3rd European Congress of Mathematics

Poster sessions

Invariants of Hyperelliptic Curves of Genus 2 over Finite Fields

L. Hernández Encinas*, Dpto. de Matemáticas, Universidad de Salamanca.
J. Muñoz Masqué, Instituto de Física Aplicada, C.S.I.C., Madrid, Spain.

ABSTRACT

Let \mathbb{F} be a finite field. As it is well-known ([3]), every hyperelliptic curve H of genus 2 defined over \mathbb{F} can be given by an equation of the form $H: v^{2}+h(u) v=f(u)$, where $h(u)$ is a polynomial of degree 2 , and $f(u)$ is a monic polynomial of degree 5 , i.e.,

$$
\begin{equation*}
H: v^{2}+\left(a_{1} u^{2}+a_{3} u+a_{5}\right) v=u^{5}+a_{2} u^{4}+a_{4} u^{3}+a_{6} u^{2}+a_{8} u+a_{10}, \quad \forall a_{i} \in \mathbb{F} . \tag{1}
\end{equation*}
$$

This equation is unique up to a change of coordinates of the form ([1, Proposition 1.2]):

$$
\begin{equation*}
(u, v) \mapsto\left(\alpha^{2} u+\gamma, \alpha^{5} v+\alpha^{4} \epsilon u^{2}+\alpha^{2} \beta u+\delta\right), \quad \alpha \in \mathbb{F}^{*}, \quad \beta, \gamma, \delta, \epsilon \in \mathbb{F} \tag{2}
\end{equation*}
$$

In order to classify non-singular hyperelliptic curves of genus 2 in a similar way as elliptic curves are classified ([4, III.§1], [2, 2.3]), we define some quantities, which only depend on the original coefficients of the curve, called the j-invariants. In this poster these quantities are proved to be invariants and they are computed explicitly in $\operatorname{char}(\mathbb{F}) \neq 2,5$. Setting in 2 :

$$
\begin{aligned}
& \alpha=1 / 10, \quad \beta=-a_{3} / 2+a_{1} a_{2} / 5+a_{1}^{3} / 20, \quad \gamma=-a_{2} / 5-a_{1}^{2} / 20, \\
& \delta=-a_{5} / 2+a_{3} a_{2} / 10+a_{3} a_{1}^{2} / 40-a_{1} a_{2}^{2} / 50-a_{2} a_{1}^{3} / 100-a_{1}^{5} / 800, \quad \epsilon=-a_{1} / 2,
\end{aligned}
$$

we obtain the reduced equation for H :

$$
v^{2}=u^{5}+2 \cdot 5^{3} c_{4} u^{3}+2^{2} \cdot 5^{4} c_{6} u^{2}+5^{3} c_{8} u+2^{2} \cdot 5^{5} c_{10}
$$

Let Δ be the discriminant of the non-hyperelliptic curve, H ([1]), then its j-invariants are:

$$
j_{1}=c_{4}^{10} / \Delta, \quad j_{2}=c_{8}^{5} / \Delta, \quad j_{3}=c_{10}^{4} / \Delta, \quad j_{4}=c_{6}^{20} / \Delta^{3}
$$

Theorem The quantities $j_{i}, 1 \leq i \leq 4$, are invariants under the change of coordinates of type 2 .

References

[1] P. Lockhart, On the discriminant of a hyperelliptic curve, T. Am. Math. Soc. 342, 2 (1994), 729-752.
[2] A. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Publishers, Boston, 1993.
[3] N. Koblitz, Algebraic aspects of Cryptography, ACM 3, Springer-Verlag, New York, 1998.
[4] J. Silverman, The arithmetic of elliptic curves, GTM 106, Springer-Verlag, New York, 1986.

Keywords: Hyperelliptic curves, Invariants of curves, Genus of a curve, Finite fields, Cryptology.
Mathematics Subject Classification: 11G20, 11G30, 14H45, $94 A 60$
Contact Address: encinas@gugu.usal.es

