Section 10: Functional Analysis

Solvability Of Some Operator-Differential Equations In Complex Plane And Related To It Some Spectral Properties

A. M. Akhmedov, Baku State University, Baku, Azerbaijan.

ABSTRACT_

1. Consider the next problem

$$\frac{dU}{dz} = \sum_{i,j=0}^{\infty} A_{ij} U^i z^j,\tag{1}$$

$$U(0) = 0,$$
 (2)

where U is a desired linear bounded operator, acting in Banach space $X, A_{ij} : X \to X$ are given linear operators, provided that

 $\sum_{i,j=0}^{\infty} \|A_{i,j}\| a^i b^j \leq M < \infty$, where a, M = const, z- complex variable, $|z| \leq b, b = const$, $\sup_{|z| \leq b} \|U(z)\| \leq a$. Investigation of such problems in scalar case began from the works by Cauchy, Painlevé, Riccati and others (for detail, see f.e.[1]). Generalization of these results to the infinite dimensional case presents interest. The solution of the problem (1), (2) is sought in the form

 $U(z) = \sum_{k=0}^{\infty} B_k z^k$ in some domain |z| < r, where $U(z) \in L(X)$ and L(X) is a Banach algebra of linear bounded operators acting in X.

Theorem: The problem (1), (2) has unique holomorf solution in the domain $|z| < r_1$, where $r_1 = b_1 \left(1 - \exp\left(-\frac{a_1}{2b_1M}\right)\right)$, r_1 , a_1 and b_1 are constants such that $r_1 < r$, $a_1 < a$, $b_1 < b$.

2. Now consider the next spectral problem:

$$z\frac{dU}{dz} - zA_{10} - z^2A_{20} - zA_{11}U - A_{02}U^2 - \dots = \lambda U$$
(3)

$$U\left(0\right) = 0\tag{4}$$

in the space L(X). Here λ is a complex parameter, and $A_{ij} \in L(X)$. Assume that the series in (3) converges absolutely in the sence of X in some neighbourhood of the point z = 0, |z| < r, and $\sup_{|z| < r} ||U(z)|| < R$,

R = const.

Such problems, in scalar case, were investigated by Briot and Bonquet [1]. In spite of that, their results were interesting, they didn't take into consideration the spectral questions related to this problem.

Theorem: All of natural numbers are eigenvalues of the problem (3), (4). Otherwise, there is a unique holomorf solution of this problem for every $\lambda = n$ (n = 1, 2, ...).

Remark: It would be noted that, in the equation (3) the coefficient $A_{01} = 0$. The case $A_{01} \neq 0$ requires more deep analysis. The linear operator-differential equations in complex domain were investigated by E.Hille, M.G.Kreyn, U.L.Daletski, A.M.Akhmedov, and others [2].

Keywords: operator, Banach space, Method of limits, holomorf solution, eigenvalue

Mathematics Subject Classification: 47E05

Contact Address: gasimov@azdata.net

Poster number 531