3rd European Congress of Mathematics

Poster sessions

Generalized reflection groups

François Zara, UPJV Fac de Math-Info, Amiens, France.

Abstract

Let (G, X) be a pair consisting of a group G and a generating set X of G. I suppose that X is a finite set and that the product of two elements of X is finite. Let K be a commutative ring and let M be a $K[G]$-module. In this work I try to answer the following question: Is it possible to find a K-algebra L such that M is a $L[G]$-module and such that the elements of X act as reflections of M (which means here that $[M, x]$ is generated by one element)? For groups G generated by reflections, for each reflection x of $G,[M, x]$ is a one dimensional vector space so it is easy to see that we have the following two properties: - Let x and y be two distinct commuting reflections, then $[M, x] \subset C_{M}(y)$; - Let x and y be two non commuting reflections, then the map $\sigma_{x y}:[M, x] \rightarrow[M, y]: u \longmapsto-u+y(u)$ is a bijection.

I take these two properties as axioms: Let (G, X) have the same meanning as above. Let K be a commutative ring and let M be a $K[G]$-module. We introduce the following two axioms: (Axiom 1) If $x, y \in X, x y=y x * 1$, then $[M, x] \subset C_{M}(y)$; (Axiom 2) If $x, y \in X,[x, y] * 1$, then the map $\sigma_{x y}:[M, x] \rightarrow[M, y]: u \longmapsto-u+y(u)$ is a bijection. We say then that (G, X) is a generalized reflection group on M. If the axioms 1 and 2 are satisfied, I show that there exists a K-algebra L wcich acts canonically on each [$M, x], x \in X$. With two tecnichal further conditions, I can show that M becomes an $L[G]$-module. Now I suppose that each x in X is of order 2 so two distinct elements of X generated a dihedral group. I study the representations of dihedral groups as generalized reflection groups which permit me to construct the algebra L obtained in abstract form by generators and relations. I then have to choose a representation of M which a cyclic L-module so that each x in X acts on M as a reflection. I finish by giving some examples.

Keywords: groups; reflection groups
Mathematics Subject Classification: 20
Contact Address: famzara@micronet.fr

