Section 13: Real Analysis

Boundedness and compactness weighted criteria for the operators with positive kernels

Alexander Meskhi, A. Razmadze Mathematical Institute.

ABSTRACT_

Necessary and sufficient conditions for weight v defined on $R_a^+ \equiv (0, a) \times (0, \infty)$, $0 < a \le \infty$, guaranteeing the boundedness (compactness) of the operator

$$Kf(x,t) = \int_0^x k(x,y,t)f(y)dy, \ (x,t) \in R_a^+, \ k \ge 0,$$

from $L^p(0, a)$ into $L^q_v(R^+_a)$ are found, where $0 < p, q < \infty$ and p > 1. The non-compactness measure of K is also estimated.

Analogous problems for the generalized Riemann-Liouville operator

$$T_{\alpha}f(x,t) = \int_{0}^{x} f(y)(x-y+t)^{\alpha-1} dy, \ x \in (0,\infty), \alpha > 1/p,$$

were solved in [4]. For the classical Riemann-Liouville operator $R_{\alpha}f(x) \equiv T_{\alpha}f(x,0)$ see [3].

The boundedness weighted criteria from L_w^p to L_v^q , $1 , for the oparator with positive kernel were derived in [1], Chapter 3 (For <math>0 < q \le p < \infty$, p > 1 and $w \equiv 1$ see [2]).

References

1. I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, *Pitman Monographs and Surveys in Pure and Applied Mathematics* 92, *Longman, Harlow*, 1998.

2. V. Kokilashvili and A. Meskhi, Boundedness and compactness criteria for some classical operators. *Proc. Int. Conf. "Function Spaces V" (Poznan; August* 28 – *September* 3, 1998) *Marcel Dekker Publ.* (accepted for publication).

3. A.Meskhi, Solution of some weight problems for the Riemann-Liouville and Weyl operators. *Georgian Math. J.* **5** (1998), No. 6, 265–274.

4. A. Meskhi, Boundedness and compactness criteria for the generalized Riemann-Liouville operator. *Proc. A. Razmadze Math. Inst.* **121** (1999), 161–162.

Keywords: Integral operator with positive kernel, boundedness, compactness, weight

Mathematics Subject Classification: 42B20, 46E40

Contact Address: meskhi@rmi.acnet.ge