3rd European Congress of Mathematics

Poster sessions

Section 06: Discrete Mathematics and Computer Science
Poster number 378

Symmetric block designs $(71,15,3)$ admitting an automorphism of order 6
Vladimir Ćepulić*, Fakultet elektrotehnike i računalstva, Unska 3,HR-10000 Zagreb, Croatia.
Sanja Rukavina, Filozofski fakultet, Omladinska 14, HR 51000-Rijeka, Croatia.

ABSTRACT

We proved the following
THEOREM. There are, up to isomorphism, 146 symmetric block designs ($71,15,3$) admitting an automorphism of order 6 . Among them 68 pairs are dual. The full automorphism groups of these designs are isomorphic to $S_{3} \times E_{4}, A_{4} \times Z_{2}, E_{4} \times A_{4}, E_{8} \cdot F_{21},\left(E_{8} \cdot F_{21}\right) \times Z_{2}$.

Designs $(71,15,3)$ are the greatest known designs with parameters $(v, k, 3)$. The obtained results include all the 11 previously known (71, 15, 3)-designs (see [2],[3]).

For a (v, k, λ)-design $\mathcal{D}=(\mathcal{P}, \mathcal{B}, I)$ with point set \mathcal{P}, line set \mathcal{B} and incidence I, denote by $\langle x\rangle$ the set of points incident with line x, and by $\langle P\rangle$ the set of lines incident with point P. Let G be an automorphism group of \mathcal{D}, and $\mathcal{B}_{i}, \mathcal{P}_{r}, 1 \leq i, r \leq t$ the G-orbits of lines and points, respectively. For $x \in \mathcal{B}_{i}, P \in \mathcal{P}_{r}$ the cardinalities $\gamma_{i r}=\left|\langle x\rangle \cap \mathcal{P}_{r}\right|, \Gamma_{i r}=\left|\langle P\rangle \cap \mathcal{B}_{i}\right|$ do not depend on the choice of x and P. They satisfy some important relations, essential for the construction of designs (see [1]).

Our construction was carried out in three steps:

1) Construction of orbital structures, $t \times t$-matrices $\left(\gamma_{i r}\right)$, for \mathcal{D} with respect to the assumed automorphism ρ.
2) Partial indexing of orbital structures with respect to the factor group $\langle\rho\rangle /\left\langle\rho^{3}\right\rangle$, that is, constructing new orbital structures with respect to $\left\langle\rho^{3}\right\rangle$, taking account of the action of $\langle\rho\rangle$ on the $\left\langle\rho^{3}\right\rangle$-orbits.
3) Final indexing of partially indexed structures - construction of design incidence matrices.

References

1. V. ĆEPULIĆ, The unique symmetric block design $(61,16,4)$ admitting an automorphism of order 15 operating standardly, Discrete Mathematics 175 (1997), 259-263.
2. M. GARAPIĆ, Triplanes for $(71,15,3)$ admitting a solvable group of order 168 acting non-semistandardly, Glasnik Matematički 29 No. 1 (1994), 17-24.
3. W.H. HAEMERS, Eigenvalue Techniques in Design and Graph Theory, Mathematisch Centrum, Amsterdam, 1980.

Keywords: symmetric block design, automorphism, orbital structure, indexing
Mathematics Subject Classification: 05B05
Contact Address: vladimir.cepulic@fer.hr

