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The nonexistence theorems for solutions of capillary problem in the absence of gravity.

A. A. Kosmodem’yanskii, Dept. Comp. Math., Moscow.

ABSTRACT

Let D0 and D1 (D0 ⊂ D1) be plane convex figures. Denote by Ai and pi the area and the perimeter of figure
Di (i = 0, 1).

In the absence of gravity, the equation of liquid free surface takes the form

div Tu =
p1 cos γ
A1

, (1)

in domain D1 with boundary condition

(Tu, n) = cos γ, (Tu = ∇u/
√

1 + |∇u|2), (2)

where n is the outward normal and 0 ≤ γ ≤ π/2.

If γ = 0 the important condition of the existence of solution for this problem in the domain D1 is the following
: let D0 be an arbitrary subdomain of D1 then if the solution of the problem (1) – (2) exists then inequality

A1

p1
>
A0

p0
(3)

holds ([1]). Using the notion of mixed square ([2] we can reformulate this result as sufficient condition of
nonexistence of solution for problem (1) – (2). Let A01 be a mixed square of domains D0 and D1.

Theorem 1. Let there exists a convex subdomain D0 of domain D1 such that the inequality

(p0 + p1)A1 < 2A01p1.

holds. Then if γ = 0 then a solution of (1) – (2) does not exist.

Using theorem 1 we obtain

Theorem 2. Let we can inscribe into D1 the disk of radius

r >
p1A1

p2
1 − 2πA1

.

Then the problem (1) – (2) has no solutions for any contact angle γ satisfying the inequality

cos γ >
A1

rp1

(
1 +

√
4π(p1r − πr2 −A1)

p2
1 − 4πA1

)
.
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