Section 05: Topology

A categorical description of shape through a sequence of critical points

Francesca Cagliari*, Dipartimento di Matematica, Università di Bologna, Italia. Massimo Ferri, Dipartimento di Matematica, Università di Bologna, Italia. Michele Mulazzani, Dipartimento di Matematica, Università di Bologna, Italia.

ABSTRACT_

The poster introduces a functor as a new shape descriptor. This is a categorical evolution of size functions, descriptors already applied in several pattern recognition areas [1]. The leading ideas are: 1) "shape" is not just an object, but also the behaviour of some (continuous real) functions on it; 2) shape comparison is best performed if the "story" of the functions — at the various levels — is condensed in a formal, comparable construction. For size functions, the construction reflected the ranks of the images of the H_0 -homology morphisms induced by inclusion [2]. Here a much wider setting is proposed, through extensive use of Morse theory.

Let **Morse** denote the subcategory of **Diff**/**R** whose objects are pairs (M, f) where M is a compact, connected manifold, and f is a Morse function on M, injective on the set of critical points, and whose morphisms are maps g between manifolds, commuting with the respecting Morse functions. Let **ES** be the category of exact sequences of abelian groups.

We define a functor $S: \operatorname{Morse} \to \operatorname{Funct}(\operatorname{Rord}, \operatorname{ES})$. Given a Morse function f on a manifold M, for each $x \in \operatorname{\mathbf{R}}$ let $x_0, x_1 \in \operatorname{\mathbf{R}}$ be the two critical values of f such that $x_0 < x_1 \leq x$, and there are no other critical values in the interval $[x_0, x_1]$. It is well-known that both M_x and M_{x_1} have the homotopy type of the attachment space of M_{x_0} with a λ -cell, where λ is the index of the critical value are treated aside) the Mayer–Vietoris sequence corresponding to the attachment space just described. On a morphism g its value is the induced homology morphism H(g).

The functor S portraits the development of the manifold through its critical points; moreover, it keeps explicitly into account the topology of the various M_x . This is what we consider to be essential for studying the "shape" of (M, f). The presentation of each $H_k(M_x)$ can be reconstructed through the sequence of critical values, by applying the Mayer–Vietoris theorem to each cell attachment. Each critical point contributes with either a generator or a relator [3].

We envisage, as a development, the definition of distances between images S((M, f)) in order to allow classifications, queries and other Pattern Recognition tasks.

References

- P. Frosini, Connections between size functions and critical points, Math. Meth. Appl. Sci., 19 (1996), 555–569.
- [2] F. Cagliari, M. Ferri, P. Pozzi, Size functions from a categorical viewpoint preprint
- [3] M. Schwarz, "Morse Homology", Progress in mathematics; Vol III, Birkhäuser, 1993.

Keywords: Morse function, homology functor, size function

Mathematics Subject Classification: 57R70, 68T10

Contact Address: ferri@dm.unibo.it