Section (12.	Alachro	Number	Theory
Section U)Z: P	Algebra.	Number	Ineory

Poster number 342

On the restricted Waring problem for polynomial cubes

Luis Gallardo, Université de Bretagne Occidentale, Département de Mathématiques, 6, Avenue le Gorgeu, M.P. 809, 29285 Brest Cedex, France.

ABSTRACT_

The Waring problem for polynomial cubes over a finite field F of characteristic p, consists of finding the minimal integer $m \ge 0$, such that every sum of cubes in F[t] is a sum of m cubes. It is known that for F distinct from $F_2, F_4, F_7, F_{13}, F_{16}$, each polynomial in F[t] is a sum of three cubes of polynomials. (See [4]).

If a polynomial $P \in F[t]$ is a sum of n cubes of polynomials in F[t], such that each cube A^3 appearing in the decomposition has degree $\langle \deg(P) + 3 \rangle$, we say that P is a restricted sum of n cubes.

The restricted Waring problem for polynomial cubes consists of finding the minimal integer $m \ge 0$, such that each sum of cubes S in F[t] is a restricted sum of m cubes.

We denote this integer m by rw(p, F).

In 1993 M.Car and J. Cherly proved that for all q even every polynomial $P \in F_q[t]$ of sufficiently high degree is a restricted sum of at most 11 cubes, by using the circle method. (See [1]).

Recently, (See [2]), we improved this result using elementary methods to $rw(2, F_q) \leq 9$ for q even, $q \notin \{2, 4, 16\}$, and $rw(2, F_{16}) \leq 10$.

In common work with M.Car, (See [3]) we improved the above results and extended them to odd q as follows: One has $rw(p, F_q) \leq 7$ for $q \notin \{2, 4, 16, 7, 13\}$, $rw(7, F_7) \leq 9$, $rw(13, F_{13}) \leq 9$, $rw(2, F_{16}) \leq 8$.

We are working with M.Car on a new idea for reducing the above bounds.

References

- [1] M. Car and J. Cherly, Sommes de cubes dans l'anneau $F_{2^h}[X]$, Acta Arith. 65, Number 3, 227–241, 1993.
- [2] L. Gallardo, On the restricted Waring problem over $F_{2^n}[t]$. To appear in Acta Arith. 2000.
- [3] M. Car and L. Gallardo, Sums of cubes in $F_q[T]$. Preprint.
- [4] L. N. Vaserstein, Sums of cubes in Polynomial Rings, Math. of Comp. Vol. 56, Number 193, January 1991, pp. 349–357.

Keywords: Waring problem, Finite Fields, Polynomials

Mathematics Subject Classification: 11T55

Contact Address: Luis.Gallardo@univ-brest.fr