3rd European Congress of Mathematics

Poster sessions

Analytical solution of one magnetohydrodynamic problem for cylindrical region

Maximilian Antimirov*, Riga Technical University.
Elena Ligere, Riga Technical University.

Abstract

The round channel is located in the region $0 \leq \tilde{r} \leq R, \quad-\infty<\tilde{z}<+\infty$. There is the split on the part of channel's lateral surface $\tilde{r}=R,-L \leq \tilde{z} \leq L$. The conducting fluid with constant velocity flow into the channel through this split. External magnetic field $\vec{B}^{e}=B_{0} \vec{e}_{z}$ is parallel to the channel's axis. For the velocity's proection on $r-$ axis in Stokes and inductionless approximation we obtain the biharmonic equation $$
\begin{equation*} \left[L^{2}+2 \frac{\partial^{2}}{\partial z^{2}} L+\frac{\partial^{2}}{\partial z^{2}}\left(\frac{\partial^{2}}{\partial z^{2}}-H a^{2}\right)\right] V_{r}=0 \tag{1} \end{equation*}
$$

where

$$
\begin{equation*}
L=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}} \tag{2}
\end{equation*}
$$

The boundary conditions are:

$$
\begin{gather*}
r=1, \quad z \in(-L, L): V_{r}=-1 ; z \notin(-L, L), V_{r}=0, \tag{3}\\
r=1, \quad-\infty<z<\infty: \frac{\partial}{\partial r}\left(r V_{r}\right)=0 . \tag{4}
\end{gather*}
$$

The solution of the problem is obtained in form of integrals from the modified Bessel functions of the first kind. The asymptotic representation of the solution at Hartmann number $H a \rightarrow \infty$ is obtaned. At $H a=0$ the problem (1), (3), (4) coincide with the problem from theory of elasticity for the function of stress in infinite cylinder (see [1], $\S 144$).

References

[1] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGrow-Hill, N.Y., 1970.

Keywords: biharmonic equation, Hartmann number, function of stress
Mathematics Subject Classification: 76
Contact Address: antimir@egle.cs.rtu.lv

