Section 13: Real Analysis

On Darboux property for vector-valued functions

Mikhail V. Korobkov, Sobolev Institute of Mathematics.

ABSTRACT_

In the talk we extend a result of [1].

Definition. Suppose that X is a Banach space. A set $V \subset X$ will be called *b*-weakly connected if it cannot be

represented as the union $V = \bigcup_{t \in T} V_t$ of a family of sets V_t so that $V_t \neq V$ and $V_t \cap cl\left(\bigcup_{s \in T, s \neq t} co V_s\right) = \emptyset$ for each $t \in T$.

each $t \in T$.

Here cl E is the closure of a set E and co E is the convex hull of E.

We denote by X^* the dual space of X.

Theorem. Suppose that X is a reflexive Banach space and $f : \Delta \to \mathbb{R}^m$ is a Frechet differentiable mapping of a domain (i.e. open connected set) $\Delta \subset X$ into \mathbb{R}^m , $m \ge 1$. Then the image $f'(\Delta)$ of the derivative of f is a b-weakly connected set in X^{*^m} .

Reference

1. Korobkov M. V. On One Generalization of the Darboux Theorem to the Multidimensional Case, Sib. Math. J. Vol. 41, No. 1, 2000, 100–112.

Keywords: Darboux property, vector-valued functions, Banach space

Mathematics Subject Classification: 26B05

Contact Address: korob@math.nsc.ru