Section	14.	Mathematical	Physics

Global existence and uniqueness of solutions for the equations of third grade fluids

Valentina Busuioc*, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 175 rue Chevaleret, 75252 Paris, France

Email: busuioc@ann.jussieu.fr.

Dragoș Iftimie, IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France Email: iftimie@maths.univ-rennes1.fr.

ABSTRACT_

The motion of third grade fluids is modeled by the following equation:

 $\partial_t (u - \alpha_1 \Delta u) - \nu \Delta u + u \cdot \nabla u - \alpha_1 \operatorname{div}(u \cdot \nabla A + L^t A + AL)$ $- \alpha_2 \operatorname{div} A^2 - \beta \operatorname{div}(|A|^2 A) = f - \nabla p, \quad \operatorname{div} u = 0, \quad (1)$

where $L = (\partial_j u_i)_{i,j}$, $A = (\partial_i u_j + \partial_j u_i)_{i,j}$ and the material coefficients ν , α_1 , α_2 and β must satisfy the conditions

$$\nu \ge 0, \quad \alpha_1 > 0, \quad \beta \ge 0 \text{ and } |\alpha_1 + \alpha_2| \le (24\nu\beta)^{1/2}.$$

If $\beta = 0$, we obtain the equation of second grade fluids which is studied by many authors. We therefore assume that $\beta \neq 0$. The mathematical results available in the literature consider these equations in a domain of \mathbb{R}^2 or \mathbb{R}^3 and show local existence and uniqueness of solutions for arbitrary size of initial data, or global existence and uniqueness if $\nu > 0$ and if the initial data is small compared with the viscosity ν . The regularity of the initial data needed in order to obtain these results is at least H^3 or $W^{2,r}$, r > 3.

Here, we prove that global solutions exist without any smallness assumption and with less regularity requirements as before. We also prove the uniqueness of such bidimensional solutions. More precisely,

Theorem. Consider equation (1) in \mathbb{R}^n , n = 2, 3, with $f \in L^{\infty}_{loc}([0, \infty); L^2)$ and $u_0 \in H^2$, div $u_0 = 0$. There exists a global solution $u \in C_w([0, \infty); H^2) \cap C([0, \infty); H^s)$ for all s < 2. Moreover, if n = 2 then this solution is unique.

The starting point of the proof is the remark that the term $-\beta \operatorname{div}(|A|^2 A)$ is more "regularizing" then the viscosity one. Making H^2 energy estimates, we prove that this term has the good sign and can be used to cancel all other "bad terms". We obtain in this way global H^2 solutions. As for the uniqueness of the bidimensional H^2 solutions, we first cancel some of the "bad terms" with the same idea as in the H^2 energy estimates. Next, we remark that the remaining terms may be "controlled" by using H^s norms of the solutions with s > 2 instead of s = 2. We conclude by using a kind of limiting process.

Keywords: non-newtonian fluids, third grade fluids, global existence and uniqueness

Mathematics Subject Classification: 35Q35, 76D03, 76B03

Contact Address: busuioc@ann.jussieu.fr