On the relative fundamental solutions for a second order differential operator on the Heisenberg group

Tomás Godoy, Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba (Argentina). Linda Saal*, Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba (Argentina).

Abstract

Let H_{n} be the $2 n+1$ dimensional Heisenberg group, viewed as $C^{n} \times R$, let p, q be two non negative integers satisfying $p+q=n$. Let $L=\sum_{j=1}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)$, where $\left\{X_{1}, Y_{1}, \ldots X_{n}, Y_{n}, T\right\}$ denotes a suitable standard basis of the Lie algebra of H_{n} adapted to the action of $U(p, q)$ on H_{n} given by $g(z, t)=(g z, t), g \in U(p, q),(z, t) \in C^{n} \times R$. A tempered distribution $\Phi \in S^{\prime}\left(H_{n}\right)$ is called a relative fundamental solution for L if $L(f * \Phi)=L(f) * \Phi=f-\pi(f)$ for all $f \in S\left(H_{n}\right)$ where π is the orthogonal projection on $K=\operatorname{Ker}(L)$. In [M-R1] and in [M-R2] it is proved that there exist relative fundamental solutions for a wide class of second order differential operators that includes L. There, it is given also an explicit formula for L in the case $p=q=1$. In this work we compute explicitly a such Φ for arbitrary p, q. The main tool used are a spectral decomposition on $L^{2}\left(H_{n}\right)$ associated to L and $i T$ obtained in [G-S], and the description of $S^{\prime}\left(R^{2 n}\right)^{O(p, q)}$ given in [T], adapted to describe $S^{\prime}\left(C^{n}\right)^{U(p, q)}$. In [T], is introduced the space h of the functions $\varphi(\tau)=\varphi_{1}(\tau)+\tau^{n-1} H(\tau) \varphi_{2}(\tau)$ with $\varphi_{1}, \varphi_{2} \in S(R)$, where H is the Heaviside function. h, provided with a suitable topology is a Frechet space. A very specific operator $N: S\left(C^{n}\right) \rightarrow h$ is introduced there, whose adjoint $N^{\prime}: h^{\prime} \rightarrow S^{\prime}\left(C^{n}\right)^{U(p, q)}$ is an isomorphism.

For $z=\left(z_{1}, \ldots, z_{n}\right) \in C^{n}$, let $B(z)=\sum_{j=1}^{p} z_{j}^{2}-\sum_{j=p+1}^{n} z_{j}^{2}$. For $f \in S\left(H_{n}\right)$ and $\tau, t \in R$, let $N f(\tau, t)=N(f(., t))(\tau)$. In this setting, we prove that a relative fundamental solution Φ for L is given by $\langle\Phi, f\rangle=c \int_{R^{2}} \frac{s g(\tau)}{\left(\tau^{2}+16 t^{2}\right)^{n / 2}}\left(N f(\tau, t)-\sum_{j=0}^{n-2} \frac{\partial^{j}(N f)}{\partial \tau^{j}}(0, t) \tau^{j}\right) d \tau d t+\sum_{j=0}^{n-2} c_{j}\left\langle T_{j}, f\right\rangle$

Here, c is the constant obtained by Folland for the case $p=n, q=0$. The distributions T_{j}, supported on $\left\{(z, t) \in C^{n} \times R: B(z)=0, t=0\right\}$, and the constants c_{j} are explicitly computed.

References

[G-S] Godoy, T., Saal, L.: L^{2} spectral decomposition on the Heisenberg group associated to the action of $U(p, q)$. Pacific J. of Math., Vol 193, No. 2, 327-353 (2000).
[M-R1] Muller, D., Ricci, F. Analysis of second order differential operators on Heisenberg groups I, Invent. Math. 101, 545-582 (1990).
[M-R2] Muller, D., Ricci, F. Analysis of second order differential operators on Heisenberg groups II, J. Funct. Anal. Vol 108, No 2, 296-346, September 1992.
[T] Tengstrand, A. Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand., 8, 201-218 (1960).

Keywords: Heisenberg group, Relative fundamental solutions, Heisenberg Laplacian
Mathematics Subject Classification: $43 A 80$
Contact Address: godoy@mate.uncor.edu

