Section 13: Real Analysis

On the approximation of the functions by algebraic polynomials

- V. P. Motornyi, Dnepropetrovsk State University, Ukraine.
- O. V. Motornaya*, Dnepropetrovsk State University, Ukraine.

ABSTRACT_

For any r > 0 and p = 1 or $p = \infty$, we consider the class W_p^r of functions f(x) represented in the form $f(x) = \frac{1}{\Gamma(r)} \int_{-1}^x (x-t)^{r-1} \phi(t) dt + P_m(x)$, where $\Gamma(r)$ is the Euler gamma function, $\|\phi\|_1 \le 1$, if p = 1, and $|\phi(t)| \le 1$ almost everywhere if $p = \infty$, $P_m(x)$ is an algebraic polynomial of degree $m \le [r] - 1$. Set

$$S_{\rho}(f)(x) = \frac{1}{\pi} \int_{-1}^{1} \frac{f(t)}{t-x} \rho(t) \ dt,$$

where integrals is considered in the sense of the principal value and $\rho(t)$ is the nonnegative integrable functions. The following statements hold.

Theorem 1. For any r > 0 and any function $f \in W_{\infty}^r$ there exists sequence of the algebraic polynomials $\{P_n(x)\}, n = [r] + 1, [r] + 2, ...,$ such that

$$|S_{\rho}(f)(x) - P_n(x)| \le \frac{\tilde{K}_r}{n^r} (\sqrt{1 - x^2})^{r+1} + O\left(\frac{\ln n}{n^{r+1}} (\sqrt{1 - x^2} + 1/n)^r\right)$$

where $\rho(t) = \sqrt{1-t^2}$ and \tilde{K}_r is the best approximation by a constant in L_1 to the functions

$$\widetilde{D}_r(t) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin(kt - \frac{r\pi}{2})}{k^r}$$

Theorem 2. For any $r \in N$ and any $f \in W_1^r$ there exists the algebraic polynomial $P_n(x)$ of degree $n \ge r-2$ such that

$$||S_{\rho}(f) - P_n(x)||_1 < \frac{K_r(n-r+1)!}{(n+1)!}$$

where $\rho(t) = 1/\sqrt{1-t^2}$.

The asymptotically exact inequalities for the pointwise and L_1 -approximation of the functions $S_{\rho}(f)$ by polynomials are obtained and for other cases.

Let $W^r H^{\omega}$, r = 1, 2, ..., be a class of functions on [-1,1] for which the r-th derivative satisfys the condition: $|f^{(r)}(x_1) - f^{(r)}(x_2)| \le \omega(|x_1 - x_2|), x_1, x_2 \in [-1, 1]$, where $\omega(t)$ is given modulus of continuity.

Theorem 3. Let $\omega(t)$ be a convex modulus of continuity such that $t\omega'(t)$ is nondecreasing function. Then, for any $f \in W^r H^{\omega}$ there exists sequence of the algebraic polynomials $\{Q_n^r(f;x)\}, n = r, r+1, ...,$ such that

$$|f(x) - Q_n^r(f;x)| \le \frac{K_r}{2} (\frac{\sqrt{1-x^2}}{n})^r \omega \left(\frac{2K_{r+1}}{K_r n}\sqrt{1-x^2}\right) + C_r \frac{\Delta_n^{r-1}(x)\omega(\Delta_n(x))\ln n}{n^{r+1}},$$

where K_r are the Favard constants and $\Delta_n(x) = \frac{\sqrt{1-x^2}}{n} + \frac{1}{n^2}$.

Keywords: function, polynomial, class, approximation, integral

Mathematics Subject Classification: 26, 41

Contact Address: mmf@ff.dsu.dp.ua