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SEMIFREE ACTIONS OF
FINITE GROUPS ON HOMOTOPY SPHERES
BY
JOHN EWING'

ABSTRACT. We show that for any finite group the group of semifree actions
on homotopy spheres of some fixed even dimension is finite, provided that
the dimension of the fixed point set is greater than 2. The argument shows
that for such an action the normal bundle to the fixed point set is
equivariantly, stably trivial.

0. Introduction. A group G is said to act semifreely on a space X if every
point is either fixed by every element of G or fixed only by the identity. The
classification of smooth semifree actions of finite groups on homotopy
spheres has been discussed by Browder and Petrie [3] and Rothenberg [6]. We
briefly summarize the basic scheme.

Given a finite group G we fix a representation p: G — O(d) such that p
restricted to the unit sphere S~ ! is fixed point free. A (G, p)-manifold M is a
smooth manifold together with a smooth, semifree action of G.on M such
that the fixed point set F is nonempty and locally the representation of G on
the normal bundle of F in M is equivalent to p. In a natural way this defines
a reduction of the structure group of the normal bundle to Z(p), the
centralizer of p(G) in O (d). A (G, p)-orientation is a specific reduction of the
structure group of the normal bundle to Z (p). We then define C N (p) to be the
set of (G, p)-oriented A-cobordism classes of (G, p)-oriented manifolds which
are homotopy N-spheres with fixed point set a homotopy (N — d)-sphere.
The set C (p) has the structure of an abelian group under the connected sum
operation.

The object of the present paper is to prove the following qualitative result
about the groups C¥ (p).

THEOREM A. Let p: G — O (2d) be a fixed point free representation of a finite
group G and suppose that 2N — 2d > 2. Then C*¥(p) is a finite group.

We point out that the condition that p has even dimension is a restriction
only when |G| = 2. This case is already well understood (3], [6].
The essential ingredient for proving this theorem is well known. According
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to [7] there is a long exact sequence

— HS(D¥*' X L, §%" X L) > C (p) 5 Ty, ® m,,(4(p), Z(p)) —

where 2n = 2N — 2d, HS denotes the group of homotopy smoothings, L is
the orbit space of $2/~! under p, T,, is the group of homotopy spheres and
A(p) is the monoid of G-equivariant self-maps of S2¢~!, From the surgery
exact sequence and the finiteness of the odd dimensional Wall groups it
follows that HS(D?**! X L, $" X L) is a finite group. It is well known that
T), and m,,(4(p)) are finite groups also. Therefore we must consider the
composite:

C¥(p) 5> Ty, ® my,(A(0), Z (0))
lproj

T2.(A(p), Z (0)) _a) Ton—1 (Z(P))

which assigns to an element of C2V(p) the element of Tyn—1(Z (p)) which
classifies the equivariant normal bundle to the fixed point set. In order to
prove Theorem A we must prove the following.

THEOREM B. Let p: G — O(2d) be a fixed point free representation of a finite
group G and suppose 2N — 2d > 2. Then the image of 9 ° proj ° ¢: C*N(p) —>
Tan—24—1(Z (p)) contains no elements of infinite order.

A number of special cases of this result have previously been shown. In [8]
Schultz obtained the result for G cyclic of prime order p and either p small (3,
S5or7)or N — dlarge (N —d > 2log, p — 1). (There is a sign error in [8]
which does not affect the conclusions except for p = 7; see [9].) Schultz’ work
easily extends to cyclic groups of nonprime power order, but again for N — d
sufficiently large. In [12] Wang has extended the calculations using a different
approach; but again there is a sign error which invalidates some of the results,
especially Corollary 3.8 and Theorem 4.7 for even order groups. The work of
[4] is essentially a proof of Theorem B in the case where G is cyclic of prime
order. Our proof here is similar, but both the algebraic and topological
arguments require more careful analysis.

The proof of Theorem B will proceed in several stages. In §1 we make some
easy observations about the centralizers of representations which show that it
is sufficient to prove the theorem for G cyclic. In §2 we prove the result for
cyclic G using the Atiyah-Singer G-signature Theorem together with an
algebraic lemma. The proof of the algebraic lemma is then given in §3.

It should be remarked that the techniques of the present paper yield
considerable information about the groups C"(p) when N is odd. In particu-
lar, these groups, even when they are finite, tend to be of rather large order,
and the orders are related to both the homotopy groups of spheres (which is
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expected) and to the order of certain ideal class groups (which is unexpected).
The author would like to thank Reinhard Schultz, Bob Stong and Leonard
Scott for valuable conversations concerning various aspects of this work.

1. Reduction to the cyclic case. In this section we will show that it is
sufficient to prove Theorem B in the case where G is cyclic. From our
previous remarks it is evident we must consider the commutative square

Cp) ———————— m,y,_1(Z(0))
res res

D eplp— B m,_ Zerly)
HCG HCG
H cyclic H cyclic

PROPOSITION 1.1. Let p: G — O (2d) be a fixed point free representation of a
finite group G. For any integer n > 1 the restriction map

res: m,,_1(Z (p)) ® Q - HGQG Tan-1(Z (ol ) © Q

H cyclic
is a monomorphism.

We prepare for the proof of the proposition by making some easy obser-
vations about the centralizers of representations.

Given an irreducible representation p: G — O(d) let ¥ denote the repre-
sentation space. By Schur’s Lemma we know that Homg(V, V) = R, C or H.
We call such a representation type I, II, or III accordingly. Now it is easy to
see that the transpose operation defines an involution on Homg(V, V) which
is either trivial, complex conjugation or quaternionic conjugation in each
case. It follows that Z(p) C O(d) is isomorphic to O (1), U(1) or Sp(l)
respectively.

Similarly we may consider any real representation p: G — O (d) and write

P=2 a;p; +2 bj"j+2 CrThs
i J k
where the p;, 6, and 7, are irreducible representations of type I, II or III

J
respectively. Then the centralizer Z (o) C O (d) is isomorphic to the product

I 0(a) xII U(8) x 11 Sp(cy).
i J k

The situation for complex representations is, as usual, easier. If p: G—
U(d) is a complex representation we can write p = 3, a,0; where the p, are
irreducible. Exactly as before we see that Z(p) C U(d) is isomorphic to
II; U(a,). There is then an obvious homomorphism
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N: Tan_1(Z (p)) > R[G]
given by n([f]) = Z; f*(a*c)p;, where a*c is the cohomology suspension
of the nth Chern class of BU (a;). It is clear thatn ® Q is a monomorphism.
Finally we consider a real representation p: G — O (d) without any irre-
ducible constituents of type I; that is, using our previous notation,

p=z bjoj+§ C Ty
J

Let pc denote the complexification of p. By the usual arguments each (0)c is
the sum of an irreducible and its (distinct) conjugate while each (T)c is twice
a self conjugate irreducible. It follows that

Z(p)~II u(b) x1II sp(c,) and
J k

Z(po) =I1[U(8) x U(b)] XTI UQcy).

J

Letting i: Z(p) > Z(pc) denote the inclusion, it is now easy to see that
iy ® Q is a monomorphism on homotopy groups.

PROOF OF PROPOSITION 1.1. Clearly the proposition is true for G cyclic and
hence we may assume that |G| > 2. From the classification of fixed point free
representations of finite groups given by Wolf [13], we see that for |G| > 2
there are only irreducible fixed point free representations of type II or III.
Consider the commutative diagram:

Tan—1(Z(p) — 22— 1, (2(p)) ——— R[G]

l res l res l res

@ 1T2n_l(Z(p IH)) ? @ 772n_1(Z(pc |H)) ? @ RI[H]
HCG HCG HCG
H cyclic H cyclic H cyclic

We have observed that i, ® Q and 7 ® Q are monomorphisms. It is well
known that the restriction map for the representation rings is a
monomorphism. The proposition is now immediate. []

2. The proof when G is cyclic. We now give the proof of Theorem B for G a
cyclic group. Since the result is well known for G = Z,, we can assume that G
is cyclic of order g > 2. First, we establish some notation and recall some
facts.

Let T denote a generator of G and let A = ¢2>"/4, The irreducible unitary
representations of G are given by p,, 0 < k < ¢, where px(T) = Ak, Clearly
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p, is fixed point free if and only if (k, g) = 1. We note that p, is real
equivalent to p, = p,_-

Given a fixed point free representation p: G — O (2d), it is a standard fact
that p is the realization of a unitary representation. Hence p is a real
equivalent to X, o, d,p,, Where the d; are nonnegative integers whose sum is
dand A = {k €Z| 1 < k < q/2, (k, q) = 1}. As in the previous section it
follows that Z (p) C O (2d) is isomorphic to I, , U(dy).

Now given an element of C?¥(p) we choose a representative homotopy
sphere 22" with (G, p)-action, and let =2" denote the fixed point set, where
2n — 2N — 2d. Let v denote the normal bundle of the fixed point set. The
reduction of the structure group of » to Z(p) gives v the structure of a
complex G-vector bundle, and as in [11] we may write

v= 2 §k®pk’

k€A

where ¢, is a complex vector bundle of dimension d,. In order to prove
Theorem B we need only show that the rational Chern classes c,(§;,) €
H*(Z?", Q) are zero for k € A.

To accomplish this we compute the G-signature (see [1, p. 578]) in two
ways. First, since the middle dimensional cohomology of =2 is trivial, it is
clear that sign(T, =2V) = 0.

On the other hand we can compute sign(7, =2V) from the G-signature
Theorem [1, p. 582]. We see that

sign(T, M) = tC( I M~ &), [22"]>,

keA
where

c=2 11 (A"+1)

k€A }\k_l

and where MM\, &) is the characteristic class defined by the power series

associated to
(Ak—l)()\"e‘+1)
Ao+ 1\ Akez — 1)

Since the only possible nonzero, rational Chern classes are cy(§) = 1 and
¢, (&), we can write:

EIR(Ak’ gk) =1+ q)n(}‘k)cn(gk )’
where ®,(A*) is some number in Q(A).
We can “determine” the numbers ®,(A¥) by using the defining power

series for M(AX, ) and a standard trick. This gives a generating function for
®,(\%) as follows.
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& n d A —1 Ae? + 1
', =1-2 Lo ( )( )
2,020 ‘& g[ N1\ N — 1

=1+£[A"e’+1_}\"e’—l].

2 | Nkt =1 Aker 41
Elementary manipulation of the generating function now yields the following
two lemmas.

Levma 2.1. @,A%) = (= 1y'®, \%). [
LEMMA 2.2. If q is even and n > 0 then ®,(A\%/27%) = (—1y"*1®, (\*).

To summarize, we have shown that
0=sign(T,3) = 20| 3 BANGE). (D) @)
ked

where, of course, {c,(&), [E*"]>) € Q and C # 0. It is now clear that the
following is the crucial result concerning the ®,(A%).

LEMMA 24. (i) If ¢+ O0mod 4 then the numbers {®,(\*)k € A} are
linearly independent over Q for n > 1.

(i) If ¢ = 0 mod 4 then the numbers {®,(\*|k € A)} are linearly indepen-
dent over Q forn > 1, where A = {k €EZ|1 < k < q/4 and (k, g) = 1}.

We shall defer the proof of this purely algebraic lemma until the next
section. .

The proof of Theorem B is now almost immediate. If ¢ 2 0 mod 4 then
from (2.3) and Lemma 2.4 we conclude that c,(£,) = 0 for k € A4.

If g=0 mod 4 we must work a little harder. We prove the result by
induction on g. If ¢ = 4 then A contains only one element and a rational
pontrjagin class argument shows that c,(£,) = 0. Suppose that ¢ = 0 mod 4
and g > 4. Consider the subgroup H of G generated by T2 of order /2.
Clearly 3%V is an (H, p|,)-manifold and exactly as before the normal bundle
of the fixed point set decomposes into: @,.;m,. By considering the
restriction of the representation p, to H, it is evident that 1, = &, @ Eq J2—k-
From the induction hypothesis we conclude that

Cn(nk) = Cn(gk) + (_l)nc,,(g‘ﬂz_k) =0.

Therefore, using Lemma 2.2, we see that

0 =sign(7,Z") = +C ¥ 20,A*)Kc, (&) [Z¥])-
keAd
Finally, from Lemma 2.4 we conclude that ¢,(§,) = 0 for all k € A.

The proof of Theorem B is now complete provided we demonstrate the
algebraic Lemma 2.4.
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3. The algebraic lemma. In order to complete the proof of the main theorem
we must now prove Lemma 2.4. The proof will require some preliminary
notions and lemmas. Throughout this section ¢ will denote an integer greater
than 2, A = 2"/, Q()) is the cyclotomic field and g denotes the Galois group
of Q(A\)/Q. The degree of Q(A) over Q is ¢(g), where ¢ is the Euler function.
For convenience we let m = ¢(q)/2 and as before let 4 = {k €Z|1 < k <
q/2 and (k, q) = 1}.

It is not hard to see that Q(\) decomposes as a vector space over Q as
QM) = V, @ V, where V, is the subspace of real elements and V; is the
subspace of purely imaginary elements. Of course, dim V, = dim V', = m
and V, and V, are each invariant under g. From Lemma 2.1 we see that
®, (\¥) € V,, where e = 0 or 1 as n is even or odd. To prove Lemma 2.4 we
must investigate when a given set of elements of V, are linearly independent
over Q.

Let o, € g be the automorphism defined by o,(A) = A",

LemMA 3.1. Let {wy, ..., w,} be elements of V, and consider the m X m
matrix B=[o,._1wj]; i€ A, 1< j< m. The rank of B is equal to the
dimension of the span of {w,, ..., w,} inV,.

€

PROOF. Let {@,, . . ., ¢, } be a basis for ¥, over Q. It is well known [2, p.
405] that B = [0, 'p;]; i € 4,1 < j < m, is nonsingular. Let C be the m X m
matrix with entries in Q defined by

It follows from elementary linear algebra that rank C =
dim span{w, . . . , w,,}. Moreover, it is easy to verify that B = BC and hence
rank B =rank C. [

From the definition it is clear that ®,(A\¥) = 0,®,(\) for k € 4. We are
therefore really concerned with a special case of the preceding lemma, and in
this case we can compute the rank of B using characters mod g. (See [2, p.
415 ff.] for definitions and elementary properties of characters.)

LEMMA 3.2. Let w be an element of V,. Then the dimension of the span of
{0, (w)|k € A} is equal to the number of nonzero sums {Z;c, x(k)or(w)},
where x runs over all characters mod q such that x(—1) = (—1)°. (Such a
character is called even or odd as ¢ = 0 or 1)

PROOF. As in the preceding lemma let
B=[a,~_‘oj(w)]; i€ A,jEA.
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We can explicitly compute the eigenvalues and eigenvectors of B as follows.
Given a character x mod g such that x(— 1) = (— 1)* we see that

2 o 'g(w)x()) = x(9) 2 o o (@X()x0)
JE

= x(7) kgA x(k)o(w).

It follows that for each such character mod ¢ the vector with components
x(i), i € A, is an eigenvector of B with eigenvalue 2, . , x(k)o,(w). From the
Dedekind independence of characters theorem these vectors are linearly
independent. The result now follows immediately from Lemma 3.1. [J

We have now reduced our problem to the problem of evaluating certain
character sums. The computation is reasonably complex and it is not only
more convenient but also more illuminating to break it down into several
stages.

First, we can describe the numbers ®,(\) in terms of certain Dirichlet
series.

DEFINITION. For any integer n > 1 and real number 0 < ¢ < 1 let

& 1 (-1
v(n ’)‘Eo +1-1) * @ +1)

It is easy to see that ¢(n, f) is convergent for n > 1 and absolutely
convergent for n-> 1.

PROPOSITION 3.3. For any real number 0 < t < 1

£re’ + 1 —2 o(n+1,10)z"
e21nl z 1 ne0 (2 )n+1

ProoF. The proof follows easily from the identity

e2m'x + 1

e ictn(mx),

e
and the well-known partial fraction decomposition

wctn(wx)=%+§( 1 1 )

x+ v xX—v

We leave the manipulation to the reader. []

COROLLARY 3.4. For any real number 0 < t < 3,
th z __ 0
ETJ %(p(n+l,t+%)z"
mil, 2z + 1 n_O (2‘”1-)"

PROOF. Replace ¢ by ¢ + 5 in the previous proposition. []
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Using Proposition 3.3 and Corollary 3.4 together with the generating
function for ®,(A*), we conclude:

COROLLARY 3.5. For k € A,

Gl

o,A )=W

[o(n.k/q) = o(nk/q+3)]. O

We can now quite easily evaluate the requisite character-sums. Our answer
will involve the Dirichlet L-series defined by

L(s,x) = § X(I:) ;

v=1 v

where x is a character mod gq.

PROPOSITION 3.6. Let x be a character mod q such that x(—1) = (—1)".
Then

() Zxeq x(K)@(n, k/q) = (—1)'q"L(n, x),
(i) Zpes X(O)@(n, k/q + 3) = (—1)'"2"X(2) — 1)L(n, x), q 0dd,
(iii) Zeq x()P(n, k/q + 3) = (=1)q"x(1 + q/2)L(n, x), ¢ = 0 mod 4.

Proor. The calculations are all similar. For the first we use the fact that
x(») = 01if (», g) # 1. From the definition of ¢(n, ¢) we see that

K\ _ 2 1 (-1"
2, X(k)"’(”’ 3) =2 0 2 C+l—k/a) G+ k/a) ]
o, 2 x(k) (=1)"x(k)
1 kgA :Eo_(qy'*'q_k)n-'-(ql"*'k)"}
I N O i e DR G P
-1 ;EA Eo (@t g k) * (g + k)’ ‘
—ye S Xy w.

v=1

The second sum is similar. Using the definition of ¢(n, f) we see that
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sz x(k)p(n, k/q +3%)

I Gl ]
(v+1i-k/q) (v+i+k/q)

PR SIS x(k) (=1)'x(k)
¥ EA Zo [ (2vg + q — 2k)" ¥ (@@v + 1)q + 2k)" ]

I % x(q — 2k) x(2k)
= (=1)"2"¢"x(2) ;EA EO Qv + q — 2k)" * (@2v + 1)q + 2k)" }
- (-zeze) 3 X2
::ﬁ
- (—1)"2"4"2(2){ S X35 ) }
=1 Y S ()

= (=1)"¢"(2'X(2) - 1)L(n, x).

Finally, for the third case we use the fact that for ¢ = 0 mod 4 and k odd,
k(1+q/2)=k+ q/2=k — q/2 mod q. Then

;EA x(k)e(n, k/q +3)

= k S I (—1)"
kgA x(k) V§O (v+%—k/q)n ¥ (v +%+k/q)n
o s $ N Ol
kea v=0 | (v + q/2 — k) (qv +q/2 + k)

0

=(-D)'¢gx(1+4q/2) T 3

k€A v=0

= (=1)'qg"x(1 + ¢/2) é x,f:) = (=1"¢"x(1 + ¢/2)L(n, x). O

x(q/2 — k) N x(q/2 + k)
(@ +4q/2-k)" (g +q/2+k)

We are now in a position to prove Lemma 2.4. Combining Corollary 3.5

and Proposition 3.6, we see that for any character x mod ¢ such that
x(=1) = (=1),



FINITE GROUPS ON HOMOTOPY SPHERES 441

—=— ¢"(1-2"""%(2))L(n,x)  qodd,

2
S xwe,00 =1 " 1)
ke @y ——— ¢"(1 = x(1 + ¢/2))L(n,x) q=0mod4.

By Lemma 3.2 it is enough to determine when these sums are nonzero.

It is immediate from the Euler product formula that L(n, x) # 0 forn > 1.
For the remaining part we must consider the various possibilities for g
separately.

If g is odd then we simply note that |x(2)| = 1. Hence 1 — 2"~ !}(2) # 0 for
n > 1 and the lemma is proved.

The case when ¢ =2 mod 4 is easily reduced to the preceding one by
noting that ®,(—A%) = —®,(\%).

If ¢ = 0 mod 4 we note that by Lemma 2.2

span{®,(\*)|k € A} = span{®,(A\")|k € 4}

Now the character sum vanishes precisely for those characters x mod g for
which x(1 + ¢/2) = 1. It is easy to show that this is true if and only if x is
induced from a character mod ¢/2. Moreover, there are precisely ¢(q)/4
even characters and ¢(g)/4 odd characters with this property. Since the
cardinality of 4 is ¢(g)/2, we conclude that the dimension of the span of
{®,(A\%)|k € 4} is ¢(q)/4. However, the cardinality of A is also ¢(q)/4. Tt
follows that {®,(\%)|k € A } are linearly independent over Q. []

REMARK. Lemma 2.4 is in general false for n = 1, and it is not hard to show
that Theorems A and B are consequently false in general in case 2N — 2d =
2. (See [10].)

However Lemma 2.4 does hold for n =1 if x(2) # 1 for every odd
character mod g when ¢ is odd. This is true if and only if —1 is a power of 2
mod g. The following facts are all elementary except the last, which follows
from a theorem of Tchebotarev [S, p. 169].

(1) Write ¢ = p{, ..., p{, where p; is prime, and suppose the order of
2 mod p; is 2"((odd). Then —1 is a power of 2 mod ¢ if and only if
L=L=---=[>0

Let p be an odd prime and suppose the order of 2 mod p is 2 (0dd). Then

(2)If p = 7mod 8§ then / = 0.

(3) If p = 5mod 8 then / = 2.

4 Ifp =3mod 8 then/ = 1.

(5) If p =1 mod 8 then / can be any nonnegative integer. Moreover, for
each fixed value of / there are an infinite number of primes p for which 2 has
order 2/ (odd) mod p.
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