \(H \) of \(V(RG) \) with \(|H| = |G|\) is called a group basis, provided the elements
of \(H \) are linearly independent. This latter condition is automatic, provided no rational
prime divisor of \(|H|\) is a unit in \(R \) [1]. If \(H \) is a group basis, then \(RG = RH \) as augmented
algebras and conversely.

The object of this note is to prove the following

Theorem 1. Let \(G \) be a finite solvable group, and let \(H \) be a group basis of \(ZG \) with Sylow
\(p \)-subgroup \(P \). Then there exists a unit \(a \in QG \) such that \(aPa^{-1} \) is a Sylow \(p \)-subgroup of \(G \).

Remark 1. For solvable groups it was conjectured by Hans Zassenhaus [12, 11] that for any finite subgroup \(U \) of \(V(ZG) \) there exists \(a \in QG \) with \(aUa^{-1} \subseteq G \).

It is known that for a solvable group \(G \), the Sylow \(p \)-subgroups of different group bases
in \(ZG \) are isomorphic; however, the above result gives information about the embedding
of these Sylow \(p \)-subgroups into \(ZG \).

The isomorphism of the Sylow \(p \)-subgroups is an immediate consequence of the
following more general result: (\(\mathbb{Z}_p \) stands for the complete ring of \(p \)-adic integers.)

Theorem 2 ([1]). Let \(G \) be a finite group such that the generalized Fitting subgroup \(F^*(G) \)
is a \(p \)-group \(^{1} \). Then a group basis \(H \) of \(ZG \) is conjugate by a unit in \(Z_p G \) to a subgroup
of \(G \).

* The second author was partially supported by the DFG.

\(^{1}\) This is to say that \(G \) has a normal \(p \)-subgroup \(N \) with the centralizer \(C_G(N) \subseteq N \) or that the
generalized \(p' \)-core \(O_{p'}(G) \) is trivial [2, 3].
We shall state next a more general result, which does not only apply to solvable groups, and of which Theorem 1 is a special case – as will become transparent later on. For this we have to introduce some more notation.

Definition 1. Let G be a finite group.

1. $\pi(G)$ is the set of rational prime divisors of $|G|$.
2. For the rational prime p, the group $O_p(G)$ is the largest normal subgroup of G with order relatively prime to p.
3. $O_{p^r}(G)$ is the generalized p^r-core of G [4, Ch. X, Paragraph 14].
4. Let π be a finite set of rational primes. We call a finite group G π-constrained, if for each $q \in \pi$ there exists a rational prime p such that $O_{p^r}(G/O_{p^r}(G)) = 1$ and q does not divide $|O_{p^r}(G)|$.

Remark 2. Note that in the above definition, the prime q need not be different from p. Therefore a p-constrained group G is also π-constrained for $\pi = \pi(G) \setminus \pi(O_{p^r}(G))$. Clearly a finite solvable group is π-constrained for every set of primes π. However, there are many insolvable groups which are π-constrained for some set π (e.g. every Frobenius group is π-constrained for a suitable set π). It is not true though, that a π-constrained group G is p-constrained for every $p \in \pi$ [2, 3].

We can now state the result, which we shall prove here:

Theorem 3. Let G be a finite π-constrained group, and let H be a group basis in $\mathbb{Z}G$. For each $p \in \pi$ and P a Sylow p-subgroup of H, there exists a unit $a \in \mathbb{Q}G$ with aPa^{-1} a Sylow p-subgroup of G.

2. **Connection with the Zassenhaus conjecture.** Let us return to a weak form of the Zassenhaus conjecture (cf. Remark 1):

Conjecture 1 (Zassenhaus [12, 11]). Let G be a finite group. If H is a group basis in $\mathbb{Z}G$, then H is conjugate in $\mathbb{Q}G$ to G; i.e. there exists a unit $a \in \mathbb{Q}G$ such that $aHa^{-1} = G$.

Remark 3. It was shown in [7] that the above conjecture is true for finite nilpotent groups. However, in [8] a metabelian group was constructed, which is a counterexample to the above Zassenhaus conjecture.

It is convenient, to rephrase the Zassenhaus conjecture in terms of *isomorphisms over class sums*.

Definition 2. Let G be a finite group.

1. A class sum in $\mathbb{Z}G$ is an element of the form

$$CS_G(g) = \sum_{x \in G/C_G(g)} x^g;$$

i.e. the sum of the different conjugate elements of g.

2. Let H be a group basis in $\mathbb{Z}G$. Then there is a class sum correspondence [1]: For every $h \in H$ there exists an element $\gamma(h) \in G$, such that $CS_H(h) = CS_G(\gamma(h))$ in $\mathbb{Z}G$. Note that $\gamma(h)$ is only determined up to conjugacy. Since the conjugacy class of h and $\gamma(h)$ must have
the same cardinality – use the augmentation – the map \(\gamma \) can be extended to a
bijection \(\gamma: G \to H. \)

We shall call such a map a \textit{class sum correspondence}. Note that \(\gamma \) is in general not unique
and is in general not a homomorphism of groups; however, it sends \(p \)-power elements of
\(G \) to \(p \)-power elements of \(H \); it even preserves the order of the elements [6].

3. This class sum correspondence induces a correspondence between the normal subgroups of \(G \) and \(H \), essentially since a normal subgroup is a union of conjugacy classes, cf. e.g. [10].

4. Let \(H \) be a group basis in \(\mathbb{Z}G \). An isomorphism \(\varphi: H \to G \) is called an \textit{isomorphism
over the class sums} provided the induced automorphism – note \(\mathbb{Z}G = \mathbb{Z}H \) – which we
shall also denote by \(\varphi \)

\[
\varphi: \mathbb{Z}H \to \mathbb{Z}G, \quad \sum_{k \in H} r_k \cdot h \to \sum_{k \in H} r_k \cdot \varphi(h)
\]

has the property \(\varphi(CS_H(h)) = CS_G(\varphi(h)) \).

We can now reformulate the Zassenhaus conjecture – using the theorem of Skolem-Noether:

\textbf{Proposition 1.} The Zassenhaus conjecture is equivalent to the statement that for each
group basis \(H \) of \(\mathbb{Z}G \) there exists an isomorphism

\(\varphi: H \to G \)

– this means that the isomorphism problem has a positive answer – which is an isomorphism
over the class sums; with other words the above bijection

\(\gamma: H \to G \)

can be chosen to be a group isomorphism.

\textbf{Remark 4.} We shall collect here some observations:

1. Theorem 2 thus states, that in case \(F^*(G) \) is a \(p \)-group, then for every group basis \(H \) there exists an isomorphism over the class sums.

2. In our Theorems 1, 3 we are not dealing with the group basis, but rather with a
subgroup of a group basis \(H \). Thus we are looking for an extension of Proposition 1 to
a subgroup \(U \) of the group basis \(H \) (cf. Remark 1).

3. The obvious extension would be to require that the bijection \(\gamma \) in the Definition 2,2
could be chosen in such a way that it is a group isomorphism when restricted to \(U \).

\textbf{Theorem 4.} Let \(G \) be a finite group and let \(U \) be a finite subgroup of \(V(\mathbb{C}G) \). Denote by
\(L \) an algebraic number field such that \(U \subset LG \). Then the following statements are equivalent.

1. There exists a unit \(a \in LG \) with \(aUa^{-1} \subset G \).

2. There exists a group basis \(H \) of \(\mathbb{C}G \), and there exists a bijection

\(\varphi: H \to G \),
such that
\[q_U : U \rightarrow q(U) \]
is a class sum preserving group isomorphism; i.e.
\[CS_H(u) = CS_G(q(u)) \]
for every \(u \in U \). Moreover,
\[|CS_H(u)| = |CS_G(q(u))|, \]
here \(|CS_G(g)| = |G : C_G(g)| \) denotes the number of elements conjugate to \(g \).

3. The Proofs.

Proof of Theorem 4. (1) \(\Rightarrow \) (2): If we take \(H = a^{-1} Ga \), then the conjugation by \(a \) is the desired map \(q \).

(2) \(\Rightarrow \) (1): Let \(L \subset K \) be an algebraic number field, which is a splitting field for \(G \) and choose a simple Wedderburn component \(A \) of \(KG = KH \).

Via the projection onto \(A \) we obtain two representations of \(U \), denoted by \(\phi_U \) and \(\phi_{q(U)} \) resp., where \(\phi_U \) is the representation of \(U \subset H \) and \(\phi_{q(U)} \) is the representation of \(U \) induced from \(q \).

We shall show that the characters for \(U \) of \(\phi_U \) and \(\phi_{q(U)} \) coincide. In fact, by assumption \(CS_H(u) = CS_G(q(u)) \) and so we have for the trace of \(\phi_U \) and \(\phi_{q(U)} \) resp. with \(l = |CS_H(u)| = |CS_G(q(u))| \):
\[
\text{tr}_{\phi_U}(u) = l^{-1} \cdot (l \cdot \text{tr}_{\phi_U}(u)) = l^{-1} \cdot (\text{tr}_{\phi_U}(CS_H(u)) = l^{-1} \cdot (\text{tr}_{\phi_{q(U)}}(CS_G(q(u)) = \text{tr}_{\phi_{q(U)}}(q(u)).
\]

This holds for every \(u \in U \), and since the characters determine a representation up to isomorphism (conjugacy), we conclude, that \(\phi_U \) and \(\phi_{q(U)} \) are conjugate in \(A \). Since this can be done for every simple Wedderburn component of \(KG \), we conclude that there exists \(b \in KG \) such that \(bUb^{-1} = q(U) \).

It remains to show that this conjugation can already be achieved in \(LG \). We shall be using bimodules to reach this goal:

We consider \(M = LG \) as \(L(U \times G) \)-bimodule, by letting \(U \) act in its natural way on \(M \) from the left and \(G \) acts on the right by its natural action. \(eM \) has the same right action as \(M \), but the left action is twisted by \(q \):
\[u \cdot q m = q(u) \cdot m \]

Since \(U \) and \(q(U) \) are conjugate in \(KG \), the bimodules
\[K \otimes_L M \quad \text{and} \quad K \otimes_L eM \]
are isomorphic. Invoking the Noether-Deuring theorem, we conclude that the bimodules \(M \) and \(eM \) must be isomorphic. Let
\[M \rightarrow eM \]
be an isomorphism of \(L(U \times G)\)-bimodules. We put \(a = \tau(1)\). Then \(a\) is a unit in \(LG\) and moreover,
\[
\phi(u) \cdot a = a \cdot u
\]
for every \(u \in U\). \(\quad \text{q.e.d.}\)

The proof of Theorem 3 will now follow from Theorem 4, if we can show

Proposition 2. Let \(G\) be a finite \(\pi\)-constrained group for \(\pi\) a finite set of rational primes. \(H\) is a group basis in \(\mathbb{Z}G\).

For \(q \in \pi\) there exists by Definition 1.4 a prime \(p\) such that
\[
O_{p'}(G/O_{p'}(G)) = 1.
\]
Let \(S\) be a Sylow \(q\)-subgroup of \(H\). Then there exists a class sum correspondence
\[
\phi: H \rightarrow G
\]
such that
\[
\phi_S: S \rightarrow \phi(S)
\]
is a group isomorphism.

Proof. Let
\[
\kappa: \mathbb{Z}G \rightarrow \mathbb{Z}G/O_{p'}(G)
\]
be the augmented ring homomorphism induced from reduction modulo \(O_{p'}(G)\).

Since \(G\) is \(\pi\)-constrained, \(q\) does not divide \(|O_{p'}(G)|\), and so \(\kappa_1S\) injects \(S\) into \(\mathbb{Z}G/O_{p'}(G)\).

By the choice of \(p\), we may apply Theorem 2, to conclude that the Zassenhaus conjecture holds for \(\mathbb{Z}G/O_{p'}(G)\), and so there exists a class sum correspondence in
\[
\mathbb{Z}(\kappa(G)) = \mathbb{Z}(\kappa(H)),
\]
inducing an isomorphism of groups
\[
\bar{\phi}: \kappa(H) \rightarrow \kappa(G).
\]

With the correspondence of normal subgroups (Definition 2,3) we conclude that
\[
\ker(\kappa_1H) = O_{p'}(H)
\]
and that
\[
|O_{p'}(H)| = |O_{p'}(G)|.
\]
Thus we can find a Sylow \(q\)-subgroup of \(G\), say, \(T\) such that
\[
\bar{\phi}_{\kappa(S)}: \kappa(S) \rightarrow \kappa(T)
\]
is a group isomorphism.

Summarizing, we have now constructed a group isomorphism
\[
\phi_S = \kappa^{-1}_T \circ \bar{\phi} \circ \kappa_1S
\]
from \(S\) to \(T\).

Claim 1. Let now
\[
\gamma: H \rightarrow G
\]
be a class sum correspondence (Definition 2,2). Then
\[
CS_G(\gamma(s)) = CS_G(s) \quad s \quad s.
\]
Proof of the claim. Because of the class sum correspondence γ, there exists for every $s \in S$ an element $t \in T$ such that

$$CS_H(s) = CS_G(t)$$

- note that γ sends q-power elements to q-power elements (Definition 2.2).

On the other hand, $\tilde{\varrho}$ induces the class sum correspondence on $\mathbb{Z}G/O_{p'}(G)$, and so we must have

$$CS_{G/O_{p'}(G)}(\kappa(t)) = CS_{G/O_{p'}(G)}(\tilde{\varrho} \circ \kappa(s)).$$

Thus t is conjugate in G to a q-power element of the form $w \cdot \varrho(s)$ for some $w \in O_{p'}(G)$. Note that we still have freedom in choosing t in its conjugacy class. Thus we can assume that t is such that $\kappa(t) = \kappa(q(s))$. In $O_{p'}(G) \cdot T$ the element $w \cdot \varrho(s)$ is - by Sylow's theorem - conjugate by an element $w_1 \in O_{p'}(G)$ to an element $t_1 \in T$. But then $\kappa(t) = \kappa(t_1)$ and so we must have $t = t_1$, since $\kappa_{|T}$ is injective.

Consequently $\varrho(s)$ and t are conjugate.

This proves the claim and also finishes the proof of Proposition 2, and hence completes the proof of Theorem 3 and consequently of Theorem 1.

References

Eingegangen am 5.4.1990

Anschrift der Autoren:
W. Kimmerle
K. Roggenkamp
Mathematisches Institut B
Universität Stuttgart
Pfaffenwaldring 57
DW-7000 Stuttgart 80