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FOR ACTIONS OF LIE GROUPS
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ABSTRACT. A section of a Riemannian G-manifold M is a closed submanifold
¥ which meets each orbit orthogonally. It is shown that the algebra of G-
invariant differential forms on M which are horizontal in the sense that they
kill every vector which is tangent to some orbit, is isomorphic to the algebra of
those differential forms on ¥ which are invariant with respect to the generalized
Weyl group of ¥, under some condition.

1. INTRODUCTION

A section of a Riemannian G-manifold M is a closed submanifold ¥ which meets
each orbit orthogonally. This notion was introduced by Szenthe [26], [27], and
in a slightly different form by Palais and Terng in [19], [20]. The case of linear
representations was considered by Bott and Samelson {4] and Conlon [9], and then
by Dadok [10] who called representations admitting sections polar representations
and completely classified all polar representations of connected compact Lie groups.
Conlon [8] considered Riemannian manifolds admitting flat sections. We follow here
the notion of Palais and Terng.

If M is a Riemannian G-manifold which admits a section X, then the trace
on X of the G-action is a discrete group action by the generalized Weyl group
W(X) = Ng(X)/Zg(X). Palais and Terng [19] showed that then the algebras of
invariant smooth functions coincide, C°(M,R)¢ = C>(%, R)WV ().

In this paper we will extend this result to the algebras of differential forms. Our
aim is to show that pullback along the embedding ¥ — M induces an isomorphism
QP (M)G = QP(Z)W® for each p, where a differential form w on M is called
horizontal if it kills each vector tangent to some orbit. For each point x in M, the
slice representation of the isotropy group G, on the normal space T} (G.z)* to the
tangent space to the orbit through z is a polar representation. The first step is to
show that the result holds for polar representations. This is done in Theorem 3.7 for
polar representations whose generalized Weyl group is really a Coxeter group, i.e.,
is generated by reflections. Every polar representation of a connected compact Lie
group has this property. The method used there is inspired by Solomon [25]. Then
the general result is proved under the assumption that each slice representation
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1634 P. W. MICHOR

has a Coxeter group as a generalized Weyl group. The last section gives some
perspective to the result.

I want to thank D. Alekseevsky for introducing me to the beautiful results of
Palais and Terng. I also thank A. Onishchik and D. Alekseevsky for many discus-
sions about this and related topics, and the editor and the referees for much care
and some hints.

2. BASIC DIFFERENTIAL FORMS

2.1. Basic differential forms. Let G be a Lie group with Lie algebra g and
multiplication p : G x G — G, and for g € G let pug, u?9 : G — G denote the left
and right translations.

Let £: Gx M — M be a left action of the Lie group G on a smooth manifold M.
We consider the partial mappings {q : M — M forg € Gand ¢* : G — M forx € M
and the fundamental vector field mapping ¢ : g — X(M) given by (x (z) = Te(£*)X.
Since £ is a left action, the negative —( is a Lie algebra homomorphism.

A differential form ¢ € QP(M) is called G-invariant if ({4)*¢ = p for all g € G
and horizontal if ¢ kills each vector tangent to a G-orbit: ic, o = 0 for all X € g.
We denote by P (M)€ the space of all horizontal G-invariant p-forms on M. They

hor
are also called basic forms.

2.2. Lemma. Under the exterior differential Qpor (M) is a subcomplez of QU(M).

Proof. If ¢ € Quor (M), then the exterior derivative dy is clearly G-invariant. For
X € g we have

texdp =tcdp+dic, o= Loy =0,
so dyp is also horizontal. O

2.3. Sections. Let M be a connected complete Riemannian manifold, and let G
be a Lie group which acts isometrically on M from the left. A connected closed
smooth submanifold ¥ of M is called a section for the G-action, if it meets all
G-orbits orthogonally. ‘

Equivalently we require that G.X = M and that for each z € ¥ and X € g the
fundamental vector field {x(x) is orthogonal to T, X.

We only remark here that each section is a totally geodesic submanifold and is
given by exp(T,(z.G)*1) if z lies in a principal orbit.

Ifweput Ng(X) :={g€G:9X=%}and Zg(X) :={geG:gs=sforall s €
Y.}, then the quotient W(X) := Ng(X)/Zg(X) turns out to be a discrete group
acting properly on . It is called the generalized Weyl group of the section X.

See [19] or [20] for more information on sections and their generalized Weyl
groups.

2.4. Main Theorem. Let M x G — M be a proper isometric right action of a
Lie group G on a smooth Riemannian manifold M, which admits a section 3. Let
us assume that
(1) For each x € ¥ the slice representation G, — O(T(G.x)*) has a generalized
Weyl group which is a reflection group (see section 3).
Then the restriction of differential forms induces an isomorphism
0P

hor

(MG = qr(m)V®
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between the space of horizontal G-invariant differential forms on M and the space
of all differential forms on ¥ which are invariant under the action of the generalized
Weyl group W (X) of the section X.

The proof of this theorem will take up the rest of this paper. According to Dadok
[10], remark after Proposition 6, for any polar representation of a connected com-
pact Lie group the generalized Weyl group W () is a reflection group, so condition
(1) holds if we assume that:

(2) Each isotropy group G, is connected.

Proof of injectivity. Let ¢ : ¥ — M be the embedding of the section. We claim
that i* : QF (M)¢ — QP(2)W®) is injective. Let w € QF_ (M)Y with i*w = 0.
For x € 3 we have ixw, = 0 for X € T, since t*w = 0, and also for X € T,,(G.z)
since w is horizontal. Let £ € ¥ N Mg be a regular point; then T,,% = (T,,(G.z))*
and so w, = 0. This holds along the whole orbit through z since w is G-invariant.
Thus w|M;eg = 0, and since M,eg is dense in M, w = 0.

So it remains to show that i* is surjective. This will be done in 4.2 below. O

3. REPRESENTATIONS

3.1. Invariant functions. Let G be a reductive Lie group and let p : G — GL(V)
be a representation in a finite dimensional real vector space V.

According to a classical theorem of Hilbert (as extended by Nagata [15], [16]), the
algebra of G-invariant polynomials R[V]% on V is finitely generated (in fact finitely
presented), so there are G-invariant homogeneous polynomials fi,..., fr, on V such
that each invariant polynomial h € R[V]¢ is of the form h = q(fi,..., fm) for a
polynomial ¢ € R[R™]. Let f = (f1,..., fm) : V — R™; then this means that the
pullback homomorphism f* : R[R™] — R[V]¢ is surjective.

D. Luna proved in [14] that the pullback homomorphism f* : C*°(R™,R) —
C*(V,R) is also surjective onto the space of all smooth functions on V which are
constant on the fibers of f. Note that the polynomial mapping f in this case may
not separate the G-orbits.

G. Schwarz proved already in [23] that if G is a compact Lie group, then the
pullback homomorphism f* : C*°(R™,R) — C*(V,R)¢ is actually surjective onto
the space of G-invariant smooth functions. This result implies in particular that f
separates the G-orbits. '

3.2. Lemma. Let £ € V* be a linear functional on a finite dimensional vector
space V, and let f € C°(V,R) be a smooth function which vanishes on the kernel
of £, so that f|£~1(0) = 0. Then there is a unique smooth function g such that
f=Llg

Proof. Choose coordinates z?,...,z™ on V with £ = z'. Then f(0,22,...,2") =0
and we have f(z!,...,z") = fol O1f(txt,z?,... ,z™)dt.2! = g(xt,...,2").2t. O

3.3. Lemma. Let W be a finite reflection group acting on a finite dimensional
vector space ¥. Let f = (f1,...,fn) : & — R™ be the polynomial map whose
components f1,..., fn are a minimal set of homogeneous generators of the algebra
R[ZWY of W -invariant polynomials on X. Then the pullback homomorphism f* :
QP(R™) — QP(X) is surjective onto the space QP(X)W of W-invariant differential
forms on X.
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For polynomial differential forms and more general reflection groups this is the
main theorem of Solomon [25]. We adapt his proof to our needs.

Proof. The polynomial generators f; form a set of algebraically independent poly-

nomials, n = dimX, and their degrees di,...,d, are uniquely determined up to
order. We even have (see [12]):
(1) dy...d, =|W|, the order of W.

(2) di+---+d,=n+ N, where N is the number of reflections in W.

Let us consider the mapping f = (f1,...,fs) : & — R" and its Jacobian J(z) =
det(df(z)). Let z!,...,z" be coordinate functions in ¥. Then for each 0 € W we
have

Jdz' Ao Adz™ = dfy A Adfy = o (dfy A AdSy)

= (Joo)o*(dz' A+ Adz™) = (Joo)det(o)(dz! A--- Adz™),

(3) Joo =det(c™1)J.
The generators fi,..., f, are algebraically independent over R, thus J # 0. Since
J is a polynomial of degree (dy —1)+---+ (d, —1) = N (see (2)), the W-invariant
set U =X\ J~1(0) is open and dense in ¥; by the inverse function theorem f is a
local diffeomorphism on U, thus the 1-forms dfy,...,df, are a coframe on U.

Now let (0a)a=1,...n be the set of reflections in W, with reflection hyperplanes
H,. Let {, € ¥* be linear functionals with H, = ¢71(0). If 2 € H, we have
J(z) = det(oq)J(0q.z) = —J(z), so that J|H, = 0 for each «, and by Lemma 3.2
we have
(4) J=c.€1...€N.

Since J is a polynomial of degree N, ¢ must be a constant. Repeating the last
argument for an arbitrary function g and using (4), we get:
(5) If g € C*°(%, R) satisfies goo = det(c~1)g for each

o € W, we have g = J.h for h € C*°(Z,R)V.

After these preparations we turn to the assertion of the lemma. Let w € QP(X)W.
Since the 1-forms df; form a coframe on U, we have

WU=">" g 5 df|lUA-Ndfy,[U
J1<-<Jp
for g;,...j, € C°°(U,R). Since w and all df; are W-invariant, we may replace 91
by their averages over W, or assume without loss that g;,.;, € C(U,R)W.

Let us choose now a form index i, < -+ < 4, with {ip4; < -+ < i} =
{1,...,n}\ {#1 <--- < ip}. Then for some sign ¢ = +1 we have

wlUNdfi, oy Ao Ndfs, = €.y, dft Ao Ndfy, = €.gi, 5, Jdz' A+ Ada™,

(6) wAdfi, , N Ndfi, = ek, i dgt A Ada”
for a function k;,. ;, € C*°(%,R). Thus '
(7) kiy..ip)lU = giy..i,-J|U.

Since w and each df; is W-invariant, from (6) we get ki,..i,00 = det(a‘l)kil,,,ip
for each 0 € W. But then by (5) we have k;,..;, = w;,.;,.J for unique Wiy..ip €
C>(X,R)Y, and (7) then implies Wiy ..ip|U = giy...i,, S0 that the lemma follows
since U is dense. O
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3.4. Question. Let p: G — GL(V) be a representation of a compact Lie group in
a finite dimensional vector space V.. Let f = (f1,..., fm): V — R™ be the polyno-
mial mapping whose components f; are a minimal set of homogeneous generators
for the algebra R[V]Y of invariant polynomials.

We consider the pullback homomorphism f* : QP(R™) — QP(V). Is it surjective

onto the space (V) of G-invariant horizontal smooth p-forms on V 2
hor

The proof of Theorem 3.7 below will show that the answer is yes for polar
representations of compact Lie groups if the corresponding generalized Weyl group
is a reflection group.

In general the answer is no. A counterexample is the following: Let the cyclic
group Z, = Z/nZ of order n, viewed as the group of n-th roots of unity, act on
C = R? by complex multiplication. A generating system of polynomials consists of
f1 = 2%, f2 = Re(z"), f3 = Im(2"). But then each df; vanishes at 0 and there is
no chance to have the horizontal invariant volume form dz A dy in f*Q(R3).

3.5. Polar representations. Let G be a compact Lie group and let p : G —
GL(V) be an orthogonal representation in a finite dimensional real vector space V
which admits a section ¥. Then the section turns out to be a linear subspace and
the representation is called a polar representation, following Dadok [10], who gave
a complete classification of all polar representations of connected Lie groups. They
were called variationally complete representations by Conlon [9] before.

3.6. Theorem (Terng [28], Theorem D or [19], 4.12). Let p : G — GL(V) be
a polar representation of a compact Lie group G, with section ¥ and generalized
Weyl group W = W (X). Then the algebra R[V|® of G-invariant polynomials on V
is isomorphic to the algebra R[Z]W of W-invariant polynomials on the section %,
via the restriction mapping f — f|Z.

3.7. Theorem. Let p: G — GL(V) be a polar representation of a compact Lie
group G, with section ¥ and generalized Weyl group W = W(X). Let us suppose
that W = W(X) is generated by reflections (a reflection group or Cozeter group).
Then the pullback to ¥ of differential forms induces an isomorphism

QP

hor

(V)¢ = ar(5)" e,

According to Dadok [10], remark after Proposition 6, for any polar representation
of a connected compact Lie group the generalized Weyl group W (%) is a reflection
group. This theorem is true for polynomial differential forms, and also for real
analytic differential forms, by essentially the same proof.

Proof. Let i : ¥ — V be the embedding. By the first part of the proof of Theorem
2.4 the pullback mapping i* : OF_ (V)¢ — QP (Z)W is injective, and we shall show
that it is also surjective. Let fi,..., f, be a minimal set of homogeneous generators
of the algebra R[Z]" of W-invariant polynomials on ¥. Then by Lemma 3.3 each

w € QP(Z)W is of the form

w = Z wj1~~-jpdfj1 /\"'/\dfjp,

J1<--<Jp

where wj,. j, € C®°(Z,R)". By Theorem 3.6 the algebra R[V]“ of G-invariant
polynomials on V is isomorphic to the algebra R[] of W-invariant polynomials on
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the section %, via the restriction mapping * . Choose polynomials fi, . . fn e R[V]¢
with f; 04 = f; for all i. Put f = (fl, .. ,fn) : V — R™. Then we use the theorem
"of G. Schwarz (see 3. 1) to find hs,,..;, € C®°(R™,R) with hs, .5, 0 f = wiy .4,

and consider o N
o=y (hju.goNdfi A Adfy,,
J1<<Jp

which is in QF_ (V)¢ and satisfies i*@ = w. a

hor

Sketch of another proof avoiding 3.8 (suggested by a referee). Let R = C® (V)% =
C>®(2)" and let Q% be its module of Kahler p-forms (see Kunz [13] for the notion
of Kihler forms). Also let S = R[V]¢ = R[Z]" (using 3.6). Then the canonical
mapping Qf, — QP(Z)W is surjective. This follows for the canonical mapping from
Q% into the space of forms with polynomial coefficients from the result of Solomon
[25] by using 3.6 again as in the proof of 3.7; and it can be extended to smooth
coeflicients by Theorem 1.4 of Ronga [22], which says that equivariant stability
and infinitesimal equivariant stability are equivalent, in a way which is similar to
the argument of Proposition 6.8 of Schwarz [24]. So we see that the composition
QF — QP (V)¢ — QP(T)W is surjective, thus also the right hand side mapping has
to be surjective. a

3.8. Corollary. Let p: G — O(V,{ , )) be an orthogonal polar representation
of a compact Lie group G, with section ¥ and generalized Weyl group W = W (Z).
Let us suppose that W = W (X) is generated by reflections (a reflection group or
Cozxeter group). Let B C 'V be an open ball centered at 0.
Then the restriction of differential forms induces an isomorphism
B (B = (TN BV,

Proof. Check the proof of 3.7 or use the following argument. Suppose that B =
{v €V :|v] <1} and consider a smooth diffeomorphism f : [0,1) — [0, 00) with
f(t) =t near 0. Then g(v) := Hv I’ i Ly is a G-equivariant diffeomorphism B — V'
and by 3.7 we get:

QP

hor

( )G (g )* Qp

hor

e SaE)"® L arenpV®, 0O

4. PROOF OF THE MAIN THEOREM

Let us assume that we are in the situation of the main theorem 2.4, for the rest
of this section.

4.1. For z € M let S, be a (normal) slice and G, the isotropy group, which acts
on the slice. Then G.S, is open in M and G-equivariantly diffeomorphic to the
associated bundle G — G/G; via

G xSy —— Gxg, S —— G.S,

! I

G/G, —— Gux
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where r is the projection of a tubular neighborhood. Since ¢ : G X Sz — G X¢g_ Sy
is a principal G,-bundle with principal right action (g,s).h = (gh, h='.s), we have
an isomorphism

¢ : QUG xg, Sz) = Qa,—hor (G x Sz)%=.

Since q is also G-equivariant for the left G-actions, the isomorphism ¢* maps the
subalgebra QF (G.S;)¢ = QO (G xg, Sz)¢ of Q(G xg, Sz) to the subalgebra
g, 1o (S2)Ce of Qg —hor (G x Sz)%=. So we have proved:

Lemma. In this situation there is a canonical isomorphism
G
B (G.S)" = ng

which is given by pullback along the embedding S, — G.Sy.

4.2. Rest of the proof of Theorem 2.4. Now let us consider w € QP(X)W (),
We want to construct a form & € QF (M)Y with ¢*@ = w. This will finish the
proof of Theorem 2.4.

Choose z € ¥ and an open ball B, with center 0 in 7;, M such that the Riemann-
ian exponential mapping exp,, : T, M — M is a diffeomorphism on B,. We consider
now the compact isotropy group G5 and the slice representation p, : Gz — O(V),
where V,, = Nor,(G.z) = (T(G.z))* C T,;M is the normal space to the orbit. This
is a polar representation with section T3, and its generalized Weyl group is given
by W(T,X) & Ng(X) NGz /Za(E) = W(E), (see [19]); it is a Coxeter group by
assumption (1) in 2.4. Then exp, : By NV, — Sy is a diffeomorphism onto a slice
and exp, : B, NTy¥ — ¥; C ¥ is a diffeomorphism onto an open neighborhood
Y of x in the section X.

Let us now consider the pullback (exp|B, N T,X)*w € QP(B, N T, X)W T=2),
By Corollary 3.8 there exists a unique form ¢* € Q%I—hor(Bz N V)% such that
i*p® = (exp|By N T, X)*w, where i, is the embedding. Then we have

((exp|Be NVo)™h) % 0™ € Q% _y0.(S2) %"

and by Lemma 4.1 this form corresponds uniquely to a differential form w® €
QF (G.S;)C which satisfies (i|Z;)*w® = w|Z;, since the exponential mapping com-
mutes with the respective restriction mappings. Now the intersection G.S, N X is
the disjoint union of all the open sets w;(X;) where we pick one w; in each left
coset of the subgroup W(X), in W(X). If we choose g; € Ng(X) projecting on w;
for all j, then

(6|w; (Ba))*w™ = (b, 04|z 0 wj)*w® = (w) )" (i]Da) "€, w"

= (w]—l)*(llzz)*wm = (’w]_l)*(W|Ez) = wle(Ew),

so that (1|G.S; N X)*w® = w|G.S; N E. We can do this for each point z € X.
Using the method of Palais ([18], proof of 4.3.1) we may find a sequence of
points (Zn)nen in X such that the 7(X;,) form a locally finite open cover of the
orbit space M/G & /W (Z), and a smooth partition of unity f, consisting of
G-invariant functions with supp(f,) C G.Sy,,. Then @ 1= Y, faw®* € QF__(M)C
has the required property i*@w = w. O
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5. BASIC VERSUS EQUIVARIANT COHOMOLOGY

5.1. Basic cohomology. For a Lie group G and a smooth G-manifold M, by 2.2
we may consider the basic cohomology H%_, . (M) = HP(Q; (M), d).

The best known application of basic cohomology is the case of a compact con-
nected Lie group G acting on itself by left translations; see e.g. [11] and papers cited
therein: By homotopy invariance and integration we get H(G) = Hg_pasic(G) =
H(A(g*)), and the latter space turns out as the space A(g*)? of ad(g)-invariant
forms, using the inversion. This is the theorem of Chevalley and Eilenberg. More-
over, A(g*)® = A(P), where P is the graded subspace of primitive elements, using
the Weil map and transgression, whose determination in all concrete cases by Borel
and Hirzebruch is a beautiful part of modern mathematics.

In more general cases the determination of basic cohomology was more difficult.
A replacement for it is equivariant cohomology, which comes in two guises:

5.2. Equivariant cohomology, Borel model. For a topological group and a
topological G-space the equivariant cohomology was defined as follows; see [3]:
Let EG — BG be the classifying G-bundle, and consider the associated bundle
EG xg M with standard fiber the G-space M. Then the equivariant cohomology
is given by HP(EG xg M;R).

5.3. Equivariant cohomology, Cartan model. For a Lie group G and a smooth
G-manifold M we consider the space

(S*g* @ QP (M))“

of all homogeneous polynomial mappings « : g — QP(M) of degree k from the Lie
algebra g of G to the space of p-forms, which are G-equivariant: a(Ad(g7)X) =
l;a(X) for all g € G. The mapping

dg + AL(M) — AG (M),

ALM) = @ (S*g" ® QP(M))C,
2k+p=q
(dga)(X) := d(a(X)) —icxa(X)

satisfies dg o dy = 0 and the following result holds.

Theorem. Let G be a compact connected Lie group and let M be a smooth G-
manifold. Then
HP(EG xg M;R) = HP(AL(M), dy).

This result is stated in [1] together with some arguments, and it is attributed to
[5], [6] in chapter 7 of [2]. I was unable to find a satisfactory published proof.

5.4. Let M be a smooth G-manifold. Then the obvious embedding j(w) = 1 @ w

gives a mapping of graded differential algebras

g Qﬁor(M)G = (Sog* (X)Qp(M))G N @(Skg* ®QP»2k(M))G — A%(M)
k
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On the other hand evaluation at 0 € g defines a homomorphism of graded differen-
tial algebras evq : A% (M) — Q*(M)%, and evqoj is the embedding O (M)¢ —

Q*(M)C. Thus we get canonical homomorphisms in cohomology

HP (O, (M)C) —L— HP(AL(M),dy) —— HP(Q*(M)C, d)

Hg—basic(M) - HzC)v'(M) - HP(M)G

If G is compact and connected we have HP(M)® = HP(M), by integration and
homotopy invariance.
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