3rd European Congress of Mathematics

Poster sessions

Integral geometry problems for matrices and reconstruction problems for operators in a vector bundle

Vertgeim Lev Borisovich, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences.

ABSTRACT

I. 1. $D \subset R^{2}, \Gamma=\partial D, \Gamma \in C^{1}$. $x=\xi(l), y=\eta(l), l \in[0, L]-\quad$ natural parametrization of Γ. $K-$ a regular family of curves in $\bar{D} . P \in C^{1}\left(\bar{\Omega}, M_{n n}\right), Q \in C^{1}\left(\bar{\Omega}, M_{m m}\right), \Omega=D \times[0, L]$.
Problem 1. Determine $U \in C^{1}\left(\bar{D}, M_{n m}\right)$ by the known

$$
\int_{K\left(l_{1}, l_{2}\right)} P\left(x, y, l_{1}\right) U(x, y) Q\left(x, y, l_{1}\right) d s=V\left(l_{1}, l_{2}\right), l_{1}, l_{2} \in[0, L]
$$

Theorem 1. If $\operatorname{det} P, \operatorname{det} Q \neq 0$ everywhere and $P_{l} P^{-1}, Q^{-1} Q_{l}-$ sufficiently small, then the problem 1 has no more than one solution and

$$
\iint_{D} \sum_{i j} u_{i j}^{2}(x, y) d x d y \leq C \int_{0}^{L} \int_{0}^{L} \operatorname{tr}\left(\frac{\partial V^{t}}{\partial l_{1}} \frac{\partial V}{\partial l_{2}}\right) d l_{1} d l_{2}
$$

A similar scalar problem was solved in [1].
2. $A \in C^{2}\left(\bar{D}, M_{n n}\right) . x=x(t), y=y(t) ; x(0)=\xi\left(l_{1}\right), y(0)=\eta\left(l_{1}\right)$ - a natural parametrization of a curve from K with the length $T\left(l_{1}, l_{2}\right)$.

$$
\frac{d U}{d t}=A(x(t), y(t)) U, U(0)=E . F\left(l_{1}, l_{2}\right)=U\left(T\left(l_{1}, l_{2}\right)\right)
$$

Problem 2. Determine A in \bar{D} by the known F on $[0, L] \times[0, L]$.
Let $A \in M=M\left(M_{1}, M_{2}, M_{3}\right) \subset C^{2}\left(\bar{D}, M_{n n}\right)$ (defined by some upper estimates for A and ∇A).
Theorem 2. If M_{j} are sufficiently small, then the problem 2 has in M no more than one solution and for $A_{1}, A_{2} \in M$ and corresponding F_{1}, F_{2}

$$
\iint_{D} \sum_{i j}\left(a_{1, i j}-a_{2, i j}\right)^{2} d x d y \leq \tilde{C} \int_{0}^{L} \int_{0}^{L} \operatorname{tr}\left(\frac{\partial R^{t}}{\partial l_{1}} \frac{\partial R}{\partial l_{2}}\right) d l_{1} d l_{2}, \quad R=F_{1}^{-1} F_{2}-E
$$

II. $(M, \partial M, \tilde{g})$ — Riemannian manifold; (η, g) - Hermitian vector bundle over $M . A(x), P(x, \xi), Q(x, \xi)$ linear operators, acting in the fibers $\eta_{x}, x \in M,(x, \xi) \in T M$. An integral transform of A along geodesics with the weights P, Q is defined, a uniqueness and stability theorem is proven for the corresponding integral geometry problem. A nonlinear problem for A along geodesics has been studied. Some methods of [2] has been used.

References

1. Mukhometov R. G. Soviet Math. Dokl. 18 (1977), p. 27-31.
2. Sharafutdinov V. A. Journal of Inverse and Ill-Posed Problems, 8 (2000), N 1, p. 57-94.
3. Vertgeim L. B. Soviet Math. Dokl. 44 (1992), N 1, p. 132-135.
4. Vertgeim L. B. Prepr. N 64 (1999), Sobolev Institute of Mathematics, Siberian Branch of Russian Acad. of Sciences. Novosibirsk (in Russian).

Keywords: integral geometry, matrix, vector bundle
Mathematics Subject Classification: 35R30, 53C65
Contact Address: vert@math.nsc.ru

