3rd European Congress of Mathematics

Poster sessions

On the Kontsevich integral

S.D. Tyurina, Pedagogical Institute of Kolomna, Russia.

ABSTRACT
The Kontsevich integral was constructed in 1992 but just in 1997 D.Bar-Natan obtained explicit formula for the trivial knot. To find analogus formula for an arbitrary knot is an open problem. We discuss a formula for computing degree 2 and 3 terms of the Kontsevich integral for arbitrary knots.
Let K be an oriented knot and $K_{m}^{s i n g}$ be a singular knot with m double points. By definition Vassiliev's degree n invariant V_{n} is invariant vanishing on $K_{m}^{\text {sing }}$ for $\forall m>n$. We denote by \mathcal{D}_{n} a linear vector space over \mathbf{Q} generated by chord diagrams (on the circle) with n chords. A linear vector function $W_{n}: \mathcal{D}_{n} \rightarrow \mathbf{Q}$ is called a weight degree n system if it is satisfied 1- and 4 -term relations.

We consider generic planar projection of a knot with marked "base point". Any crossing x of such projection we're equipped with two "coordinates": $\delta_{x} \in\{0,1\}$ and $\varepsilon_{x} \in\{ \pm 1\}$, where ε_{x} is a local writh number, and δ_{x} is defined by the ordering of passing of over- and undercrossings (start at the "base point").

The Kontsevich integral $Z(K)$ is a series of chord diagrams with numerical coefficients. Finit degree invariant V_{n} is determined by W_{n} of these chord diagrams. The universal Vassiliev knot invariant is defined as the following modified Kontsevich integral: $I(K)=\frac{Z(K)}{Z(\cup)^{c(K) / 2}}$, where \cup is the trivial knot, $c(K)$ is a number of critical points of K.

Proposition. Formula for computing of the universal Vassiliev invariant modulo 4-degree terms for an arbitrary knot K is the following:

$$
\begin{aligned}
& I(K)=1+\frac{1}{2}\left[\sum_{\{x, y\}}(-1)^{\delta_{x}+\delta_{y}} W_{2}(\{x, y\}) \varepsilon_{x} \varepsilon_{y}\left[\delta_{x}\left(1-\delta_{y}\right)+\delta_{y}\left(1-\delta_{x}\right)\right]-\frac{1}{12}\right] \bigotimes+ \\
& \frac{1}{4}\left[\sum_{\{x, y, z\}}(-1)^{\delta_{x}+\delta_{y}+\delta_{z}} W_{3}(\{x, y, z\}) \varepsilon_{x} \varepsilon_{y} \varepsilon_{z}\left[\delta_{x}\left(1-\delta_{y}\right) \delta_{z}-\left(1-\delta_{x}\right) \delta_{y}\left(1-\delta_{z}\right)\right]\right] 囚,
\end{aligned}
$$

where sums are taken over all pairs (resp. triplets) of double points of the knot projection.

Keywords: knot, Vassiliev's invariants, chord diagram, weight system, Kontsevich integral
Mathematics Subject Classification: 57M25
Contact Address: tyurina@mccme.ru

