Section 02: Algebra. Number Theory

On the metric theory of diophantine approximation in the field of p-adic numbers

Ella Kovalevskaya, Institute of National Academy of Sciences of Belarus.

ABSTRACT_

We will deal with Diophantine approximation of *p*-adic numbers. The metric theorem of Khintchine [1] is generalized. K. Mahler (1934) first investigated similar problem in \mathbf{Z}_p .

Let $p \ge 2$ be a prime number, \mathbf{Q}_p be the field of *p*-adic numbers with the Haar measure, \mathbf{Z}_p be the ring of *p*-adic integers, $|\ldots|_p$ be the *p*-adic valuation. Let $n \in \mathbf{N}$, $n \ge 2$, $\Psi(n) : \mathbf{N} \to \mathbf{R}^+$ be monotonic and $S_1(\Psi)$ be the set of $x \in \mathbf{Q}_p$ such that the inequality $|F(x)|_p < h^{-n}\Psi(h)$ holds for infinitely many $F \in \mathbf{Z}[x]$, degF = n, where h = h(F) is the height of F.

Theorem 1. (E.Kovalevskaya, 1998) If $\sum_{h=1}^{\infty} \Psi(h) < \infty$ then the set $S_1(\Psi)$ has zero Haar measure.

The following theorem is about Diophantine approximation of general planar curves in $\mathbf{Z}_p \times \mathbf{Z}_p$. Let $f: \mathbf{Z}_p \to \mathbf{Z}_p, f(x) = \sum_{n=1}^{\infty} c_n (x-c)^n$ be a normal function such that $f''(x) \neq 0$ almost everywhere on \mathbf{Z}_p . Let $G(x) = b_0 + b_1 x + b_2 f(x)$, where $b_i \in \mathbf{Z}$ $(i = 0, 1, 2), H = \max |b_i| \neq 0$, and let $S_2(\Psi)$ be the set of $x \in \mathbf{Z}_p$ such that the inequality $|G(x)|_p < H^{-2}\Psi(H)$ holds for infinitely many G.

Theorem 2. (V.Beresnevich and E.Kovalevskaya, 1999) The set $S_2(\Psi)$ has full or zero Haar measure according as the series $\sum_{H=1}^{\infty} \Psi(H)$ diverges or converges.

We develop the methods of V. Sprindzuk (1963) and Yu. Melnichuk (1981).

Reference

[1] A.Khintchine, Einige Sätze über Kettenbrüche mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann. **92** (1924), 115-125.

Keywords: Diophatine approximation, Khintchne's theorem, p-adic numbers, Haar measure

Mathematics Subject Classification: 11J13, 11L61

Contact Address: kovalevsk@im.bas-net.by