Algebraic curves defined over a finite field with many rational points
 Gabor Korchmaros*, Università della Basilicata, Italy.
 Fernando Torres, Universidade Estadual de Campinas, Brazil.

Abstract

In the current study of algebraic geometry in positive characteristic there is a growing interest to (projective, geometrically irreducible, non-singular algebraic) curves which are defined over a finite field \mathbf{F} and have many F-rational points. Such curves, especially F-maximal curves, play indeed a very important role in Coding theory, and some further motivation for their investigation also comes from Number Theory and Finite Geometry. Here, maximality of a curve means that the number of its F-rational points attains the Hasse-Weil upper bound (for $\mathbf{F}=\mathbf{F}_{q^{2}}$ a finite field of square order). A well-known $\mathbf{F}_{q^{2}}$-maximal curve is the Hermitian curve \mathcal{H} of equation $X_{0}^{q+1}+X_{1}^{q+1}+X_{2}^{q+1}=0$. By a result of Lachaud, any non-singular curve $\mathbf{F}_{q^{2}}$-covered by the Hermitian curve is also maximal. Lachaud's result pointed out two fundamental (and still open) problems, namely the classification problem of maximal curves covered by \mathcal{H}, and the existence problem of maximal curves which cannot be obtained in this way. [1] provides a complete classification of Galois $\mathbf{F}_{q^{2}}$-coverings of \mathcal{H} of prime degree which together with current work by M.Abdon, A.Cossidente, R.Fuhrmann, A.Garcia, G.van der Geer, J.W.P.Hirschfeld, H.Stichtenoth, C.P.Xing plays a role in the study of maximal curves with large genera. Another recent result [2] is a characterization of maximal curves as the only curves having a $\mathbf{F}_{q^{2}}$-birational model \mathcal{Y} embedded in a projective space $P^{M}\left(\overline{\mathbf{F}}_{q^{2}}\right)$ such that \mathcal{Y} lies on the Hermitian variety $X_{0}^{q+1}+\ldots+X_{M}^{q+1}=0$ of $P^{M}\left(\overline{\mathbf{F}}_{q^{2}}\right)$. This result for $M=3$ seems to be an essential tool to the classification project of $\mathbf{F}_{q^{2}}$-maximal curves \mathcal{X} such that $\operatorname{dim}|(q+1) P|=3$ for $P \in \mathcal{X}\left(\mathbf{F}_{q^{2}}\right)$.

\section*{References} [1] A. Cossidente, G. Korchmaros and F. Torres, On curves of large genus covered by the Hermitian curve, Communication in Algebra, to appear. [2] G. Korchmaros, F. Torres, Embedding of a maximal curve in a Hermitian variety, preprint, alg-geo/99-11-043

Keywords: Algebraic curve, finite field, rational point, coding theory
Mathematics Subject Classification: 11G20
Contact Address: korchmaros@unibas.it

