3rd European Congress of Mathematics

Poster sessions

On the approximation of the functions by algebraic polynomials

V. P. Motornyi, Dnepropetrovsk State University, Ukraine.
O. V. Motornaya*, Dnepropetrovsk State University, Ukraine.

ABSTRACT

For any $r>0$ and $p=1$ or $p=\infty$, we consider the class W_{p}^{r} of functions $f(x)$ represented in the form $f(x)=\frac{1}{\Gamma(r)} \int_{-1}^{x}(x-t)^{r-1} \phi(t) d t+P_{m}(x)$, where $\Gamma(r)$ is the Euler gamma function, $\|\phi\|_{1} \leq 1$, if $p=1$, and $|\phi(t)| \leq 1$ almost everywhere if $p=\infty, P_{m}(x)$ is an algebraic polynomial of degree $m \leq[r]-1$.

Set

$$
S_{\rho}(f)(x)=\frac{1}{\pi} \int_{-1}^{1} \frac{f(t)}{t-x} \rho(t) d t
$$

where integrals is considered in the sense of the principal value and $\rho(t)$ is the nonnegative integrable functions. The following statements hold.

Theorem 1. For any $r>0$ and any function $f \in W_{\infty}^{r}$ there exists sequence of the algebraic polynomials $\left\{P_{n}(x)\right\}, \quad n=[r]+1,[r]+2, \ldots$, such that

$$
\left|S_{\rho}(f)(x)-P_{n}(x)\right| \leq \frac{\tilde{K}_{r}}{n^{r}}\left(\sqrt{1-x^{2}}\right)^{r+1}+O\left(\frac{\ln n}{n^{r+1}}\left(\sqrt{1-x^{2}}+1 / n\right)^{r}\right)
$$

where $\rho(t)=\sqrt{1-t^{2}}$ and \tilde{K}_{r} is the best approximation by a constant in L_{1} to the functions

$$
\widetilde{D}_{r}(t)=\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(k t-\frac{r \pi}{2}\right)}{k^{r}}
$$

Theorem 2. For any $r \in N$ and any $f \in W_{1}^{r}$ there exists the algebraic polynomial $P_{n}(x)$ of degree $n \geq r-2$ such that

$$
\left\|S_{\rho}(f)-P_{n}(x)\right\|_{1}<\frac{\tilde{K}_{r}(n-r+1)!}{(n+1)!}
$$

where $\rho(t)=1 / \sqrt{1-t^{2}}$.
The asymptotically exact inequalities for the pointwise and L_{1}-approximation of the functions $S_{\rho}(f)$ by polynomials are obtained and for other cases.
Let $W^{r} H^{\omega}, \quad r=1,2, \ldots$, be a class of functions on $[-1,1]$ for which the r-th derivative satisfys the condition: $\left|f^{(r)}\left(x_{1}\right)-f^{(r)}\left(x_{2}\right)\right| \leq \omega\left(\left|x_{1}-x_{2}\right|\right), x_{1}, x_{2} \in[-1,1]$, where $\omega(t)$ is given modulus of continuity.
Theorem 3. Let $\omega(t)$ be a convex modulus of continuity such that $t \omega^{\prime}(t)$ is nondecreasing function. Then, for any $f \in W^{r} H^{\omega}$ there exists sequence of the algebraic polynomials $\left\{Q_{n}^{r}(f ; x)\right\}, n=r, r+1, \ldots$, such that

$$
\left|f(x)-Q_{n}^{r}(f ; x)\right| \leq \frac{K_{r}}{2}\left(\frac{\sqrt{1-x^{2}}}{n}\right)^{r} \omega\left(\frac{2 K_{r+1}}{K_{r} n} \sqrt{1-x^{2}}\right)+C_{r} \frac{\Delta_{n}^{r-1}(x) \omega\left(\Delta_{n}(x)\right) \ln n}{n^{r+1}}
$$

where K_{r} are the Favard constants and $\Delta_{n}(x)=\frac{\sqrt{1-x^{2}}}{n}+\frac{1}{n^{2}}$.

Keywords: function, polynomial, class, approximation, integral
Mathematics Subject Classification: 26, 41
Contact Address: mmf@ff.dsu.dp.ua

