Section 03: Algebraic and Analytic Geometry

Irregular subsets of the Grassmannian manifolds and symplectic geometry

Mark A. Pankov, National University of Ukraine "Kievan Polytechnical Institute".

ABSTRACT_

Denote by \mathbb{G}_k^n the Grassmannian manifold of k-dimensional planes in the Euclidean space \mathbb{R}^n . A set $R \subset \mathbb{G}_k^n$ is called *regular* if there exists a coordinate system for \mathbb{R}^n such that any plane belonging to R is a coordinate plane for this system; in other words there exists n linearly independent lines such that any plane belonging to R is generated by k lines from this collection. Any coordinate system for \mathbb{R}^n contains $c_k^n = \frac{n!}{k!(n-k)!}$ distinct k-dimensional coordinate planes. This implies that any regular subset of \mathbb{G}_k^n contains not greater than c_k^n elements.

We say that a regular set $R \subset \mathbb{G}_k^n$ is *maximal* if any regular subset of \mathbb{G}_k^n containing R coincides with R. It is not difficult to see that a regular subset of \mathbb{G}_k^n is maximal if and only if it contains c_k^n elements.]

A set $V \subset \mathbb{G}_k^n$ is called *irregular* if it is not regular and does not contain maximal regular sets.

Irregular subsets of the Grassmannian manifolds were studied in the author's papers [1, 2]. Now we consider one class of irregular subsets of \mathbb{G}_k^n . There is a natural one-to-one correspondence between elements of this class and symplectic structures on \mathbb{R}^n .

References

- [1] Pankov M. A. Irregular subsets of the Grassmannian manifold \mathbb{G}_k^n and projections of k-dimensional subsets of \mathbb{R}^n onto k-dimensional planes. Topology and Its Applications (101) 2, p.121–135, 2000.
- [2] Pankov M. A. Irregular subsets of the Grassmannian manifolds. e-print math.AT/9910081.

Keywords: irregular set, Grassmannian manifold

Mathematics Subject Classification: 51M35, 53D05

Contact Address: pankov@imath.kiev.ua