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ABSTRACT

In research works where fuzzy sets are involved, in particular, in fuzzy topology, fuzzy algebra, mostly certain
usual functions are taken as morphisms: they can be mappings between corresponding sets, or between the
fuzzy powersets of these sets, etc. On the other hand there are only few papers where attempts to fuzzify the
concept of a function are undertaken. The aim of our work is to present a possible approach to this problem.
Namely, a certain class of L-relations (i.e. mappings f : X × Y → L) is distinguished which can be viewed as
(L-)fuzzy functions from a set X to a set Y . As the result we obtain a fuzzy category [3] LFST (see Definition
below).
Let L = (L,≤,∧,∨, ∗) be an infinitely distributive GL-monoid (cf. [1]), and let 7−→ be the corresponding
residuation (i.e. α ∗ β ≤ γ ⇐⇒ α ≤ β 7−→ γ).
Definition By L− FSET (L) we denote the category whose objects are triples (X,E,A) where (X,E) is an
L-valued set and A is its strict extensional L-subset [1] and whose morphisms, called (potential) fuzzy
functions, from (X,EX , A) to (Y,EY , B) are L-mappings F : X × Y → L such that ∀x, x′ ∈ X;∀y, y′ ∈ Y the
following four properties hold:
(0ff) F (x, y) ≤ EX(x, x) ∧ EY (y, y);
(1ff) supxA(x) ∗

(
EX(x, x) 7−→ F (x, y)

)
≤ B(y);

(2ff) F (x, y) ∗
(
EY (y, y) 7−→ EY (y, y′)

)
≤ F (x, y′)

(3ff) EX(x, x′) ∗
(
EX(x, x) 7−→ F (x, y)

)
≤ F (x′, y);

(4ff) F (x, y) ∗
(
EX(x, x) 7−→ F (x, y′)

)
≤ EY (y, y′).

Given a fuzzy function F : (X,EX , A)→ (Y,EY , B) let µ(F ) = infx supy F (x, y).
For two fuzzy functions F : (X,EX , A)→ (Y,EY , B) and G : (Y,EY , B)→ (Z,EZ , C) the composition
G ◦ F : (X,EX , A)→ (Z,EZ , C) is defined by the formula
(G ◦ F )(x, z) =

∨
y∈Y

((
F (x, y) ∗

(
EY (y, y)→ G(y, z))

)
. A direct verification shows that G ◦ F is a fuzzy

function and that µ(G ◦ F ) ≥ µ(G) ∗ µ(F ). Further, given an L-valued set (X,E) let
ω(X,E) := µ(E) = infxE(x, x). Thus a fuzzy category [3] (L− FSET (L), ω, µ) is obtained.
We study images and preimages of L-sets under fuzzy functions; introduce properties of injectivity and
surjectivity for them, etc. Lastly some fuzzy categories related to topology and algebra and having certain
fuzzy functions in the role of morphisms are itroduced and their properties are studied.

References
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