Section	03:	Algebraic	and	Analytic	Geometry

Poster number 346

Algebraic curves defined over a finite field with many rational points

Gabor Korchmaros*, Università della Basilicata, Italy. Fernando Torres, Universidade Estadual de Campinas, Brazil.

ABSTRACT_

In the current study of algebraic geometry in positive characteristic there is a growing interest to (projective, geometrically irreducible, non-singular algebraic) curves which are defined over a finite field \mathbf{F} and have many \mathbf{F} -rational points. Such curves, especially \mathbf{F} -maximal curves, play indeed a very important role in Coding theory, and some further motivation for their investigation also comes from Number Theory and Finite Geometry. Here, maximality of a curve means that the number of its \mathbf{F} -rational points attains the Hasse-Weil upper bound (for $\mathbf{F} = \mathbf{F}_{q^2}$ a finite field of square order). A well-known \mathbf{F}_{q^2} -maximal curve is the Hermitian curve \mathcal{H} of equation $X_0^{q+1} + X_1^{q+1} + X_2^{q+1} = 0$. By a result of Lachaud, any non-singular curve \mathbf{F}_{q^2} -covered by the Hermitian curve is also maximal. Lachaud's result pointed out two fundamental (and still open) problems, namely the classification problem of maximal curves covered by \mathcal{H} , and the existence problem of maximal curves which cannot be obtained in this way. [1] provides a complete classification of Galois \mathbf{F}_{q^2} -coverings of \mathcal{H} of prime degree which together with current work by M.Abdon, A.Cossidente, R.Fuhrmann, A.Garcia, G.van der Geer, J.W.P.Hirschfeld, H.Stichtenoth, C.P.Xing plays a role in the study of maximal curves with large genera. Another recent result [2] is a characterization of maximal curves as the only curves having a \mathbf{F}_{q^2} -birational model \mathcal{Y} embedded in a projective space $P^M(\overline{\mathbf{F}}_{q^2})$ such that \mathcal{Y} lies on the Hermitian variety $X_0^{q+1} + \ldots + X_M^{q+1} = 0$ of $P^M(\overline{\mathbf{F}}_{q^2})$. This result for M = 3 seems to be an essential tool to the classification project of \mathbf{F}_{q^2} -maximal curves \mathcal{X} such that dim |(q+1)P| = 3 for $P \in \mathcal{X}(\mathbf{F}_{q^2})$.

References

[1] A. Cossidente, G. Korchmaros and F. Torres, *On curves of large genus covered by the Hermitian curve*, Communication in Algebra, to appear.

[2] G. Korchmaros, F. Torres, *Embedding of a maximal curve in a Hermitian variety*, preprint, alg-geo/99-11-043

Keywords: Algebraic curve, finite field, rational point, coding theory

Mathematics Subject Classification: 11G20

Contact Address: korchmaros@unibas.it