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PREFACE

Every International Congress on Mathematics Education (ICME) is
structured around a “scientific program,” but mathematics education is not
a science of the same character as mathematics or most of the other sci-
ences. The definition of our field is fuzzier, it overlaps a number of other
domains, and its achievements are less likely to achieve consensus. Fur-
thermore, mathematics education is an applied science and its practices vary
considerably with the social, economic, and cultural environments in which
it takes place. An international meeting on mathematics education must there-
fore provide opportunities not only for the dissemination of what is currently
known about the major problems, advances, and trends in the field world-
wide, but also for interaction, and possibly confrontation, among participants
whose views of the purposes and methods of mathematics education are
radically different.

The sequence of quadrennial ICME’s has increasingly emphasized the
intrinsic importance for mathematics educators of face-to-face debate and
discussion. The ICME programs have increasingly incorporated these ac-
tivities within the scientific sessions, not leaving them to the corridors and
cafeterias. For example, the programs for the more recent congresses have
included a substantial number of working groups whose mandate requires
the leaders to encourage and facilitate the exchange of views among partic-
ipants.

Past ICME programs, other than the first, have tended to downplay
the role of the traditional lecture. This is perhaps not surprising since the
inefficacy of the traditional lecture as a teaching method is one of the few
items of education lore that has almost acquired the status of a consensual
truth. The program for ICME-6, in 1988, offered only four plenary lectures
during the week; and, although a large number of smaller presentations, or
mini-lectures, took place within the groups, the feedback from that Con-
gress suggested that the marginalization of the lecture had gone too far. The
International Program Committee for ICME-7, therefore, decided to sched-
ule about 40 lectures in one-hour slots in addition to the plenary lectures
and the mini-lecture presentations to groups. Invitations were issued—some
specifying the lecture topic, others leaving the topic open—to a selection of
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the best theoreticians, researchers, and practitioners in the field around the
world. Forty-two lectures were eventually included in the ICME-7 program.

Twenty-seven of those lectures are represented in this volume. In a
few cases the speaker did not want the lecture published here; in a few
others, the editors decided that the treatment of the topic was not suitable
for this publication. The papers that remain sample the very best work in
the field of mathematics education today.

The sample is, however, heavily biased. The lectures were only one
component in the ICME-7 program. It is clear that they do not by them-
selves cover the field of mathematics education, nor do they combine to
give a complete picture of the ICME-7 program as a whole. Readers should
consult the ICME—-7 Proceedings to obtain a more comprehensive view of
the overall state of mathematics education internationally. There they will
see that the lecture topics complement the topics treated in the other pro-
gram strands: the plenary lectures, the Working Groups, the Topic Groups,
the reports of ongoing work by the official Study Groups of the Internation-
al Commission on Mathematical Instruction (ICMI), the reports of the ICMI
Studies, the miniconference on calculators and computers, and so on. Here,
however, in detail, are the records of some fine talks, well worth the time of
any mathematics educator to read and reflect upon.

The editors acknowledge the contribution of a number of people to the
preparation of this volume. Considerable gratitude is owed the authors of
the selected papers who met their deadlines and patiently negotiated the
cuts and other modifications we asked them to make. The main work of
keyboarding the final texts, preparing the artwork, and copy editing the
papers was carried out at the University of British Columbia under the
direction of Stuart Donn and with the assistance of Sue Bryant, Cynthia
Nicol, Sandra Crespo, Sandra Robinson, and Susan Dawson. The complete
text was formatted and converted to camera-ready form by Thérése Gadbois,
Editions I'Ardoise, Québec. Claude Gaulin and Bernard Hodgson supervised
the final stages of the preparation of this volume and coordinated them with
the production of the ICME-7 Proceedings. Jacques Chouinard and Suzanne
Allaire saw the publication through its final production stages by Les Presses
de 1'Université Laval. We thank all of the above most warmly.

David F. Robitaille
David H. Wheeler
Carolyn Kieran

December 1993



PREFACE

Chaque Congres international sur l'enseignement des mathématiques
(ICME) se construit autour d'un « programme scientifique » — quoique la
didactique des mathématiques ne soit pas une science de méme nature que
les mathématiques ou la plupart des autres sciences. Sa définition est plus
floue, elle chevauche plusieurs autres domaines et ses résultats font moins
facilement consensus. De plus, la didactique des mathématiques est une
science appliquée et sa pratique varie considérablement selon le milieu social,
économique et culturel ot elle s'applique. Une rencontre internationale sur
l'enseignement des mathématiques doit donc fournir 'occasion non seulement
de faire connaitre la situation actuelle dans le monde concernant les pro-
blémes, les progres et les tendances dans ce domaine, mais également de
susciter des échanges, voire des confrontations, entre des participants et
participantes ayant une vision radicalement différente des buts et des mé-
thodes de I'éducation mathématique.

Les congres ICME ont lieu tous les quatre ans. D'une fois a l'autre, on
a accordé une importance sans cesse croissante aux discussions et aux débats
face a face. On a fait une place de plus en plus grande a de telles activités
dans le programme scientifique — au lieu de les laisser survenir spon-
tanément dans les corridors et les cafétérias. C'est ainsi que le programme
des derniers congrés ICME comprenait un nombre important de groupes de
travail dont les responsables avaient pour tiche d'encourager et de faciliter
les échanges de points de vue entre participants et participantes.

Aux congres ICME précédents, sauf au premier, on a eu tendance a ne
mettre qu'un petit nombre de grandes conférences au programme. Cela n'est
peut-€tre pas étonnant, compte tenu que l'inefficacité de la conférence tradi-
tionnelle comme mode d'enseignement fait pratiquement consensus depuis
longtemps en éducation. Ainsi, durant toute la semaine du congrés ICME-6
en 1988, seulement quatre conférences pléniéres avaient été prévues ; malgré
la présentation d'un grand nombre d'exposés plus courts dans les groupes,
les commentaires regus a propos du congrés ont souligné que la place des
grandes conférences était devenue trop marginale. C'est pourquoi le Comité
international du programme d'ICME-7 a décidé de mettre a I'horaire une
quarantaine de conférences d'une heure — en plus des conférences pléniéres
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et des exposés faits dans les groupes. Certains des meilleurs théoriciens,
chercheurs et praticiens du domaine dans le monde furent incités a parler,
les uns sur un sujet déterminé, les autres sur un theme de leur choix. Fina-
lement, quarante-deux conférences d'une heure furent présentées.

Les textes de vingt-sept de ces conférences sont reproduits dans ce
volume. Quelques conférenciers ont préféré ne pas publier leur texte ici.
Par ailleurs, les rédacteurs ont di omettre certaines conférences parce que
le traitement du sujet ne convenait pas a cette publication. Les textes pré-
sentés ici constituent une sélection des meilleurs travaux dans le domaine
de I'éducation mathématique aujourd'hui.

Ces conférences, qui constituaient 1'un des volets du programme
d'ICME-7, ne sauraient toutefois prétendre couvrir tout le champ de 1I'édu-
cation mathématique, pas plus d'ailleurs qu'elles ne peuvent donner une
image compléte du contenu scientifique du programme. Le volume des Actes
d'ICME-7 fournit une vision plus globale de la situation mathématique au
plan international. On y constatera que les thémes traités dans les conférences
sont complémentaires des sujets abordés ailleurs dans le programme : confé-
rences pléniéres, groupes de travail, groupes thématiques, Groupes d'étude
officiels de la Commission internationale de l'enseignement mathématique
(CIEM), Etudes de la CIEM, mini-congrés sur les calculatrices et les ordi-
nateurs, etc. Dans le présent volume, on trouvera les textes de conférences
remarquables, dont la lecture devrait intéresser tous ceux qui ceuvrent en
éducation mathématique et leur fournir matiére a réflexion.

L'équipe de rédaction désire souligner la contribution de nombreuses
personnes. Nous sommes trés reconnaissants envers les auteurs des textes
choisis d'avoir respecté les échéances que nous avions fixées et d'avoir
accepté les coupures et autres modifications que nous leur avions demandées.
La saisie des versions finales des articles, le graphisme et la correction des
textes ont été réalisés principalement a 1'Université de la Colombie-Britan-
nique, sous la direction de Stuart Donn et avec I'aide de Sue Bryant, Cynthia
Nicol, Sandra Crespo, Sandra Robinson et Susan Dawson. La mise en page
du texte et le montage final ont été effectués par Thérése Gadbois, des
Editions 1'Ardoise, 2 Québec. Claude Gaulin et Bernard Hodgson ont
supervisé les derniéres étapes de la production de ce volume et en ont assuré
la coordination avec celle des Actes d'ICME-7. Jacques Chouinard et
Suzanne Allaire se sont chargés de 1'étape finale de publication par Les
Presses de 1'Université Laval. Nous remercions toutes ces personnes trés
chaleureusement.

David F. Robitaille
David H. Wheeler
Décembre 1993 Carolyn Kieran

X11



CONTRIBUTION DE L'APPRENTISSAGE DE
LA GEOMETRIE A LA FORMATION SCIENTIFIQUE

Gérard Audibert

Université des sciences et techniques du Languedoc, France

Le texte qui suit a pour but de répondre a la question suivante : La
géométrie est-elle actuellement essentielle a la formation scientifique des
éleves ayant entre 11 et 18 ans?

I1 est constitué de quatre paragraphes analysant quatre aspects de la
géométrie :

* la géométrie, discipline de service ;

* la géométrie, discipline proche des activités spontanées des éléves ;

* la géométrie et la formation scientifique ;

* la géométrie et le dessin.

LA GEOMETRIE DISCIPLINE DE SERVICE
Mesures

Dans ses Eléments de géométrie Alexis Claude Clairaut (1741) écrit :
« la mesure des terrains m'a paru ce qu'il y avait de plus propre a faire naitre
les premiéres propositions de géométrie ». Il ajoute dans la quatriéme partie
de son traité que la mesure des solides a été sans doute un des premiers
objets qui ait pu fixer l'attention des géométres. Jacques Hadamard (1901)
dans ses lecons de géométrie élémentaire n'hésite pas a consacrer un chapitre
entier aux « notions sur la topographie ». Ces deux illustres mathématiciens
n'ont donc pas peur de faire jouer a la géométrie un rdle de discipline de
service.

Géographie

Si nous examinons les notions nécessaires 2 une initiation 4 la géogra-
phie nous trouvons : triangulation, latitude, longitude, paralléles, méridiens,
projecteur, nivellement, échelle, courbe de niveau, coupe, pente, etc. Nous
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y trouvons beaucoup de concepts introduits en géométrie. Cette derniére
joue donc un rdle de discipline de service pour la géographie.

Examinons encore trois autres secteurs d'activités professionnelles ou
scientifiques : la cristallographie, le bureau d'études, la robotique.

Cristallographie

En cristallographie les 32 groupes ponctuels de symétrie cristallo-
graphique jouent un role privilégié. Chacun de ces groupes est la réunion
d'un nombre fini de rotations et de symétries-rotations, les axes de rotation
et les plans de symétrie passant tous par un méme point ; une symétrie-
rotation est le produit d'une rotation autour d'une droite D et d'une symétrie
orthogonale par rapport a un plan P, D et P étant orthogonaux entre eux.
Considérons par exemple le groupe des douze rotations conservant globale-
ment le tétraédre régulier, groupe dont le symbole international Hermann-
Mauguin est 23. Il peut étre illustré par la figure 1 représentant en perspective
cavaliére un tétraédre régulier, un axe de rotation de 180° et un axe de rotation
de 120° ou 240°. Comme nous avons 3 axes de rotation de 180° et 4 axes de
rotation de 120° ou 240° conservant globalement le tétraédre régulier, le
groupe 23 est donc constitué par 12 (3 + 8 + 1) rotations dont les axes
passent par le centre de gravité G du tétraédre régulier. Des notions géomé-
triques nécessaires a la cristallographie apparaissent a propos de ces groupes
ponctuels de symétrie cristallographiques. Les polyédres, la géométrie de
l'espace et la structure euclidienne sont particulierement indispensables.

120° ou 240°
180°

Figure 1
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Bureau d'études

Si nous examinons des activités de tracage en bureau d'études nous y
trouvons les principales constructions géométriques, les perspectives, le tracé
des intersections courantes de surface. Il est indéniable que la géométrie est
au service de ce bureau d'études, on peut méme dire que ces activités de
tragage ne sont que de la géométrie. Si nous devons par exemple obtenir le
tracé de l'intersection d'une sphére et d'un cylindre tel qu'il est représenté
en perspective cavaliere sur la figure 2, il nous faut utiliser la sphére, le
cylindre, les équations paramétriques de courbes gauches, la perspective
cavaliere. D'une maniére plus générale nous voyons que la géométrie est au
service du bureau d'études.

Figure 2

Robotique

Examinons le robot ACMA S 18 utilisé en métallurgie du soudage. Il
est représenté par la figure 3. Les six articulations de ce robot font que
certaines parties du robot pivotent autour d'autres parties ou encore que
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certaines parties ont un mouvement de rotation autour d'autres parties. Si
on représente ces liaisons on obtient la figure 4 ou six cylindres et leurs
axes A, B, C, D, E, F schématisent ces liaisons.

Figure 3

Plusieurs repéres sont aussi nécessaires pour analyser la situation : un
repére fixe lié au socle du robot OXYZ, un repére O'X'Y’'Z’ li€ au porte
outil, des repéres 0" X'Y'Z’' ou O”X"Y"”Z" liés a I'outil. Nous avons repré-
senté ces repéres orthonormés sur la figure 4. Les notions géométriques
nécessaires a 1'étude des robots sont donc les rotations, les translations, les
mouvements de rotation et de translation et aussi les changements de repéres
orthonormés. Nous avons 12 des notions de géométrie au service de la
robotique.

Pour la mesure des terrains et des solides, la géographie, la cristallo-
graphie, le bureau d'études et la robotique, la géométrie est une discipline
de service. Nous pourrions multiplier les exemples et constater de plus que
la géométrie de l'espace et la structure euclidienne sont des outils particu-
lierement privilégiés.
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Figure 4

LA GEOMETRIE, DISCIPLINE PROCHE DES ELEVES

Observons des éléves ayant une douzaine d'années cherchant en classe
le probléme suivant :

Le périmetre d'un triangle est de 12 cm ; sachant que la mesure d'un coté est
toujours un nombre entier, dessinez le triangle. Existe-t-il plusieurs solutions ?

Nous faisons quelques constatations. Tout d'abord les éléves ont une
grande activité matérielle ; ils dessinent de nombreux triangles, mesurent,
échangent leurs dessins. D'autre part ils utilisent des démarches de pensée
variées : font des essais, rectifient des erreurs, vérifient, voient des contra-
dictions, fournissent des explications, cherchent des contre-exemples. Et
enfin abordent des relations et des concepts ; ils réfléchissent notamment a
la notion d'approximation, prennent contact avec l'inégalité triangulaire et
avec la plus courte distance entre deux points.

Plus généralement la géométrie est propice a des activités spontanées
des €leves a condition de valoriser trois aspects essentiels de la géométrie :
I'activité matérielle, la recherche de problemes, les démarches de pensée.
Examinons séparément ces trois aspects.
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Activité matérielle

La géométrie est a la base de nombreuses activités matérielles,
notamment des activités d'atelier (atelier de menuiserie) ou de terrain ; on
peut par exemple tracer au sol une piscine rectangulaire de 5 m sur 10 m.
Mais aussi des constructions de maquettes, notamment les constructions
des cinq polyédres réguliers. On peut demander par exemple aux éleves de
tracer le patron d'un dodécaedre régulier ; il doit alors obtenir deux patrons
semblables a celui représenté par la figure 5. On lui demande alors de
construire le dodécaedre. On peut lui demander aussi de fabriquer la maquette
du ballon de football représenté par la figure 6 (d'aprés Luca Pacioli, 1509).
Mais l'activité matérielle la plus importante en géométrie pour des éleves
ayant entre 11 et 18 ans consiste a dessiner des objets et en premier lieu des
polyédres, comme par exemple celui représenté par la figure 7. La encore
nous retrouvons essentiellement la géométrie euclidienne de l'espace a trois
dimensions.

Figure 5

Figure 6
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Figure 7

Résolution de probléme

La résolution de probléme reste une activité prioritaire dans l'ensei-
gnement de la géométrie. Certains problémes sont restés présents durant
plusieurs siécles : celui de la trisection de 1'angle (partager un angle donné
en trois parties égales), celui de la duplication du cube (construire un cube
de volume double de celui d'un cube donné) ou celui de la démonstration du
postulat des paralléles. Des livres sont congus comme des recueils de
problémes de géométrie : celui de Lame (1818), celui de Ritt (1847) ou
ceux de Yaglom (1962, 1968, 1973). Certains problémes plus scolaires que
nous venons de citer sont souvent proposés. Il en est ainsi du probléme :

Circonscrire 2 un quadrilatére donné un autre quadrilatére semblable i une
figure donnée

que I'on trouve dans Lame (1818) et qui est aussi longuement développé
dans Yaglom (1968).

Mais si les problémes énoncés précédemment ne sont pas proches de
nos éleves, nous disposons par ailleurs d'une grande variété de problémes
de géométrie qui eux intéresseront vivement nos éléves. Donnons-en quel-
ques exemples :

Découpe un disque de 15 cm de rayon. Trace un angle de 120° comme le
montre la figure 8. Enléve le morceau du disque qui se trouve dans cet angle.
Fabrique avec le reste un chapeau de clown ayant la forme d'un céne. Quelle
est la hauteur de ce céne ? Quel est le rayon du cercle de base de ce cone ?

ABC est un triangle fixe. MNPQ est un rectangle variable. Les points M et N
sont sur le c6té BC du triangle, le point P sur le c6té AC, Q sur le coté AB.
Déterminer I'ensemble des positions possibles pour le centre du rectangle
variable MNPQ.

Peut-on couper un cube de telle sorte que cette section soit un pentagone ?
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Peut-on couper un tétraddre régulier de telle sorte que cette section soit un
triangle rectangle isocéle ?

Une salle de classe a pour dimension 7 m de long, 5 m de large et 3 m de haut.
Un fil est tendu verticalement du plafond au sol. Une balle de revolver traverse
la salle. Elle part d'un des coins du plafond et aboutit & la base d'un mur en son
milieu. La balle se déplace en ligne droite & partir de ce coin et coupe le fil a
1,5 m au-dessus du sol. A quelle distance de chaque mur le fil était-il placé ?

Figure 8

Toutefois, pour que face a un probléme 1'éléve soit intéressé, curieux
et actif, encore faut-il apporter un grand soin aux énoncés. Les énoncés doi-
vent utiliser un symbolisme rudimentaire, un vocabulaire simple (celui du
dictionnaire familial suffit amplement la plupart du temps) et étre courts.
Iis seront alors vite compris et bien exploités par les éléves. Malheureusement
un grand nombre d'énoncés de nos livres scolaires, surtout ceux qui exigent
explicitement des démonstrations, ne sont pas adaptés a nos €éleves. Ces
derniers ont I'impression qu'on leur demande de jongler avec des subtilités
linguistiques ou des manies de professeurs.

Démarches de pensée

Les éléves lorsqu'ils pratiquent avec ceeur la géométrie utilisent les
démarches de pensée les plus riches et les plus fondamentales parmi celles
qui sont nécessaires 2 la formation de 1'esprit scientifique. On peut trouver
dans la thése de Chevalier (1984) et dans Audibert (1982) une étude détaillée
de démarches de pensée géométriques. Nous avons pu observer de trés prés
la richesse de ces démarches chez de jeunes éleves.

On pourra examiner par exemple le travail de Kar, une éleve de 11 ans
et 7 mois, présenté de la page 569 a 577 dans Audibert (1982). Cette €leéve
cherchait le probléme suivant :

On donne deux cercles et un rectangle, quel est le plus grand nombre possible
de points d'intersection ?
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Donnons en deux phrases ce qui nous semble essentiel dans les
démarches suivies par les éléves. Les contradictions y jouent un grand réle ;
qu'elles prennent la forme de contradictions observées ou de contradictions
logiques (Audibert, 1982). L'empirisme et les démarches expérimentales y
tiennent une place importante (Audibert, 1983) ainsi que les vérifications,
les contre-exemples et les titonnements (Chevalier, 1984, 1988).

GEOMETRIE ET FORMATION SCIENTIF IQUE

La géométrie est proche des activités spontanées des éléves par les
réalisations matérielles qu'elle suscite, par la résolution des problémes qu'elle
propose, par les démarches de pensée qu'elle nécessite.

De plus la géométrie avec sa matérialité, ses résolutions de problémes
et ses démarches de pensée développe des aptitudes indispensables dans les
activités scientifiques et techniques. Mais l'apprentissage de la géométrie
introduit d'autres processus contribuant a la formation scientifique des éléves.
Nous allons en examiner quelques-uns dans la suite de ce paragraphe.

Dans 'enseignement traditionnel de la géométrie une place importante
est donnée a la démonstration. Mais la forme scolaire donnée 4 la démons-
tration a estompé la richesse et la variété des processus intellectuels qui
doivent accompagner l'enseignement de la géométrie. Ces processus se re-
connaissent a travers les mots clefs suivants : symbolisme, formalisme,
abstraction, structures, raisonnement, propriétés, démonstrations, images
mentales, concepts. La pratique de ces processus est indispensable aux
sciences et aux techniques ; la géométrie en est une bonne initiation.

Donnons quelques exemples d'activités géométriques et montrons
I'émergence au cours de ces activités du raisonnement, des images mentales,
du formalisme ou des concepts.

Exhaustivité

Le raisonnement prend des aspects multiples, mais une de ses formes
semble trés adaptée a la géométrie qui s'adresse aux éléves. C'est l'analyse
exhaustive de tous cas que présente une situation.

On peut par exemple décrire les douze premiers polygones réguliers ;
ou bien chercher toutes les positions relatives de deux cercles d'un méme
plan ; ou bien étant donné deux triangles ABC et A’B'C’, chercher parmi les
six relations LA =/A',/B=/B,/C= LC',AB=A'B,BC=B'C,AC=A'C’
toutes les familles de relations qui entrainent I'égalité des deux triangles ; ou
encore chercher toutes les classes de triangles obtenues en prenant trois
sommets d'un cube, deux triangles égaux étant dans la méme classe ; ou
encore tous les patrons d'un cube ; ou bien toutes les sortes de sections d'un
cube ou d'un tétraédre régulier. On peut réaliser aussi d'autres inventaires
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exhaustifs plus difficiles : classer toutes les courbes planes du second degré
(les coniques), classer toutes les isométries du plan ou de l'espace ; classer
toutes les surfaces du second degré (quadriques) ; classer toutes les matrices
réelles d'ordre 2 ou 3 ; faire l'inventaire des polyédres réguliers ; faire
l'inventaire des groupes finis d'isométries.

Image mentale

La géométrie inculque des images mentales qui sont nécessaires en
sciences et techniques. Elle montre aussi comment s'élaborent et s'utilisent
les images mentales, ce qui par la suite permet au professionnel en activité
de créer les images mentales qui lui sont indispensables.

La formation des images mentales s'obtient grice a I'observation et a
la réalisation d'objets (rare) et de dessins (moins rare) que nous proposons
A nos éléves ; ces images vont cristalliser les concepts et les relations, et
leur donner ainsi l'efficacité nécessaire. Donnons deux exemples d'images
mentales. La trigonométrie repose essentiellement sur une image mentale :
le cercle trigonométrique qui est représenté par la figure 9. Tant que 1'éleve
n'est pas capable de réfléchir en ayant bien amené cette image dans sa téte,
il faut I'obliger a dessiner ce cercle et a compléter son dessin pour organiser
et justifier ses raisonnements.

Figure 9

En dessin technique les vues (AFNOR, 1978) nécessitent une image
mentale permettant de coordonner l'objet, les projections et le dessin lui-
méme. Cette image mentale peut s'élaborer a partir de maquettes et de mul-
tiples dessins, mais nous proposons avec la figure 10 un dessin de synthése
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représentant en perspective cavaliere l'objet, ses six projections sur les six
faces intérieures d'un cube contenant l'objet, et ce cube presque totalement
développé, faisant apparaitre ainsi les six vues de 1'objet. C'est cette figure
10 que nous proposons comme dessin essentiel a la formation de 1l'image
mentale accompagnant l'usage des vues en dessin technique.

By

Figure 10

Déplacements et matrices

Les déplacements dans l'espace se réduisent a des rotations ou a des
translations. Ils peuvent se ramener a du calcul matriciel plus facile a
pratiquer. Mais comment passer de ces déplacements géométriques 2 ce
calcul formel ? Pour comprendre ce passage, examinons tout d'abord les
déplacements plans et illustrons la situation au moyen de la figure 11.

Considérons un plan P et un repére orthonorme Ai j dans ce plan. Un
déplacement de ce plan est le produit d'une translation définie par le vecteur
AB=adi +bj suivie d'une rotation r de centre B, d'angle ¢ telle que r(i) =i
et r(j) =v. Plagons le plan P dans I' espace a trois dimensions et considérons
le point C n'appartenant pas 2 P et CA = - k. Ci jk estun repére de I' espace.
Alors la matrice de passage de la base i j k 2 la base 7w, ou w= CB, est

cost -sint a
S =] sint cost b
0 0 1
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S~
L]

Figure 11

Un point M du plan P se déplace en M'. Six ety sont les coordonnées
de M’ dans le repére Bu v, quelles sont ses coordonnées dans le repere Aij?
Les coordonnées de M’ dans le repére Ciuvw sont x, y et 1. Dans le repére
Ci jk elles sont donc données par la matrice colonne

sint cost b|e|y|=|xsint+ycost+b
1

1

CcoSst —sint a X xcost—ysint+a
1

Les coordonnées de M’ dans Ai j sont donc

X cost—ysint+a
ysint+ycost+b

Nous avons ramené les déplacements & une matrice S réelle d'ordre 3.
On montrerait si on voulait continuer cette analyse que des compositions de
déplacements dans le plan se réduisent a du calcul matriciel. De méme un
déplacement de I'espace peut se ramener a du calcul portant sur des matrices
d'ordre 4 de la forme

a; a as a
a a a
bl b2 b3 b . 1 2 3 .
ol |p p, b, | €stunematrice orthogonale
[&] [ C3 c
0o 0 o0 1 a@a @ &
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Sibien que pas a pas nous passons de la géométrie plane a la géométrie
de l'espace puis au calcul matriciel. Cette démarche qui consiste a passer
d'une situation assez tangible (déplacement dans le plan) A une autre plus
formelle (le calcul matriciel) est assez générale en sciences. La géométrie
qui fait pratiquer cette démarche a donc un réle formateur vis-a-vis des
sciences et des techniques.

Concepts

L'accés aux concepts peut étre considéré depuis la géométrie d'Euclide
comme l'essence méme de la géométrie. Nous ne nous étendrons donc pas
sur la maniére de passer des polygones réguliers aux concepts de rotation
ou de groupe, ou de I'équilibre d'une poutre aux torseurs, ou de l'angle droit
au produit scalaire, ou de l'orientation de I'espace aux déterminants, etc.

GEOMETRIE ET DESSIN

Le dessin ou plus généralement les graphismes jouent un réle important
dans les sciences ; et de la représentation graphique a la représentation
symbolique il n'y a quelquefois qu'un pas. Le dessin est aussi une des clefs
de l'activité géométrique ; il n'y a pas de géométrie sans dessin ; et il n'y a
pas de dessin sans géométrie. Ainsi le dessin géométrique va contribuer de
fagon importante 2 la formation scientifique. Dans la revue Repére n° 4
éditée par I'REM en France nous avons eu l'occasion d'ébaucher un
inventaire des roles joués par le dessin en géométrie. Nous allons ici insister
sur certains réles propices a la formation scientifique.

Matérialité

Utiliser correctement les instruments de dessin nécessite un appren-
tissage de la part de I'éléve. Tracer des paralléles, des perpendiculaires,
mesurer des angles est difficile 4 11 ans. Mais c'est le prix a payer pour accé-
der a la précision, a la minutie, a la rigueur. La connaissance des différentes
représentations de l'espace, des vues, des perspectives fait partie de la culture
scientifique minimum. Les régles de représentations de la perspective
cavaliére peuvent étre introduites dés 11 ans (Audibert, 1990) ; les vues du
dessin technique (AFNOR, 1978) étudiées vers 15 ou 16 ans. Cette pratique
du dessin géométrique mettant en relation l'activité manuelle et la réflexion

conceptuelle est peut-étre I'activité la plus formatrice dans la voie qui méne
aux sciences et aux techniques.

Résolution de probléeme

N

Le dessin va permettre de commencer tout de suite 2 chercher le
probléme : « avant de faire quoi que ce soit, je décide de faire un dessin
pour y voir plus clair », dit Marc. La réalisation ou I'observation du dessin
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va donner des idées. Mais aussi, certaines idées auront besoin d'étre synthé-
tisées au moyen d'un petit dessin 2 main levée. Puis les dessins vont permettre
la démarche expérimentale, les vérifications ; ils vont fournir des contre-
exemples. Ensuite ils vont susciter 'organisation du raisonnement. Enfin
ils vont permettre de clarifier, d'agrémenter 1'exposé de la solution.

Calcul

Dans notre enseignement de la géométrie, le calcul numérique puis le
calcul algébrique ont pris trop de place par rapport au dessin. L'interaction
entre le calcul et le dessin est extrémement fructueuse et doit étre cultivée.

Donnons un exemple : la figure 12 représente un cube ABCDEFGH et
AG un axe de rotation d'ordre 3, ainsi que les trois pyramides ABCGF,
ACDHG et AEFGH qui réunies donnent le cube. Chacune de ces pyramides
de sommet A et de base carrée a un volume égal au } du volume du cube ;
d'ou le coefficient { intervenant dans le volume d'une pyramide. Le dessin,
illustrant la réalité spatiale, doit donner du sens a la formule indiquant que
le volume de la pyramide est égal au tiers de la base multiplié par la hauteur.

A A
A A A

D D
B C B C
H
F G o F G
Figure 12

Les rotations et les symétries ne peuvent pas se réduire a des matrices.
Les applications linéaires mémes ne seront vraiment comprises que si on
voit bien une base se déformer, ou plus concrétement encore comme sur la
figure 13, si le repére de départ O OA OBOC i partir duquel nous avons
dessiné un parallélépipéde se déforme pour donner a l'arrivée un repére O
OA’ OB’ OC’' a partir duquel nous avons dessiné un autre parallélépipede.

A B’

A’

CI
Figure 13
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Les équations et les fonctions ne prennent pleinement leur sens qu'avec
le tracé des courbes et des surfaces correspondantes. Les fonctions sin x,
cos x, tan x, x2, &%, In x, J/x, } sont inséparables de leurs représentations
graphiques.

Configuration et image mentale

Parmi toutes les figures utilisées en géométrie un certain nombre d'entre
elles que nous appelons configurations ont un statut un peu particulier. Une
configuration ou dessin fondamental est un dessin qui illustre un concept
ou une propriété importante, qui respecte de fortes contraintes d'équilibre
et qui est socialement reconnu.

La figure 14 représentant un hexagone régulier, son cercle circonscrit
et le centre de ce cercle, est une configuration. La figure 15 en est une autre,
elle représente un cylindre ; la figure 16 est une configuration associée au
théoréme de Thales.

Figure 14

Figure 15 Figure 16

Les concepts importants ont besoin d'étre associés a des configurations.
C'est ainsi que nous avons des configurations pour la répartition de masse,
pour la perpendiculaire commune a deux droites, pour l'exponentielle, pour
I'hyperboloide a une nappe dont le galbe si rectiligne donne tout son sens au
concept de surface réglée (cf. figures 17, 18, 19, 20).
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= B = .

Figure 17

Figure 18

Figure 19 Figure 20

Pour que les concepts et les propriétés atteignent toute leur efficacité,
non seulement ils doivent étre illustrés par une ou plusieurs configurations,
mais encore cette configuration doit trés vite laisser la place a une image
mentale. Il y a image mentale s'il y a référence a un objet, un dessin ou une
configuration en 1'absence de cet objet, ce dessin ou cette configuration.

Par exemple si y = f (x) est une fonction réelle définie sur R, conti-
nue et paire et si nous connaissons la moyenne de cette fonction sur
l'intervalle (0,10), soit% :)f(x)dx, on peut se demander quelle est sa
moyenne sur (-10, +10). Une image mentale du concept de moyenne donne

immédiatement la réponse a cette question.

Il nous semble que la notion d'image mentale, sa formation, son usage
ne sont pas suffisamment pris en compte dans I'enseignement de la géométrie
et plus généralement des mathématiques.
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AUDIBERT

Le texte qui précede avait pour but de développer des arguments
justifiant I'affirmation suivante : la géométrie est actuellement essentielle 2
la formation scientifique des éléves ayant entre 11 et 18 ans. Nous ne
connaissons pas d'autre discipline dont le role dans la formation scientifique

d'éleves de cet dge soit aussi efficace.
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DIAGNOSTIC TEACHING

Alan Bell
University of Nottingham, England

The Diagnostic Teaching Project began in about 1980 at a time when
national and international surveys of mathematics attainment were arousing
considerable surprise and concern, both on account of apparently low levels
of achievement and relatively small yearly gains. This contrasted sharply
with the perceptions of the teacher in the classroom who saw herself as
teaching, day by day, a considerable amount of material which the pupils
apparently learned, at least to some degree, and retained, at least for a short
time. Thus the aim of our research on Diagnostic teaching has been to
develop a way of teaching which contributes clearly to long term learning
and which promotes transfer. The key aspects of this method are the iden-
tification and exposure of pupils’ misconceptions and their resolution through
“conflict-discussion”. Conceptual diagnostic tests also play a part both in
helping pupils to become aware of their misconceptions and enabling the
teacher to observe progress.

The teaching materials for a particular topic aim to begin with a rich
situation containing various items of information and with an invitation to
consider what further information can be found out from what is given. Fol-
lowing this initial exploration, there is a focus on a few particular questions
that contain important conceptual obstacles. The questions are deliberately
posed in such a way as to allow misconceptions to come to the surface, if
they exist, and thus to create a conflict which can be discussed and resolved.
The third phase of the teaching cycle consists of exercises with built-in
feedback of correctness. The new awareness reached during the conflict-
discussion is thus put into practice in a situation in which pupils know imme-
diately if they have made an error, and can reconsider their response.
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BACKGROUND

We ourselves were just completing a commission for the Cockcroft
Committee of Inquiry to conduct a review of existing research on mathe-
matics teaching and to make it available to the profession (Bell et al., 1983).
Most of the key principles adopted and tested in the Project derived from
this review and analysis of research on teaching. In particular, there was the
recognition that pupils develop their own methods for dealing with tasks,
often ignoring the standard methods they have been taught (Jones, 1975;
Mclntosh, 1978), which led to the principle of beginning with the presenta-
tion of the tasks which were the target of the teaching, observing pupils
approaches, and providing teaching which enabled them to develop from
this starting point towards complete and correct methods; similarly, it was
believed that these should be meaningful whole tasks rather than parts of a
procedure which could only be understood later (Gold, 1978). The notion of
cognitive conflict derived from Genevan training studies (Inhelder, Sinclair,
& Bovet, 1974) and the importance of feedback of correctness from Gelman’s
(1969) conservation training studies. The value of intensity of experience
was highlighted by a Gagné type training study by Trembath and White
(1979) in which learning with a stronger mastery criterion took 25% more
time but produced 50% more learning.

THE PROJECT

The key features of the diagnostic teaching methodology are:

* initial presentation of the target tasks, which are those which pupils
should be able to tackle by the end of the teaching sequence;

* choice of tasks to cover the key concepts and likely misconceptions;
» choice of sufficiently hard critical tasks to provide cognitive conflict;
* provision of some form of feedback of correctness;

* intensive discussion aimed at resolving the conflict and forming a
newly integrated knowledge structure;

» making the key principles explicit, in general terms, in the course of
this discussion;

« further problems, with feedback, to consolidate the insights gained;

« flexibility of task, to ensure an appropriate level of challenge for
students having varying initial levels of understanding of the concept;

s returning to the same conceptual points on further occasions,
including using different contexts, until it is clear that the under-
standing is permanent and transferable.
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A fuller discussion of the theoretical and experimental psychological
background to the theory appears in Bell (1993a); and experimental tests of
the importance of cognitive conflict, of the intensity of discussion, and the
method as a whole appear in Swan (1983a, b), Bell et al. (1985), and Bell
(1992, 1993b). Here I wish to emphasize the implications of the work for
the treatment of the various curriculum areas which have been studied,
describing the findings with regard to pupils’ concepts and misconceptions,
the tasks developed, and the ways of developing them into interesting and
effective lessons. The topics treated are geometric reflections, decimals,
additive structures with directed numbers and rates.

GEOMETRIC REFLECTIONS

The objectives here were the construction and recognition of the re-
flections of figures in single axes. Typical misconceptions led to results
which looked like the confusion of reflections with half turns or with trans-
lations (Figure 1). Less common ones were that a horizontal or vertical figure
became horizontal or vertical, and that the reflected figure could be similar
to the original figure, if not congruent (Figure 1, Nos. 5, 6). Figure 1 shows
a typical Marking Homework conflict task.

The following worksheet was given to Edward Green for homework. Mark
the work, correcting all the mistakes. In your books, explain where Edward is
going wrong.

Figure 1

A teaching experiment with 11 and 12 year olds, in which the control
class used a well known series of individualized booklets, showed the marked
superiority for retention which has been the characteristic of all our
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experiments with the diagnostic teaching method. The two graphs in Figure 2
show the scores of each pupil in pre, post and (two month) delayed tests.

° |

S @
+é 5 b %
Figure 2
THE NUMBER CURRICULUM

The curriculum in number includes pure and applied aspects, with the
applied situations normally coming first. Thus children’s first experiences
of number can be identified as the recognition of a similarity and an order-
ing among sets of, say, one, two, three milk bottles on the doorstep, and
the association of these with the learnt sequence of words one, two, three,
four, ... The concepts “more” and “less” come readily into use, correspond-
ing, in the practical situation, to sets of bottles which match, one for one,
leaving extra bottles over, or bottles missing; while in the number sequence
they correspond to words which appear later or earlier in the learnt sequence.
Addition follows, again with situational and number sequence aspects; ad-
dition facts emerge both from putting sets together and counting, and from
counting along within the number sequence. This parallel development of
the recognition of numerical and operational structure within practical situ-
ations, and of operations as properties of the number system, continues at
each stage. Fractions first come into play to describe relative quantities—
half a glass of drink, or three quarters of the cake. Only much later is an
independent existence as numbers attributed to them. The same is true of
fraction operations—comparison, addition, multiplication. Similarly, di-
rected numbers are believed to have been used first to designate excesses or
deficits, from a standard weight, of sacks of grain. And in all these cases the
number or the operation may play several roles. Natural numbers may count
sets of objects, or identify positions in an ordering; comparison and take-
away situations both correspond to subtraction, and to counting back (or
up) in the number sequence.

Traditional teaching has assumed that what needs to be taught are the
methods of computing in the pure number systems; and that applications
present no conceptual difficulty, but may make the computation practice
more interesting—indeed, may demonstrate its relevance to practical
situations. But as the sets of possible problem structures in each conceptual
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field have been analyzed and their difficulty levels studied, it has become
clear that wide variations in difficulty among problem types exist, and that
the problems in textbooks usually cover only a few of the easier types. Hence,
in order to enable pupils to operate freely and with understanding in these
fields, teaching needs to be directed at the whole range of problem structures.
This teaching should probably aim to make the pupils aware of the different
structures, and their interrelationships, and of how the more difficult ones
may be dealt with. This will be discussed further in relation to each of the
problem fields.

DECIMALS

The teaching experiment in this field focused on the comparison of a
conflict with a positive-only approach. Typical tasks were the following:

1. Write down the next three terms in this sequence: 0.3, 0.6, 0.9, ... ... ...
(Adding on 0.3’s)

2. Read this scale:

3. Which decimal has the largest value: 5.248, 5.4, or 5.63?

For the conflict group these were first presented as shown, to allow
the errors to be made, then pupils were asked to do the same task on the
number line and, sometimes, also on the calculator. For the positive-only
teaching, the same tasks were used, but with the number line first, thus
forewarning the pupils and avoiding conflict.

The results are shown below.

Results mean %

Gain
Pre | Post | Del | Pre-del

Conflict 44 | 78 | 80 | +36* * difference

N =22 between groups
significant

Positive-only 52 | 75 | 76 | +24* p=0.012

N =25
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The conflict group covered less material than the positive-only group,
because of the time taken up by the discussions. So these results are partic-
ularly important, since they conflict strongly with common teaching
assumptions that discussing wrong approaches confuses students and should
be avoided—and that time cannot be afforded for intensive discussions of
particular points. For further details, see Swan (1983a, b, c).

ADDITIVE STRUCTURES WITH DIRECTED NUMBERS

The work in this field began with a series of interviews studying pupils’
performance in combining directed numbers by addition and subtraction.
(About 80% of the sample were successful at addition, 40% with subtraction.)

Addition was in general performed meaningfully, with reference to
the number line or to ideas of “quantities less than zero”. (e.g. =5 + 9 was
seen as the addition of two quantities of the same kind.) For subtraction,
most pupils had no such conceptualization, but worked from rules such as
“subtract is go to the left” or “two minuses make a plus”. These rules were
subject to extensive degeneration; for example, 9 — "2 = 11 because “mi-
nusing two negatives equals a positive,” and 7 — 2 = 5 because “negative is
to the left,” and “subtract is go to the left”. The expression 5 — 12 + 8 -3
tended to be seen as two pairs of numbers subtracted, e.g. (5 - 12) + (8 - 3)
and the correctness of rearrangements judged by whether these pairs re-
mained intact (or reversed). An application to bank balances presented
difficulty in overcoming the reversals of the time order, for example, when
a change and final state were given and the initial state was to be found.

The diagnostic conclusion from the interview study was that the con-
ceptual foundations for directed numbers and their operations were too thin.
More experience was needed with situations from which directed numbers
derived their meaning, and in which operations of both addition and sub-
traction were possible. This meant, essentially, Money and Temperature.
But a further set of situations appeared to be of interest—Pop Charts and
League Tables, in which positions are denoted by ordinal numbers, and
moves are directional. (The system therefore works in a similar way to the
negative part of the number scale.) Interviews and tests in this field re-
vealed the following misconceptions:

1 Count the start and finish
“Norwich has gone up 6 places from 9th position. Where are they now?”
Answer: 4th

This is not particularly related to directionality, but has occurred quite
extensively in some groups. The pupils do not realize the importance of
counting off from the start or finish numbers when finding a difference.
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Up is increase

“Norwich has gone up 6 places from 9th position. Where are they now?”
Answer: 15th

The normal direction of increasing numbers, from 9 up 6 to 15 dominates.
More means add

“Liverpool scored 6 more goals this month than they did last month. They
scored 13 goals this month. How many did they score last month?”

Answer: 19 goals

The difficulty of relating the time-order with the order of number of goals
leads to a breakdown, and the word “more” dominates.

Difference means subtract

“A traveller went from Dakar, where the temperature was 31°, to Reykjavik,
where it was —3°. How much did the temperature fall?”

Answer: 28°

31 down to -3 is 31, subtract 3, i.e. 28; a minus sign has to be “used” and
the size of the answer does not cause conflict with expectation.

Position and move confused

“The afternoon temperature was 8°, but then fell 6° by nightfall. What was
the temperature at nightfall?”

Answer: 6°

Linguistically, the confusion is between falling by 6° and falling to 6°. The
“position” interpretation tends to be dominant.

Sign denotes region

“The temperature changed from —6° to —2°. How much was the change and
was it a rise or a fall?”

Answer: rise of —4°

The degrees below zero are thought of as negative degrees even when they
are moves. Similarly, a journey from a point 6 miles north of a given town
to 2 miles north of the same town may be described as a journey 4 miles
north, since it is “in the north”.

Similar misconceptions occur in temperature, money, and journey
contexts, but differ somewhat in their degree of incidence and their charac-
ter. Most of them occur also in dealing with ranking structures, such as Pop
Charts or League Tables, where the ordering is like that of the negative
number scale.

“Up is increase,” “more means add” and “difference means subtract”
occur because the correct interpretation of the problem requires some reversal
of thought from its “normal” direction, which is a cognitive strain. The
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misconceptions have been expressed here in the form of the implicit beliefs
held by the pupils. It seems necessary to do this in order to enable us to feel
the reasonableness of the misconception from the pupil’s point of view; we
need to do this to have sufficient imaginative identification with the pupil’s
viewpoint to be able to set up a situation which will convincingly show
him/her what is the correct view. This is the importance, and the difficulty,
of the diagnostic step from recognizing an error—a wrong answer—to
explaining it by identification of the misconception that is the pupil belief
which governs it.

Two further examples of tasks will be given to show how an attractive
situation may be developed according to the principles noted above.

On this world weather map (See Figure 3) the initial task is of course
to fill the gaps. This involves answering questions of all three types, in
which the unknown may be the final state, the change, or the initial state.
Corrective feedback is provided in that the whole network should link
together, and there are certain points at which the same answer should be
reached from two different directions (i.e., for D and E, G and H, M and N,
P and Q). Following this, there should be a discussion on what kinds of
different question do we have here, leading to the identification of the three
types mentioned, and considering also the question “In what ways do these
operations relate to addition and subtraction?” The outcome should be the
recognition that the first kind of task, the forward task, is a kind of addition,
although it does not always involve adding numerical parts of the directed
numbers involved. The second type, change unknown, is a type of subtrac-
tion, though again not necessarily involving subtraction of the numerical
parts; and the third type of question might be regarded as a subtraction in
that it is the removal of a previously added quantity but, at the same time, it
could be regarded as adding on the opposite change to that indicated. In the
first two cases, the question of when numerical parts are to be added and
when subtracted, and how the resulting sign is to be determined are also
issues to be considered. This is not with the intention of extracting and then
memorizing these as rules, but rather to become aware of them since they
are significant aspects of the way in which the system works—that is they
are additional insights.

The next activity might well consist of the pupils making up, in groups,
another such map with a similar set of questions built in. This will shed
further light on the relationships within the system, and the questions
suggested above for discussion may come into play again. Indeed, some of
the above discussion might in fact be reserved for this point. We may note
here the way in which the diagnostic teaching principles are exemplified.
We are focusing strongly on the key concepts in the field, providing feedback
of correctness, ensuring through the development of further questions and
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the request to make up the pupils’ own, that sufficiently hard challenges
will be presented. There is intensive discussion, the making explicit of the
contained principles and repetition with a change of view point.

A revisiting of similar principles, but now in a fresh context can be
illustrated by the task below, Top Twenty. (See Figure 4.) This can be
developed in a very similar way, beginning by filling the gaps, and asking
for two ways of checking (e.g. by getting the two-week change from the
separate changes and, then alternatively, getting it from the positions at the
beginning and the end).

In making up a similar one of their own, pupils can be asked such
questions as “How many gaps can you have in one line?”, “Can they be
anywhere?” Questions about whether this is a form of addition or subtrac-
tion and in what way arise as before.

RATES

This field concerned multiplicative problems involving price, speed,
currency exchange and other rates, with decimal numbers; our work focused
on the choice of the correct operation. The teaching experiment is described
in Bell (1992), and analyses of the pupils’ conceptual structures are in Bell
and Onslow (1987) and Bell et al. (1989). The main numerical misconcep-
tions in this field, perhaps now well known, are that multiplying makes
bigger and division makes smaller, and division must be of a large number
by a smaller. Division by a number less than one (e.g. 8 + 0.5) tends to be
rejected and effectively replaced by multiplication (in this case, taking half).
The strong awareness of pupils of the size implications of the operations is
worthy of note, as well as their failure to observe the changes in them when
decimals and fractions less than one are involved. These size relations may
have been the subject of comment by the teacher in the primary school, or
they may simply have been abstracted by the pupils from their number
experience. Equally important, and less obvious, is the increase in difficulty
of recognizing the operation in a problem when the numbers involved change
from small whole numbers to large numbers, or to decimal numbers (such
as 3.7, which can typically reduce facility in a test item from 90% to 60%).

Some further work on enlargement and mixture problems considered
problems of the following type:

A picture of a painting in a book on art is 1 cm high and 9 cm long. If the
actual painting is 9.7 cm high, how long is it?

A bridge across a big river is 0.6 miles long. On a map this measures 14.7 mm.
What is the scale of the map, in millimeters to one mile?
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NAME OF RECORD Position Position Position

Jan 14th Jan 21st Jan 28th
Pipes of Peace ( ) 1st ( )
Relax ( ) 2nd @ ( )
What Is Love? ( A) 3rd ( )
That's Living All Right () 4th @T__> ( B)
A Rockin" Good Way () Sth « )
Bird of Paradise « ) I—UJT_‘TJ> 6th «C )
Marguerita Time ( ) 7th ( )
Tell Her About It ( ©) 8th ( )
Running With The Night ( ) 9th ( D)
Islands In The Stream ( ) 10th ( )
Nobody Told Me ( ) 11th I,U_E\J> ( )
Hold Me Now ( ) 12th ( )
Wonderland ( ) 13th ‘E\’> ( )
Love of The Common People  ( ) 14th ( )
Love Is A Wonderful Colour  (  E) @ 15th « )
Wishful Thinking « ) 16th @E‘> ( )
King of Pain ( ) 17th ( )
Thriller ( ) 18th « )
Straight Ahead « ) 19th ()
Here Comes the Rain ( ) 20th ( )

Figure 4

As well as the points noted above, we observed preferences for
multiplying or dividing by an integer, these preferences applying both to
the numbers as written and as they appear when decimal points are ignored.
The numbers in a given problem may be such that these preferences lead to
a reversal of the correct order if the decimal point is ignored (as in 8 + 0.77)
or whether or not the decimal point is taken into account (asin 0.39 + 0.89).
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There is also a preference for an exact division where possible, with or
without ignoring the decimal points (e.g. 0.24 + 48 may be reversed).

Also some pupils have a weak grasp of the numerator and denomina-

tor roles of the two quantities in a rate, which leads to an error consisting of
a reversal of the quantities in the rate, for example, treating miles per hour

as if it were hours per mile.
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Figure 5

It was also shown that in proportion-type problems with one factor

equal to 1, covering change of size (map-scale and enlargement) and mixture
problems, some with the same units of measure and some with different
units in the two compared situations, there was a preference for working
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within each measure (which implies across the two situations). But in same-
unit (enlargement) problems the preference was to work with the two quan-
tities within each object (see examples above). There was also evidence of
the relative ease of making estimates of ratio comparisons compared with
estimates of the results of multiplication (Bell et al., 1989).

Differences in difficulty level such as these are indications of factors
affecting the perceptions of problem structure. It follows that the curriculum
provision should certainly include examples of each different type. It is
also plausible that pupils would be helped in understanding the problem
field if they were made aware of these factors and their effect; that is, the
recognition of what kinds of problem exist in the area, and what methods
are appropriate for each. We have not so far experimented with the explicit
teaching of problem structures but our observations suggest that it is feasible.

Examples of teaching material in this field are published elsewhere
(Bell, 1992, 1993a). Here we include a single example. (See Figure 5)

Most texts still ignore the results of this research. In a typical unit on
division with decimal numbers there is first instruction about how to divide,
then some practice, and finally some “problems”. But there is rarely any
demand to choose the operation—almost all the problems are divisions. Few,
if any, divisions of smaller by bigger numbers are included; there is no
focus on potential misconceptions, still less any arousal of conflict.

However, a few recent texts have begun to make use of these ideas
and results. (See Figure 6.)

This example focuses well on a key concept and likely misconception;
but it is “positive only”, not aimed at provoking conflict or intensive
discussion.

CONCLUSIONS

I'wish, in this final section, to offer some general reflections, based on
the experience of the Diagnostic Teaching Project, on current teaching
practices and on which aspects most need changing.

The greatest need is to provide time for reflection, review, diagnosis
and response. Often time is more or less rigidly allocated to specific text
book units or syllabus items. Teaching is directed to mastery of the desig-
nated new method or idea, and errors or slowness arising from imperfect
mastery of previous work are either ignored or dealt with briefly and super-
ficially. These are the aspects of practice which have led to the persistence
of the widespread and serious misconceptions which have been exposed by
the research. Treating errors seriously and constructively, as indicating con-
ceptual points which may need substantial attention, could offer great
improvements.
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13 a) Do not usa a caicuiator. 8.4-0.16
Here 1s an estimation which Meg is making: SN
G\ / 0.h...THATE AROYT €. O.16...THATE AQOUT az}
*3y 1/ 89 s0 0.2 orvined gy 0.6 is ABOUT
SPA agoer(]. )

>

Complete her estimate.

?
/6}?

Answer:?

b) Check your result in (a) with your calculator.

¢) Copy and compiete Meg s accurate caiculation. L1~
14 a) Use Mea's method to astinate.

——T———

b) Check your estimates with your calculator

EXPLORATION.

15 Use a calculator if you wish
When we divide we can get one of three

different outcomes: _ _Takenote____
e aresultlarger than the dividend

or e aresultequal to the dividend 120 + 0.6 =200

or e aresuit smailer than the dividend. /‘ f . \

Investigate which divisions give which outcomes. | dividend divisor resuit

Write down what you find out.

(National Mathematics Project, 1987)

Figure 6

Also indicated is a move away from the separate independent teach-
ing of each specific point within a topic towards the offering of minimal but
powerful instructional inputs, which are then stretched in discussion with
the pupils to exploit all their implications.

For example, a new method, once learnt, could be explored to see to
what range of problems it applies, and in what circumstances it breaks down.
Similarly, the regular practice of asking pupils to make up questions of
their own, to raise awareness of the characteristics of the types of problem
being dealt with and to extend the ideas to further types of problem can be
very beneficial.

There is also a need for more differentiated methods of teaching. Many
classes experience a single mode of teaching almost exclusively, whether it
be exposition and exercises, discussion or investigation. There needs to be
more conscious deployment of these and other distinct teaching strategies
aimed at different objectives—strategy acquisition, conceptual understand-
ing or fluency. The assumption that the development of fluency in, for
example, knowledge of multiplication facts, will take place sufficiently in
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the course of other mathematical activity has left some pupils with intoler-
able handicaps. (Making pupils as well as teachers more sharply aware of
the different objectives of mathematical learning and the appropriate learn-
ing methods is a major aim of our current project which has followed on

from that on diagnostic teaching.)
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READING, WRITING AND MATHEMATICS:
RETHINKING THE “BASICS” AND
THEIR RELATIONSHIP

Raffaella Borasi and Marjorie Siegel

University of Rochester, Rochester, United States

This paper argues that conceptualizing knowledge, teaching and
learning as the construction of meaning through a process of inquiry, rather
than in terms of transmission, can help us rethink the nature of reading,
writing and mathematics—the so-called “basics”—and suggest new ways
to integrate reading and writing in mathematics instruction that take
advantage of significant shifts that have occurred in the fields of mathematics
education and language education in the last twenty years.

A TRANSMISSION VIEW OF THE BASICS

Much of traditional instruction, especially in mathematics, has been
informed by the following set of assumptions:

* that knowledge is a body of established facts and techniques, which
results from the accumulation of isolated results, and can thus be
broken down and passed along by experts to novices (logical
positivistic view of knowledge);

* that learning is the acquisition of isolated bits of information and
skills, achieved mainly by listening, watching, memorizing, and
practising (behaviorist view of learning);

* that teaching is the direct transmission of knowledge from teachers
and textbooks to students (direct instruction view of teaching).

Within this transmission model, mathematics is seen as a body of
context- and value-free facts and techniques that are hierarchically organized
(Bishop, 1988; NCTM, 1989; NRC, 1989). Similarly, reading is reduced to
a set of skills that can be mechanically applied to a text so as to extract the
information contained in the material, with reading instruction focusing
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mainly on ways to “decode” the text so that the reader can “receive” the
author’s meaning (Rosenblatt, 1978; Harste, Woodward, & Burke, 1984).
Writing, in turn, is treated as a matter of transcribing previously formed
ideas onto paper so as to communicate to an audience (Connolly, 1989).

These views have limited the use of reading and writing in mathematics
classes inasmuch as reading and writing are seen as obstacles that may
interfere with learning. Indeed, reviews of the literature on reading math-
ematics (O’Mara, 1981; Pinne, 1983; Nolan, 1984; Siegel, Borasi, & Smith,
1989) confirm that most educational researchers have concentrated on two
dimensions of reading mathematics regarded as major obstacles to learning
from mathematical texts: (1) learning the specialized language of math-
ematics, and (2) the comprehension of word-problems, with special attention
paid to the way in which the syntactic and semantic organization of word-
problems may affect students’ interpretation and solution of the task. Writing
mathematics, on the other hand, has received little attention in a transmission
model since the emphasis is on “receiving” information (i.e., reading) and
writing in school is done primarily to display what has been learned so that
it can be evaluated by the teacher (Pimm, 1987; Connolly, 1989).

INQUIRY AS A FRAMEWORK FOR RETHINKING THE BASICS

The commonsense views about knowledge, teaching, and learning that
constitute the transmission model have been challenged by scholars working
within such diverse intellectual traditions as philosophy, psychology,
sociology, anthropology and, of course, mathematics education.

First of all, the transmission assumption that absolute knowledge is
attainable has been criticized on philosophical grounds by semioticians such
as Peirce (Skagestad, 1981; Siegel & Carey, 1989) and radical constructiv-
ists (Cobb, Wood, & Yackel, 1990; Confrey, 1990; von Glasersfeld, 1991).
This assumption has also been challenged by historical (Kuhn, 1970; Lakatos,
1976; Kline, 1980) as well as sociological and anthropological studies of
how scientific knowledge is actually developed (Latour & Woolgar, 1979;
Knorr-Cetina, 1981, 1983). Together, these scholars propose that knowledge
is generated by a continuous process of inquiry motivated by uncertainty
and doubt, and sanctioned by social negotiations occurring within a com-
munity of inquirers. Thus, all knowledge, including mathematics, is viewed
as constructed out of the context in which it is produced, and hence fallible.

Studies on children’s learning informed by Piaget’s (1970) model of
cognitive development, cognitive science (Gardner, 1985), and Vygotsky’s
(1962, 1978) socio-cultural theory of learning, on the other hand, have
offered potent critiques of the behavioristic view of learning embedded in
the transmission model. With respect to the learning of mathematics
specifically, several researchers have shown that the learner must actively
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construct a personal understanding of concepts and techniques if meaningful
learning is to take place. (See, for example, Ginsburg, 1983, 1989; and Steffe,
von Glaserfeld, Richards, & Cobb, 1983.)

Finally, the idea that knowledge and learning are acts of construction
situated in a community of practice implies that instruction can no longer
be defined as the efficient transmission of information from teacher to
student. Rather, teachers will have to take on the more challenging job of
supporting students’ inquiries in their classrooms. This will involve creating
a rich environment that invites students to engage in inquiry as well as a
new set of social norms and values to support the inquiry process—such as
an appreciation of the students’ need to take initiative and responsibility for
their own learning rather than expect the teacher to “teach” them, seeing
learning as a collaborative rather than an individualistic practice, and
regarding uncertainty and confusion as an integral part of the construction
of knowledge that should be exploited as a positive force.

Woven throughout all these critiques of the transmission model is a
new portrait of inquiry as a social, constructed, and contingent process of
knowing that suggests a powerful new model for teaching and curriculum.
Such a model is compatible with the recent calls for reform in school math-
ematics put forth by influential professional organizations in the U.S.
(NCTM, 1989, 1991; NRC, 1989, 1990, 1991) as well as the work of math-
ematics education researchers associated with radical constructivism and/
or a “humanistic” view of mathematics education (Brown, 1982; Davis,
Maher, & Noddings, 1990; Lampert, 1990; Ernest, 1991; von Glasersfeld,
1991; Borasi, 1992).

The views of knowledge, learning, and language assumed by the inquiry
model have also influenced the field of language education and led to the
development of new theories of reading and writing that emphasize the
process of generating and reflecting on meaning in the context of a discourse
community. Writing has come to be seen as an act of meaning construction
in which writers work out what they mean in the process of writing rather
than in advance. This shift has inspired the “process approach” to writing
instruction, which involves transforming classrooms into writing workshops
where students can brainstorm ideas, write drafts, participate in peer response
groups, revise and edit their texts. These kinds of writing experiences have
also found a place within content area classes (including mathematics) as a
result of the “Writing to Learn” movement (Connolly & Vilardi, 1989).
Similarly, reading is now conceptualized as a meaning-making process
involving the negotiation of reader, text, and context (e.g., Rosenblatt, 1978;
Carey, Harste, & Smith, 1981; Goodman, 1984; Siegel, 1984). As in the
new theories of writing, language is not seen as a fixed code for transmitting
the message from author to reader but an open potential out of which the
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reader generates a textual interpretation unique to the context in which it is
produced. Hence, the idea of a single correct meaning for a given text has
been replaced by the expectation that readers’ interpretations will vary. The
instructional implications of these theories can be seen in classrooms where
“whole language” is practiced. (See Harste, Woodward, & Burke, 1984;
Goodman, 1986; Harste, Short, & Burke, 1988; and Edelsky, Altwerger, &
Flores, 1991, for an introduction to the theory, research, and practice of
whole language.)

A mathematics classroom based on the inquiry model outlined in this
section will look quite different from those with which we are most familiar,
as will the use of reading and writing. In the section that follows, we will
report in depth on a specific classroom experience so as to ground our
discussion of the integration of reading, writing and mathematics in an
inquiry classroom.

IMAGES OF READING, WRITING AND MATHEMATICAL
ACTIVITIES IN AN INQUIRY CLASSROOM

The classroom experience we have chosen to report is a three-week
unit on “Taking a Census” developed in a U.S. middle school mathematics
classroom. This experience was part of the “Reading to Learn Mathematics
for Critical Thinking” research project (hereafter abbreviated as RLM), an
interdisciplinary attempt to develop, document, and analyze instructional
experiences that synthesized reading and mathematics in collaboration with
classroom teachers. (See Borasi & Siegel, 1988, in preparation, for a detailed
description of this project.)

The impetus for the unit (which was an independent effort, planned
and carried out solely by the classroom teacher, Lisa Grasso) was the 1990
U.S. Census. Lisa was ready to begin a unit on statistics with her class just
around the time the census was going to be taken and the media was full of
information about this event. Lisa saw this as an opportunity for her stu-
dents to engage in genuine mathematical inquiry while at the same time
learning the rudiments of statistics in a meaningful context. With these goals
in mind, she suggested that, while the U.S. Census was being taken, the
members of the class could themselves design and take a census of their
school.

A crucial dimension of this experience was that the students had full
responsibility for taking the school census, including choosing and formu-
lating the questions to be asked, tabulating and analyzing the responses,
and communicating the most significant results to the rest of the school.
The first phase of the unit thus consisted of designing a questionnaire to be
completed by all the students in the school. To inspire the students with an
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example, Lisa shared some reading material about the U.S. Census—
including brief essays about the history of the U.S. Census, tables and other
diagrams reporting some interesting results from past censuses, and exam-
ples of census forms. Lisa also invited the students to bring to class
newspaper articles dealing with this current event. Over 30 such articles
were contributed and were read and discussed in the first five minutes of
every class.

In the meantime, Lisa asked each student to write down ten questions
that s/he would be interested in asking her/his schoolmates. These questions
were collected and duplicated and, working in pairs, the students were asked
to categorize them. The categories that were generated were written on the
board, and specific questions listed under each category, taking care to
eliminate similar questions. In the class discussion that followed, consensus
was reached as to which ten questions should be included in the school
census questionnaire. The students then collaborated on re-writing each of
these questions and their answers, looking once again at the U.S. Census
forms to see how questions were phrased and answers structured in question-
naires of this kind.

The school census forms were distributed and completed by all the
students in the school, during the morning homeroom period on the day
after U.S. Census Day, 1990. Out of 557 students enrolled in the school,
491 responded to the questionnaire. To involve each student directly in the
analysis of this data, Lisa assigned each student a packet of completed census
forms from a given homeroom. Each student thus became the “enumerator”
for that homeroom, responsible for tabulating the responses of students in
that homeroom, sharing those results with the rest of the class so that school-
wide statistics could be created, and ultimately reporting the results back to
the students in that homeroom.

The tabulation of the school census questionnaire was carried out in
class, both for logistical and pedagogical reasons. To this point, the students
had not had any formal instruction in statistics. This had been a conscious
decision on the part of the teacher; she hoped that in the process of trying to
make sense of the data, the students themselves would develop a need for
statistical concepts and techniques that could then be introduced in a
meaningful and contextualized way. This, indeed, is what happened.

For example, responses to the question “How many people live in your
household?” (1, 2, ... 10) were not easy to tabulate, due to the range of
possible answers, and thus led to the introduction of the notions of frequency
and histograms by the teacher. The concepts of mean, median and mode,
also useful to summarize responses to this type of items, were instead
introduced through the in-class reading of a chapter from How to lie with
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statistics (Huff, 1954). Unlike traditional textbooks, this text presents the
concepts of mean, median and mode in a discursive way, weaving together
technical explanations with significant examples from everyday life. To
facilitate the comprehension of this technical text and help students make
connections with their initial problem, Lisa asked the students to read the
text silently a paragraph at a time, stopping each time to share their comments
and questions with the rest of the class.

The analysis of the data also raised more general questions about
statistics and the potential shortcomings of data collected through ques-
tionnaires. For example, newspaper articles on the problem of “counting
the homeless” as part of the national census raised the question of how
representative their school census data were, considering that a number of
students in the school had not completed the questionnaire. This concern
was addressed through the reading of yet another excerpt from How to lie
with statistics, which dealt with the problem of sampling.

Another important aspect of the unit was the awareness that, in the
end, each student was responsible for reporting back to the students in their
assigned homeroom. To provide some support for this culminating activity,
Lisa required each enumerator to prepare a poster summarizing what s/he
thought were the most interesting results of the census taken in his/her
homeroom, and then to use that poster as a guide for an oral presentation.
Lisa herself prepared a poster summarizing the results of the school-wide
census, and discussed it with the class. While the teacher’s poster provided
a demonstration of how to construct a poster, each student was left to decide
the questions to focus on in his/her poster, what statistics to use so as to
report specific results effectively, what modes of representation to employ
(summary statements, tables, graphs, etc.), as well as how to organize the
information to be both-understandable and attractive. The variety of posters
students produced showed how they took advantage of the open-ended nature
of this task, as well as their understanding of the statistical techniques they
had learned and the information generated by the school census.

IMPLICATIONS FOR INTEGRATING READING AND WRITING
IN MATHEMATICS INSTRUCTION

The experience described above provides evidence of how mathematics
instruction as a whole is transformed in an inquiry classroom. It also illus-
trates some key characteristics of such a classroom, such as: the fundamental
role played by sustained inquiry around a topic of interest to the students;
the students’ involvment in defining the directions of such inquiry; the sup-
portive and instrumental (rather than dominant) role played by the learning
of specific mathematical content and techniques; the collaborative nature
of the students’ activity; the motivating role played by errors and incon-
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sistencies. Reading and writing can play a number of complementary roles
in this kind of instructional context. This section explores three issues in
more depth: (a) the kinds of reading and writing activities mathematics
students can productively engage in; (b) the roles of these activities in a
specific mathematical inquiry; and (c) the ways these activities can help to
establish a learning environment supportive of inquiry.

For this analysis, we will draw mainly on the existing literature on
“writing to learn mathematics” (e.g., Connolly & Vilardi, 1989; Countryman,
1992; Gere, 1985) as well as on the findings of the previously mentioned
RLM project. The Census Unit described in the previous section will often
be used to illustrate our points.

What kinds of reading and writing activities could support
mathematics instruction when approached in a spirit of inquiry?

Possible texts

The variety of texts used in the Census Unit may have been surprising,
especially when compared with the limited range of texts traditionally
employed in school mathematics. Mathematics students can indeed benefit
from reading and/or writing essays, newspaper articles, stories, reports,
tables, graphs, questionnaires, journal entries, and even lists of ideas and/or
questions generated in class discussions—just to name a few. (See Borasi &
Brown, 1985; Borasi & Siegel, 1990; and Rose, 1989, for further sugges-
tions.) Moreover, these texts may deal with a great variety of content,
including technical mathematics, real-life applications of mathematics, issues
in the history and philosophy of the discipline, aspects of classroom dynamics
and instruction, feelings and experiences about mathematics, and even topics
that have little to do with mathematics directly (as in the case of several of
the articles about the U.S. Census read by Lisa’s students).

Significant dimensions of writing

It was not only what the students read or wrote, but also how they did
so, that differentiates the Census Unit from traditional mathematics instruc-
tion. The writing was never done just for the teacher nor just for evaluation
purposes; rather, students always had a very specific purpose and audience,
which determined the content, format, and style of their written product.
One sees, for example, how the construction of specific questions for the
school census questionnaire was informed by the students’ desire to collect
certain information in a form suitable for statistical analysis. In an inquiry
classroom, writing is not only purposeful but generative in that it helps the
author further organize and enhance his/her thinking. Hence, revising one’s
written work is seen as both necessary and valuable, since it provides a
means to reflect on and refine one’s thinking. Similarly, sharing one’s writing
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with others is encouraged since it can provide valuable feedback as well
as contribute a different perspective. Unless the author is at the stage of
“publishing” his/her work, this feedback and the subsequent revisions it
may inspire should focus on the content rather than surface features of the
text.

Significant dimensions of reading

The ways students used reading in the Census Unit may also seem
quite unusual. Except for the readings from How to lie with statistics, the
students did not read primarily to “learn the content” of the text. Students
also read specific texts so as to have a model for their own product (as in the
case of the U.S. Census forms); to find possible connections with their
specific project (as with most of the reading material about the U.S. Census);
to extract relevant data (as they did when they read their schoolmates’
responses to their questionnaire); or to revise their product (as when editing
questions for the school census questionnaire and their posters). These
multiple purposes shift the focus of reading from “recovering the author’s
message” to generative meaning-making. The text then becomes a “spring-
board” for generating ideas, formulating questions, making connections,
identifying limitations of one’s work, as well as gathering relevant infor-
mation.

In order to support this process, reading can no longer be done by in-
dividual students in isolation, nor reduced to “decoding” the text. Rather,
as they read, students should be encouraged to construct and share with
others their interpretations, hypotheses, and connections. Various “transac-
tional reading strategies”, offering concrete ways for students to interact,
have been developed by reading researchers (e.g., Harste, Short, & Burke,
1988; Siegel, 1984) and adapted in our RLM experiences in the context of
mathematics instruction (Borasi & Siegel, 1990, in preparation). The way
Lisa’s students read the excerpts from How to lie with statistics—i.e., in
class, stopping at intervals to talk to each other about what they have read,
raising questions about specific points in the text and making connections
to the inquiry in progress—provides an example of this kind of strategy.

What roles can reading and writing play
within the process of inquiry itself?

As suggested by the Census Unit as well as other RLM experiences,
reading and writing can play some important and differentiated roles at
various points in the process of inquiry. In what follows, we have tried to
identify and briefly discuss some of these roles:
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As the students begin their inquiry, they can increase their under-
standing of the domain being explored through appropriate readings
(a role played by the various materials on the U.S. Census read by
Lisa’s students); writing about their initial understanding of the
domain also helps make explicit what each student already knows
and identifies issues and questions that can make the reading more
productive with respect to the inquiry to be undertaken.

Formulating specific questions to guide inquiry can be supported by
a generative reading of the previously mentioned texts, by looking
at examples of existing questions and problems, and by examining
and expanding upon the initial efforts of individual students to ar-
ticulate their questions in writing.

Brainstorming about ways to explore the question(s) thus identified
can be aided by some preliminary writing in which each student
articulates his/her own ideas; creating a written record of the ideas
generated during the discussion is also helpful.

Mathematical concepts and techniques, as well as other information
necessary to conduct the inquiry, can be learned with the support of
appropriate “reading and writing to learn activities” (e.g. Borasi &
Siegel, 1990; Rose, 1989)—as Lisa’s students did when they learned
the concepts of mean, median and mode.

Whenever the inquiry involves the collection and analysis of data,
reading and writing are employed in specialized ways in order to
extract such data, make sense of it, and report its elaboration (as
illustrated in the Census Unit when the students tabulated and
analysed the responses to their school census).

Preliminary results can be better organized, reflected upon, and
shared with peers when they are put in writing; successive revisions
of this writing can contribute to the students’ elaboration of these
findings.

As the inquiry proceeds, it is important to encourage students to
reflect on the process as well as the product of their activity; in
addition to class discussions, journal writing can be a valuable vehicle
to promote such reflections and provide a natural outlet through
which students can voice their concerns.

Writing becomes especially important when students decide to
communicate the results of their inquiry to outside audiences; in
this case, the main goal becomes organizing one’s results in a clear
and convincing way, though it is likely that this process will also
further clarify the author’s thinking (as certainly happened when
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Lisa’s students prepared their posters); editing is important at this
stage and requires a specialized reading of one’s own text, aimed at
finalizing the clarity and coherence of the argument and refining the
language and style.

* Finally, the generative reading of the students’ final products and/
or other texts connected with the topic investigated can provide new
ideas and help set directions for future inquiry.

How can reading and writing contribute to the creation
of a learning environment that supports student inquiry
in the mathematics classroom?

As argued earlier, inviting students to engage in mathematical inquiry
is not just another instructional strategy to be added on to current classroom
practices; rather, teachers will need to create a learning environment where
students can come to value the new assumptions and social norms associated
with making inquiry. This process will require explicit attention especially
in the first weeks of the course, though reflections and explicit discussions
about the new approach should continue as the students engage in inquiry.
Whether at the beginning of the year, or throughout the process, reading
and writing activities can contribute in complementary ways.

Supporting the articulation and discussion of students’ beliefs

Years of traditional mathematics instruction have led most students to
develop beliefs about mathematics, learning, and teaching that reflect a
transmission worldview (Schoenfeld, 1989; Borasi, 1990); hence, students
may be inclined to reject inquiry as a legitimate way of learning mathematics,
especially if their beliefs are not explicitly addressed. Writing can provide
a valuable way to help students articulate and discuss their beliefs with
others. Writing assignments, such as journals, autobiographical essays,
letters, asking students to report their feelings and experiences about
mathematics (Borasi & Rose, 1989; Buerk, 1981; Tobias, 1989) can provide
a valuable starting point since they reveal some of the students implicit
beliefs and expectations about school mathematics. Making explicit students’
conceptions of mathematics as a discipline, however, may require more
structured tasks—such as questionnaires addressing specific issues regarding
the nature of mathematics, or writing and sharing metaphors that capture
one’s image of mathematics (Buerk, 1981). The power of these activities
can be further enhanced when they are combined with the generative reading
of texts that highlight “humanistic” aspects of mathematics usually neglected
in school—such as its historical development, or applications that show the
role played by context and culture as well as connections with everyday
life.
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Supporting the explicit discussion of social norms

The new social norms implicit in an inquiry model of instruction cannot
be simply imposed by the teacher, but rather need to be negotiated with the
whole class. For many students, however, this kind of discussion may at
first feel strange and intimidating since their input on these issues has never
been invited in school. Writing down feelings and opinions prior to sharing
them publicly can encourage students to participate more actively in these
discussions. Recording the results of these discussions on newsprint, so that
they are available for future reference, also helps validate the students’ voice.

Implicitly establishing new patterns of classroom discourse

There are also more indirect, and yet even more powerful, ways in
which reading and writing practices can contribute to the development of
social norms compatible with an inquiry model in the mathematics classroom.
Whenever students write and share that writing not only with the teacher
but also with peers, new channels of communication are automatically
opened, thus breaking the traditional pattern of classroom discourse in which
communication is channeled through, and therefore controlled, by the teacher
(Cazden, 1986; Mehan, 1979). Students’ voices can also be heard and valued
more when reading is approached as a social and generative activity, where
students are encouraged to bring to bear their own experiences, background
knowledge, and interests, to the task and their intepretations of the text are
considered as important as the original message that the author may have
intended to communicate.

CONCLUSION

Throughout this paper we have argued that language and communi-
cation have a central role in the production of knowledge when inquiry is
understood as socially constructed. Indeed, our classroom research has shown
that reading and writing often become such an integral part of student inquiry
that it is hard to imagine one could conduct meaningful mathematical inquiry
without them. Consequently, reading and writing may appear more trans-
parent and thus invisible in a mathematics classroom grounded in an inquiry
model, while at the same time assuming a much more fundamental role in
the learning of mathematics.

NOTE

The research reported in this paper was made possible in part by a
grant from the U.S. National Science Foundation (award # MDR-8850548);
the opinions reported here, however, are solely the authors’.
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TEACHERS USING VIDEOTAPES AS
REFERENCE POINTS TO ASSESS THEIR STUDENTS

John L. Clark

Toronto Board of Education, Canada

Teachers in the Toronto Board of Education, Ontario, Canada, are using
videotapes as a resource to assess the progress of their students in math-
ematics and language. The Board comprises 113 elementary and 41 secondary
schools with approximately 72 000 regular day-school students, over half
of whom speak a language other than English in their homes. The videotapes
are part of a curriculum resource known as Benchmarks.

For almost thirty years, up until the development of the Benchmarks,
the Board did not have any formal system-wide testing. There were general
guidelines for principals and teachers to use in assessing students and re-
porting to parents. The guidelines stressed daily observation of students as
a vital source of information about student progress. Generally, each local
school, in cooperation with its community of parents, was responsible for
its own assessment and reporting procedures. In May of 1987, however, the
Board mandated the development of standards of student achievement in
mathematics and language at the end of Grades 3, 6, and 8 (ages 8, 11, and
13) to be used by teachers for assessment and reporting. The resulting stand-
ards are known as Benchmarks. The Board intends to develop Benchmarks
for its secondary schools.

DEVELOPMENT OF BENCHMARKS

Staff from the Board’s Curriculum Department worked with practising
teachers to develop assessment tasks. They believed that traditional evalu-
ation schemes were inadequate because they emphasized products of learning
over processes, and therefore did not reflect the emphasis in existing curricula
of active learning and problem solving. They believed that traditional testing
programs did not acknowledge sufficiently the professional knowledge which
teachers have about their students, and were skeptical that student achieve-
ment can be adequately captured in a number or test score. Also, given the
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highly multicultural composition of the Board’s current student population
brought about by recent immigration, they felt that traditional testing
programs placed many students at a disadvantage. Thus the committees aimed
to develop an alternative approach to assessment which was more attuned
to existing priorities for student learning.

The assessment tasks that were developed were based on the official
curriculum prescribed by the Ontario Ministry of Education. They covered
most of the curriculum in arithmetic, geometry, and measurement, and prob-
lem solving was integrated throughout. About one-quarter of the tasks were
traditional paper and pencil type questions, but in most tasks, students esti-
mated, measured, formulated and solved problems, gave oral explanations,
and worked with a wide variety of manipulative materials.

A ten-percent representative sample (about 350 students) was randomly
selected at each of the three grades, 3, 6 and 8. Recently retired teachers
were hired and trained to administer the assessment tasks. They interviewed
each student on the average for about four hours, videotaping about half of
each performance. After the data had been collected, the videotaped
performances were scored holistically by teams of teachers, and the paper
and pencil work was scored in the usual manner.

The results of the assessment were organized into three Benchmark
libraries in mathematics, one for each grade. Each library contains videotapes
and printed information; for example, the Grade 6 library contains twelve
videotape and fifteen print Benchmarks. The libraries provide a rich resource
of information about student learning which teachers of all grades are to use
as reference points when assessing their students.

Each video Benchmark consists of printed information about the task
as well as the videotape itself. The printed information contains a statement
of the objectives of the task, a description of the task, holistic scoring criteria
for each of five levels of performance, and the percentage of students
attaining each level. On the videotape, a narrator provides a summary of the
printed information and, depending on the time taken to perform the task,
there are from one to three sample student performances at each of the top
three levels. The videotape ends with an unrated student performance that
the viewer is invited to rate using the holistic scoring criteria and the
performances viewed previously.

A SAMPLE VIDEO BENCHMARK

The videotape entitled Tell a Story from the Grade 6 library lasting
12 minutes was demonstrated in the ICME lecture. In this task, students
were asked to choose one of three pictures, create a mathematical problem
based on the picture, and state the problem orally. The three pictures were
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of winter Olympic events, six dogs, and a child holding a basin. Following
is a transcription of the problems stated orally by students on the video at
the top three levels (numbered five, four, and three). Also following, for
each level, are the holistic scoring criteria developed by teams of teachers
from an analysis of problems given by all students in the Grade 6 sample.
Student performances rated at levels two and one are not demonstrated on
Benchmark videos, but holistic criteria and percentages are, and are provided
below for this Benchmark. Finally, the unrated problem for this task is
presented below which the viewer (reader) is invited to rate.

Level Five
14% of all students produced level-five problems.

Student A chooses a picture of a child holding a basin and says: The
boy has a bowl. He wanted to find out how long it was around the outside so
he measured the diameter and did the diameter times 7 equals the circumfer-
ence. Whatis ... the diameter is 30 cm and ris ... What is the circumference?

Student B chooses a picture of winter Olympics and says: Hyman
Zerbreggan won 5 medals at the Olympics—3 gold medals, 1 silver medal,
and 1 bronze medal. The silver was worth $50, the bronze was worth $20,
and the gold was worth $100. How much were the medals worth altogether?

Holistic scoring criteria

The student tells a multi-step story problem that involves more than
one mathematical operation. The story problem is logical, creative, realisti-
cally relates to the picture and allows a numerical solution. If units (e.g.
dollars) are worked into the story, they are appropriately chosen and used.
The student sees the task as a challenge and shows a high level of interest
and commitment.

Level Four

29% of all students produced level-four problems.

Student C chooses a picture of six dogs with the caption “Is it 5:00
yet?” and says: It is 4:15 right now and they want to know if it is 5:00. How
long do they have to wait?

Student D chooses the picture of the winter Olympics and says: If
John had 15 friends and % of them went to the Olympics, how many friends
went to the Olympics?

51



ICME-7 SELECTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

Holistic scoring criteria

The student may tell a multi-step story problem with one-digit num-
bers or a one-step story problem with multi-digit numbers. The student
understands the task and relates the story to the picture. Elements of the
picture may be used in original ways. The student is interested and commit-
ted and requires little coaching.

Level Three
28% of all students produced level-three problems.

Student E chooses the poster of six dogs, acts out the characters, and
says: “Is it 5:00 yet? I think so Randolph. Good, she should be home soon.
I am home, puppies—time for supper.” They give out one plate of dog food.
Out of all these six dogs, how would you split the dog food—one plate—for
these six doggies?

Student F chooses the picture of winter Olympics and says: If there
are 22 heads in this picture, and you take away the heads of the athletes,
how many heads would be left?

Holistic scoring criteria

The student tells a one-step story problem which can be solved easily.
One-digit numbers are probably used. The student understands the task but
may present the information and various elements of the story problem
without properly stating a mathematical problem. The student may require
some coaching.

Level Two

16% of students produced level-two problems. There are no demon-
strations of these on the video.

Holistic scoring criteria

The student tells a very simple story with an attempt to incorporate a
mathematical problem, or tells a story problem similar to one modelled by
the evaluator. The story may be garbled, units may be confused, and numbers
may be incorporated illogically. The student seeks hints and approval from
the evaluator. Much coaching is required.

Level One

13% of students produced level-one problems. There are no demon-
strations of these on the video.
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Holistic scoring criteria

Very limited response or no response at all.

Unrated student

The viewer (reader) is invited to rate the following problem. Student
G chooses the picture of the six dogs and says: There were 150 puppies in
the pound and a customer came and bought 126, how many were left?

IMPLEMENTATION OF THE BENCHMARKS

The plan for implementing Benchmarks in schools is long-term and
school-based. Because of the magnitude of what teachers have been asked
to do, it is understood that the complete process will take several years.
During the introductory years, teachers familiarized themselves with the
problem libraries, experimented with the use of Benchmarks in classrooms,
and worked towards their integration into daily practices. The imple-
mentation model is intended to be collaborative; teachers in each school are
expected to work together and share their experiences. To support the
implementation process, principals, teachers and consultants were given
intensive in-service instruction not only on Benchmarks, but also on
strategies for working collaboratively within a school.

There are major differences between Benchmarks and traditional
testing programs. First, the Benchmarks are not tests. They provide infor-
mation about student achievement in the kinds of activities which many
teachers now use in their classrooms for teaching purposes. The Benchmarks,
therefore, combine teaching with assessment so that as students engage in
daily learning activities, teachers can make more informed judgments about
the quality of their students’ work, using the Benchmarks as reference points.

Second, unlike most traditional testing programs, the teachers and
principal of each school are in control of the assessment of their own students
and of how information about students will be reported to parents. Teachers
are expected to work on developing ways in which Benchmarks will assist
them in the assessment of their students. Principals, teachers, and parents
are expected to work together to develop procedures for reporting how well
children are doing according to the Benchmarks criteria. To support the
development of reporting procedures in the local school, a central committee
is developing guidelines, and possible models, for report cards and teacher-
parent-student interviews.

The approach taken to assessment by the Board has predictably met
with difficulties at the implementation stage. One difficulty is teacher
resistance to change. Teachers who value an active approach to learning
and daily observation of students as an important source of assessment

53



ICME-7 SELECTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

information have welcomed Benchmarks as an affirmation of their beliefs
and support for their practices. But, obviously, teachers whose instruction
consists mainly of textbook exercises and skill-based tests tend to resist the
general philosophy and approach of Benchmarks. These teachers view the
program as an additional responsibility, not one which can be integrated
with what they are presently doing.

A second difficulty with implementation occurs in schools where
teachers have been accustomed to working in isolation, mostly behind closed
classroom doors. If there has been no tradition in the school of working
collaboratively, discussing children’s learning, and attempting to improve
teaching and assessment practices, then the program challenges established
patterns of communication in the school and the principal’s leadership.

A third difficulty results from the fact that all of the videotaped per-
formances are in teacher-student interviews and teachers have classes of
many students who often work in groups. It is expected, however, that teach-
ers will make the transition from Benchmark tasks to their classrooms
because many teachers already make individual assessments of students who
do most of their work in groups. Teachers, especially of younger children,
know how to extract information about individual students from whole class
situations through careful observation so that they can tell parents about the
progress of their children. The fact that teachers are able to do this indicates
just what a complex art teaching really is.

Lastly, the overall non-prescriptive and decentralized approach which
the Board has taken to assessment through Benchmarks has engendered some
criticism from parents and teachers who believe in traditional assessment
practices, especially standardized tests, and desire more uniformity across
the school system. Assessment practices are controversial; underlying them
are strongly-held beliefs about the goals of education, and how and what
children should learn in schools.

STRENGTHS OF BENCHMARKS

Although Benchmarks have encountered some difficulties, they have
also demonstrated many important strengths compared with traditional forms
of assessment. First is the enhancement of teachers’ assessment skills.
Because traditional forms of assessment are usually developed and admin-
istered by people outside classrooms, they have had the effect of “deskilling”
teachers. When assessment is done on behalf of teachers, they tend to sep-
arate assessment from teaching. With Benchmarks, however, teachers are
expected to evaluate and refine their assessment practices and are provided
with the resources to do this. For most teachers, the use of holistic scoring
to assess student achievement in any subject is new, certainly in mathematics.
But teachers have learned that it is a powerful method which can assess
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simultaneously many elements of students’ work: knowledge of mathe-
matical content and problem-solving processes, ability to reason and
communicate, and disposition towards mathematics. The advantage of
videotaped student performances is that the viewer can actually observe
how individual students solve problems and apply their knowledge. Holistic
scoring has also been used extensively in the language Benchmarks, and
since most elementary school teachers teach both mathematics and language,
they are learning a skill which can be used to assess students’ oral and written
work in mathematics and in language, and in other subjects as well.

There is research (Ministry of Education of Ontario, 1980) which in-
dicates that the method which elementary school teachers use most frequently
to evaluate their students is observation; teachers observe their students
constantly as they engage in daily classroom activities. Holistic scoring fits
perfectly with observation. As teachers watch students performing tasks on
videotapes, and discuss holistic scoring criteria with colleagues, they sharpen
their observation skills with the result that the judgments that they make of
their own students performing similar tasks become more informed and
systematic. For example, having viewed and discussed the videotape, Tell a
Story, when teachers have their own students generate mathematical prob-
lems, they are better able to judge the quality of the attempts.

Working with Benchmarks has led teachers to examine other aspects
of their assessment practices. One critical aspect which is not very often
examined is the records which teachers keep to document a student’s
progress. In traditional assessment, where tests are the primary source of
information, records frequently consist of what some teachers call “mark
books” in which there is one line per student with a row of marks which
may be averaged or converted to a letter grade. Because of the emphasis in
Benchmarks on observation of processes, teachers are revising their record-
keeping methods so that they can retain more comprehensive information
about each student. Teachers are finding that they need at least a full page
per student, and with the emphasis on student writing, they need ways to
retain samples of students’ written work, so they are also experimenting
with the use of folders in mathematics in ways that they have used in
connection with the teaching of language and art.

A second strength demonstrated by Benchmarks is that teachers are
led to evaluate their own classroom instruction. On the videotapes teachers
see exemplary classroom tasks: students estimating the cost of a restaurant
bill, measuring and pouring water, and solving problems with a calculator.
Teachers may then consider that perhaps they should do more work with
estimation, actually have their students pour and measure water, or let their
students solve problems with a calculator. In this sense, Benchmarks are
not only a resource for assessing student achievement, but also for evaluating
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teachers’ instructional methods. This is the result of Benchmark tasks having
been designed so that they reflect as much as possible good classroom
activities based on Ministry of Education curriculum guidelines. Benchmarks
have operationalized curriculum guidelines so that what is expected of the
students is actually demonstrated and made explicit to both teachers and
parents. Benchmarks have aligned assessment with learning.

Another situation in which Benchmarks facilitate instructional eval-
uation is when teachers from different grades work together with videotapes.
They will almost certainly discuss a task from the point of view of how the
content or the thinking involved in the task might develop from one grade
to the next. For example, a Grade 1 teacher watching Grade 3 students esti-
mate and measure lengths might consider what younger children should be
learning about the concept of length. Also, in any class, students are at dif-
ferent levels of progress so that a Grade 2 teacher, for example, will likely
have students who perform an activity at as high a level as many Grade 3
students. In this way, all teachers are led to think about the implications of
a Benchmark for their own curriculum and students.

A third major strength of Benchmarks is the emphasis on teachers
working collaboratively. The approach taken by the Board to implementation
is school-based where it is the responsibility of the principal to initiate and
support teachers working together with Benchmark libraries. Principals have
reported that they have observed some teachers in their schools for the first
time discussing what they do in their classrooms with colleagues. Collab-
orative work takes different forms. One of the most effective is “self-
reflective cycles”; teachers plan learning activities as a group, experiment
with the plan in their classrooms, and then evaluate their shared experiences.
Such a cycle of planning, experimenting, and evaluating frequently leads to
a new cycle with different Benchmark activities. In this way, teachers engage
in authentic ongoing research into their professional practices.

A fourth strength of Benchmarks is that they provide a vehicle for
teachers and principals to communicate to parents what schools are doing
for their children in mathematics. Parents do not often get good information
about the goals of the mathematics curriculum. Schools are showing the
videotapes to parents, often getting them to try the same activities the students
did. Parents are learning that solving good problems in mathematics using
manipulative materials is not just play. Parents observe some students on
videotapes doing well and others having difficulty, and they have a better
appreciation of how well their own children might do on similar tasks. They
realize that children are at different stages in their intellectual development
and can be helped to move ahead from any level. Parents understand that
teachers can assess their children by observing them in daily classroom
activities.
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Another benefit of Benchmarks, which is only now emerging, is that
better information about children’s progress can be reported to parents.
Schools have been working with the program for two years now and are just
beginning to deal with this most important phase. The primary concern of
parents that initiated the Benchmarks experiment was that there were no
system-wide standards with which their children’s progress could be
compared. Teachers were employing their own benchmarks, which in some
cases embodied standards that were either too high or too low. Principals
and teachers are now exploring how they can report their students’ progress
using Benchmarks as reference points. What is emerging is the realization
that traditional report cards are inadequate to convey the richness of
information that teachers are gaining about their students. Schools are
exploring more creative ways to use parent interviews: for example, having
students not only attend interviews, but also contribute their self-evaluations.
Also, when a teacher now reports on the progress of a student, this judgment
can be substantiated by a broader base of qualitative and quantitative
evidence, and by reference to a set of standards representing achievement
across all schools. Teachers use the descriptive language of the holistic
scoring criteria to report students’ progress both in parent interviews and in
writing anecdotal reports.

Finally, Benchmarks facilitate a more equitable form of assessment.
Many people in our diverse community are critical of the inequity produced
by traditional assessment practices that stress exclusively paper and pencil
tests. They believe that many students who have difficulty answering
questions on such tests could solve problems in real situations or by using
manipulative materials. A strength of Benchmarks is that they have led
teachers to use expanded modes of assessment that allow students to show
what they know through practical demonstrations and discussion in problem
solving situations. The alignment of assessment with teaching and learning
has created greater opportunities for students to demonstrate their abilities.
As teachers explore the use of holistic scoring and foster more active learning
in their classrooms, they are emphasizing in their assessments a broader
range of cognitive and affective components, and therefore utilizing a more
equitable form of assessment.

CONCLUSION

The approach taken to assessment by the Toronto Board of Education
through Benchmarks respects the commitment and professionalism of its
teachers and principals. The Board believes that in the long run, this is the
way to improve the standard of education which it offers to its community.
It believes that educational change is not a matter of paper, but of people.
The overall effectiveness of Benchmarks will not be in the problem librar-
ies—they are simply materials in boxes—but in their potential to be used by
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teachers, principals, parents, and students for the improvement of student
learning. The strengths of Benchmarks lie in the integration of student as-
sessment with human dimensions of education; student learning, teacher
professional development, collaborative communities, and equitable assess-
ment.

NOTE

Further information can be obtained by writing to: The Benchmark
Program, The Toronto Board of Education, 155 College St., Toronto, ON,
Canada, M5T 1Pé6.
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THE TRANSITION TO
SECONDARY SCHOOL MATHEMATICS

David Clarke

Australian Catholic University, Australia

For most Australian children, schooling consists of 7 years of primary
school, followed by 6 years at high school. In the state of Victoria, grade 6
is the last year of primary school, and grade 7 is the first year of secondary
school (high school). Grade 6 classes are taught predominantly by a single
teacher, while grade 7 classes have many different teachers, who each spe-
cialize in the various academic subjects. The transition from primary school
to high school has been recognized for some time as a particularly significant
point in a student’s educational career. This was certainly true for Cathy
and Darren: their experience of the transition from primary school to second-
ary school illustrates the major factors operating at this crucial time.

Cathy and Darren were pupils in different grade 6 classes, in neigh-
boring primary schools. In grade 7, Cathy and Darren began high school as
members of the same grade 7 class. When Cathy was in grade 6 she was
asked, “How good are you at mathematics?” She replied, “Average.” In
response to the same question, Darren said that he was “the best” in his
class. Both Darren’s and Cathy’s grade 6 teachers agreed with their stu-
dents’ estimation of their own competence.

After one year in high school, Cathy and Darren were again asked,
“How good are you at mathematics?” Cathy replied, “I understand every-
thing,” while Darren said, “I’m not smart at maths.” The grade 7 mathematics
teacher thought that Cathy had “high ability” at mathematics, while Darren’s
mathematics competence was “very poor.” These opinions were shared by
Darren and Cathy’s grade 7 classmates. By the end of grade 8 everyone, in-
cluding Cathy and Darren, thought that Darren was poor at mathematics
and that Cathy was very talented.
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This dramatic change in the perceived mathematical competence of
Cathy and Darren might be explained by the relative competence of the two
grade 6 classes from which Cathy and Darren had graduated. Indeed, test
performances of the two classes suggest that the pupils in Cathy’s grade 6
class were far more mathematically able than those in Darren’s grade 6
class. As members of the same grade 7 class, perceptions of the mathematical
competence of Cathy and Darren could be compared in relation to the same
academic environment. However, differences in classroom context do not
explain the fact that throughout grades 6, 7 and 8 Darren’s and Cathy’s
scores on a test of “mathematical ability” and on a test of “mathematical
knowledge” were effectively identical (See Table 1).

Table 1. Mathematics test scores for Cathy and Darren.

Grade | Grade Grade
6 7 8
Ability Cathy 53.5 54 55
Test Darren 51 52 54
Knowledge | Cathy 32 34 33
Test Darren 28 32 33

Given the known errors associated with testing, it is clear that the dif-
ferences in the relative perceived competence of Cathy and Darren cannot
be justified by measurable differences in competence. Further, pupils were
not told their scores on either of the tests reported in Table 1. Student per-
ceptions of their own and their classmates’ mathematical competence were
based upon student participation in class and performance on teacher-
designed class tests. It appeared that in grade 7 minor differences in
classroom and test performance were exaggerated in the process of typifi-
cation (See Clarke, 1986) which led to the establishment of a classroom
consensus regarding the relative mathematical competence of Cathy and
Darren. Table 2 compares the differences in perceived competence with a
class ranking compiled from the final three tests undertaken by the pupils in
grade 7. Perceived rankings were obtained two months prior to the final
testing and illustrate the exaggerated difference in perceived rank already
evident, and suggest the typification process which endorsed Cathy’s
competence and so challenged Darren’s academic self-concept with regard
to mathematics.
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Table 2. Grade 7 class rankings in mathematical competence:
Cathy and Darren.

Grade 7 Cathy Darren
Perceived Rank (self) 10 13
Perceived Rank (class) 4 19
“Actual” Rank 7 12
(from Ability, Knowledge, and
Class Tests — mean rank)

Central to the change in Darren’s perception of his own mathematical
competence was the significance attached to the final class Number Skills
Test. In this test, pupils scoring less than 80% were assigned to special
classes in grade 8 designed to correct perceived mathematical inadequacies.
Pupils scoring more than 80% joined more advanced grade 8 algebra classes.
On the Number Skills Test, Cathy scored 81% and Darren scored 76%.
Although Darren’s perceptions of his grade 7 rank were obtained prior to
the administration of this Number Skills Test, it appeared from subsequent
interview data, that the final test result confirmed for Darren his revised
estimate of his own competence.

From the intensive study of Cathy, Darren and eight other pupils
(Alison, Andrea, Annette, Bernie, Brian, Cameron, Chris, and Davie) four
factors emerged as central to any consideration of student mathematical
behavior during the transition from primary to secondary school. The ten
pupils studied came from four different primary schools, but all ten pupils
commenced high school as members of the same grade 7 mathematics class.
For each student studied, the challenge represented by secondary school
mathematics can be most usefully described in terms of:

* conceptions of mathematical competence;

* the mathematics classroom as social context;

* the individuality of mathematical behavior; and,
* the experience of transition as discontinuity.

Each of these factors is discussed briefly below.
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SECONDARY SCHOOL MATHEMATICS: FOUR FACTORS
Conceptions of mathematical competence

The findings of this study suggest the existence within mathematics
classrooms of a consensus conception of competence to which all partici-
pants, teacher and pupils, subscribe. This conception of competence is
embodied in the construct “good at math”, one application of which is in the
generation of a hierarchy of competence. Such is the degree of consensus
about what behaviors constitute competence that pupils are located in rank
order within the resulting hierarchy with a high degree of consistency across
all participants. Clarke (1986) reported results from both this study and
from related studies, and examined the implications of such a consensus
conception of competence for learning and teaching in mathematics class-
rooms.

In grade 7 Darren was asked, “Would you like people to think you
were smart at mathematics?” His reply illustrated the interdependence of
ability, self-concept and classroom conceptions of competence.

Well, I’m not smart at maths. So it doesn’t matter. I know most of the stuff,
but people don’t think I’m smart at it.

Perhaps the most important feature of Darren’s reply is his recogni-
tion that it is not sufficient to “know your stuff” if your competence does
not receive the sanction of class and teacher. The significance of the math-
ematics classroom as a social context in which such information is exchanged
was a recurrent feature of the study.

The mathematics classroom as social context

Classroom learning is an inherently social process and the meanings
which participants construct from their mathematical activities and their
interaction with teacher and peers are social constructions, the result of
their immersion in the social context that is the mathematics classroom,
embedded, as it is, in enfolding institutional, societal and cultural di-
mensions. Clarke (1987b) reported the impact of social factors on the
mathematical behavior of the children in this study.

Bernie demonstrated the significance of the mathematics classroom
as social context when he attempted to distance himself in class from his
less academically-inclined friends. While Bernie succeeded in improving
his test performances, the quality of his classroom participation, and the
understanding of mathematics displayed in interview tasks, his classmates
continued to describe him as a disruptive underachiever. Unlike Darren,
Bernie progressively overcame the persistence of a typification based on
his behavior at the commencement of high school. Darren, by contrast,
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acquiesced to a typification process which labelled him as both disruptive
and academically unsuccessful. For both pupils the commencement of sec-
ondary school mathematics offered a severe challenge to the positive self-
concepts with which they left primary school.

For other pupils, such as Cathy and Andrea, acquiescence to the class-
room typification involved improved self-esteem and a consequent increase
in the quality of their classroom participation. Despite her heightened self-
esteem and her feelings of success in overcoming the challenge of secondary
school mathematics, Andrea did not display the level of mathematical
competence shown by either Darren or Bernie, either in tests or in interviews.

Clarke (1987b) drew some specific conclusions regarding the social
dynamics of the mathematics classroom:

* A student’s success at mathematics can be constrained by the social
demands of the classroom.

* A teacher’s conception of effective instruction must acknowledge
the need of some pupils for regular personal recognition of their
efforts.

* Mathematics instruction serves to communicate social values and
beliefs which may colour the pupil’s conceptions of the goals of
that instruction and contribute to a more or less productive rationale
for learning.

* Despite the teacher’s pedagogical aspirations, her efforts must be
filtered through the perceptions and expectations of individual
students, whose interpretations of her motives and requirements may
mistakenly reinforce non-productive classroom practices.

* A student wishing to change the nature of his or her classroom
practices may have difficulty if social interactions with the peer group
are predicated on a persistent typification derived from earlier
practice.

* The teacher’s capacity to promote academic effort through value-
modelling will vary with her status as a “significant other” to each
individual student.

It was suggested (Clarke, 1987b) that teacher awareness of the impact
of students’ social concerns on their mathematics learning might be best
maintained through a procedure like the IMPACT program (Clarke, 1987a).

The IMPACT procedure was extensively field-tested in 1984 with 750
grade 7 students in 37 classrooms in 19 schools across Victoria. The
procedure consisted of the completion by students, every two weeks, of a
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brief questionnaire intended to serve both to stimulate student reflection on
their mathematics learning and as a mechanism whereby each student could
communicate confidentially (but not anonymously) with the teacher con-
cerning the learning of mathematics and the experience of the secondary
mathematics classroom. As a result of the 1984 field-testing, the IMPACT
instrument was refined and a revised version included in Clarke (1989b).
This revised version is reproduced as Figure 1.

Name:

Class:
Teacher:

Date:

¢ What was the best thing to have happened in Maths in the last
two weeks?

* Write down one new problem which you can now do.

* What would you most like more help with?

* How do you feel in Maths classes at the moment? (Circle the
words that apply to you).

a) Interested b) Relaxed c) Worried
d) Successful e) Confused f) Clever
g) Happy h) Bored i) Rushed

j) Write down one word of your own ............

* What is the biggest worry affecting your work in Maths at the
moment?

» How could we improve Maths classes?

Figure 1. The IMPACT instrument.
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Samples of student responses can be found in Clarke (1987a, 1989b).
Student responses to questions such as “What is the greatest worry affecting
your work in mathematics at the moment?” were as likely to refer to social
context as they were to academic content.

The individuality of mathematical behavior

Anomalous personal constructions and idiosyncratic conceptions were
documented for all ten students in this study. All students experienced the
same grade 7 mathematics classroom—the same teacher, the same basic
activities. The observed individuality of behavior, despite these common
environmental features, provides a compelling argument for the significance
of the individual’s beliefs, values, conceptions, perceptions, goals and
perspectives.

Every classroom exchange is a consequence of both cognitive and
social factors. The cognitive aspect of student behavior can be described in
terms of mini-procedures, and inferences can be drawn concerning specific
student constructions, such as the meaning Bernie attributed to his diagrams
of fractions. For instance, Bernie consistently employed two mini-procedures
to compare fractions. First, the size of the denominator was invoked through
the rule: “The larger the denominator, the smaller the fraction.” Second, the
meaning of a fraction diagram depended on how many it was seen to be “out
of.” The decision as to how many parts the circle was implicitly sub-divided
into was an arbitrary one in which the size of the denominator gave an
indication of the approximate magnitude of the number of subdivisions, but
did little more than set a lower bound. In practice, this meant that a particular
fraction could be represented by one or more distinct circular diagrams. For
example, thirty-five thirty-sixths might be represented as either greater than
or less than one-half. Interestingly, every diagram was subdivided into
quarters. And these quarters remained inviolate. Other fractions were drawn
in terms of their perceived size relative to multiples of a quarter.

There is an urgent need for explanatory frameworks which do simulta-
neous justice to both the cognitive and the social aspects of mathematical
behavior. It is necessary to conceptualize “mathematical behavior” as a
structured web of behaviors. Figure 2 sets out the structure employed in this
study. This structure was successful in locating, integrating and explaining
data. Particular student behaviors were successfully located within the
descriptive framework. Relationships between behavior samples were
rendered more apparent, since the data, which might have been a collection
of unconnected observations, interview excerpts and test performances, could
be viewed as an array of behavioral elements, whose structure suggested
likely links between data sets. Explanations for behavioral changes could
then be sought in both the data and the emergent relationships.
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Cognitive Mathematical Mathematical (Mathematical
Abilities Understanding Skills and
Procedures)
* Inclinations * Replication
* Cognitive * Association
strategies * Explanation
Mathematical
Performance Individual
Student Practices of
« Task completion Classroom the Learning
— achievement Practices Environment
— competence
Mathematical Conceptions of
Self-concept Mathematics
« self-perceptions * nature of
of ability mathematical (Values
Affective * attributions activity and Beliefs)
* gender * conceptions of
* ethnicity competence
* attitudes
Personal Environmental

Figure 2. The structure of student mathematical behavior.

Certain sub-categories of each element (cell) emerged as distinctive.
Mathematical Abilities were identified with inclinations to specific math-
ematical behaviors, with cognitive strategies, and with the capacity to
function metacognitively, and Understanding of Mathematics was taken to
encompass the successful replication of terms and procedures, the degree
and diversity of association between related mathematical (and non-
mathematical) entities by which a concept or procedure acquires meaning,
and the quality of explanation or demonstration which a student might
provide for a concept or procedure. Self-concept would encompass gender
and ethnicity, as well as self-perceptions of ability, and attributions of success
and failure. Mathematical Performance was identified specifically with task
completion, either as a single demonstration (achievement) or through
reliable and consistent success (competence). Conceptions of Mathematics
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involves student perceptions of the nature of mathematical activity, con-
ceptions of competence, and aspects of attitudes to mathematics. Figure 2
also incorporates the use of Cognitive and Affective, and Personal and
Environmental as meaningful delimiters on the two-dimensional array within
which the elements of mathematical behavior are located. The inclusion of
both Individual Student Classroom Practices and Practices of the Learning
Environment within a student’s mathematical behavior represents a recog-
nition that student behaviors (both thoughts and actions) are shaped,
constrained, mediated and expressed by those social and mathematical
practices sanctioned within the classroom. This point is elaborated below.

It appears common for research in education to focus on one or two
isolated aspects of behavior without making any explicit statement regarding
the theoretical basis for doing so. Relatively complex behavior conglomerates
such as verbal behavior, mathematical behavior, scientific or religious
practices, aesthetic appreciation, the behaviors of social transactions,
instructional practices, and so on, require that the validity of their inde-
pendent study be explicitly justified. For more narrowly defined behavior
categories, such as reading comprehension, spatial reasoning, faith, aggres-
sion, or praise, this obligation becomes a methodological imperative.

If the differences in students’ mathematical behaviors are to be
explained, such explanations must involve the realization of the essential
individuality of the learning process and recognition of the complexity of
the web of behaviors being studied. A model of individual behavior must
refer to more than just the actions, thoughts and beliefs of a single student,
since those actions may only derive their meaning from their contribution
to the realisation of the group’s goals; the thoughts lose significance if
considered in isolation from the thoughts, motives and expectations of others;
and the beliefs lose coherence once considered outside the societal context
which gave them shape. But the boundaries between individual mathematical
behavior, other types of behavior and the behaviors of other individuals
must be clear if the structure is to have integrity. The descriptive framework
of mathematical behavior employed in this study is an example of a minimal
behavior web and of the lowest level of complexity which can justifiably
form the focus of legitimate learning research. Further details of this
argument can be found in Clarke (1992).

Transition as discontinuity

Discontinuity emerged as a crucial element in a general theory of
transition which is detailed in the remainder of this paper. The significance
of transition as discontinuity was graphically illustrated in the case studies
of Cathy and Darren. (See Clarke, 1985, for more detail.) While both Cathy
and Darren were members of the same grade 7 mathematics class, their
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initiation into secondary mathematics was dramatically different. This
difference arose from the personal nature of each student’s experience of
the discontinuity inherent in the transition to secondary school. What is a
challenge and a promise of independence to some students may appear
threatening and coercive to others.

You’re not allowed to be a child here.
(Grade 7 girl, mid-year.)

One inference which might be drawn from the use of ”discontinuity”
as the dominant characteristic of the commencement of secondary school
mathematics is that high school and primary school should be perceived by
students to be very different. Use of a semantic differential questionnaire
enabled the location of these two constructs in a multi-dimensional seman-
tic space, together with other constructs, including the construct “Home.”
Home was included both as a reference point and because discussions of the
transition from primary to secondary school frequently make use of meta-
phors associated with home. Students are described as leaving the security
of primary school where they are known, for the anonymity of high school.

Differences in student perceptions of primary school and high school
and the associated and consequent differences in their responses to the
environmental change of transition can be seen in greatest detail by
contrasting the detailed perceptions of individual students. The semantic
differential offered one means of categorizing the perceptions of all ten
children. This instrument as much as any other demonstrated the idiosyncratic
nature of those student perceptions which influence the choice of behavior
models among adults and peers, and enabled comparisons to be made between
the environments of high school, primary school and home. For instance,
among the ten students central to this research, by December of grade 7 (the
conclusion of the first year of secondary schooling in Victoria), three distinct
perceptions were evident:

a. Alison and Cameron identified both primary and high school as possessing
similar characteristics and as being distinct from home.

b. Brian, Cathy, Chris and Darren perceived primary school and home in very
similar terms, distinct from high school.

c. Bernie, Annette, Andrea and Davy associated high school more closely
with home.

It is inappropriate to identify a particular perception as being most
desirable. Andrea’s very close association of home, high school, my friends
and myself could certainly indicate a successful adjustment to high school.
And Cathy’s very similar perceptions of primary school, home and mother
could be construed as relating characteristics associated with secure, caring
environments. However, Cathy clearly identified the commencement of sec-
ondary schooling with independence and a “coming of age”, and attached a
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high level of personal significance to her successful negotiation of the chal-
lenge represented by secondary school. It would be inappropriate, therefore,
to depict Cathy as longing for the lost security of primary school. It was
possible, however, to identify the key elements which characterized the
challenge of secondary school and secondary mathematics for each student.

Each of the case studies became a stepping stone to more general state-
ments and ultimately to the development of a general theory of transition.
An individual student’s experience of the challenge of secondary mathe-
matics can then be seen as a consequence of the individual’s response to
transition as manifest within each element of the student’s mathematical
behavior. That is, the phenomenon of transition is played out in each aspect
of a student’s mathematical behavior. In the remainder of this paper, the
elements of this general theory are set out and illustrated through reference
to the individual students.

A GENERAL THEORY OF TRANSITION

Any theory of transition must confront those phenomena most fre-
quently associated with the transition experience. The theory proposed here
takes its structure from three key aspects of the transition process, each of
which is embodied in a single word. These are Discontinuity, Challenge,
and Adjustment. In the following discussion, the significance of each term
is outlined and the nature of its contribution to a theory of transition made
clear. Figure 3 is a schematic representation of the proposed theory of tran-
sition in which each key aspect is located in relation to other contributing or
consequent factors. It was the identification of this structure within the case
study data which provided the ‘grounded key’ from which the subsequent
theory emerged. While the theory is dealt with in more elaborate detail in
Clarke (1989a), the following discussion relates structural elements to spe-
cific recommendations.

It is suggested that discontinuity is an inevitable (and defining)
characteristic of transition and the commencement of secondary school math-
ematics, and that the personal discontinuity is experienced by each individual
as a challenge to established roles and behaviors. The consequent (and essen-
tial) process of adjustment may be realized through either acquiescence by
the individual to the expectations and judgements of others, or through a
process of self-realization in which individuals accept responsibility for
their own learning behavior and assert that responsibility through conscious
choice. Institutional and societal pressures encourage acquiescence, with
regression a common result. Case study data demonstrated, however, that
the transition experience can lead to growth through self-realization, and
recommendations are made by which this outcome might be facilitated.
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The Experience

A two-fold
DISCONTINUITY
Child-Adolescent Primary-Secondary
(Personal) (Environmental)

experienced as a
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which may be expressed as either

Opportunity or Threat

necessitating a process of

The Response

ADJUSTMENT

which may be realized through

Self-realization or Acquiescence
(internal control) (external control)
and lead to

GROWTH or REGRESSION

Figure 3. A schematic representation of the theory of transition.
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The key elements: Discontinuity, Challenge and Adjustment, which
characterize the theory of transition set out in Figure 3, can be related in
detail to the experiences of the ten students who provided the focus for this
study. Evidence for the process whereby student behavior adjusted in
response to the challenge of commencing secondary mathematics could be
found in every facet of a student’s mathematical behavior (Figure 2).
However, while the commencement of secondary mathematics could be
characterized as a response to discontinuity with the general structure
displayed in Figure 3, the particular adjustments to an individual’s math-
ematical behavior were highly idiosyncratic. It was not just that each student
responded differently to a common grade 7 experience. Each student
construed the social and academic contexts differently, and the observed
changes in student behavior were a consequence of the dynamic between
the individual’s evolving mathematical behavior and the individual’s
classroom reality. This study has specific practical implications for teachers
responsible for initiating students into secondary mathematics. Discontinuity,
Challenge and Adjustment provide a structure for the discussion of these
practical implications.

Discontinuity

It is inappropriate and unrealistic to recommend uniformity of primary
mathematics curricula as a means to minimize the discontinuity experienced
by students during transition.

Any such proposed uniformity ignores the responsibility of schools to
devise programs to meet the perceived needs of the community in which the
school is embedded. Consideration of cultural, socio-economic and language
factors and the documented differences between school policy and the
classroom implementation of mathematics programs make it clear that such
prescription would be unrealistic. Other factors such as school size, commu-
nity aspirations, and peer group values, standards, behaviors and proficiency
act to ensure that some experience of discontinuity is an inevitable component
of the transition to secondary school.

Primary and secondary school teachers must become better informed about
each others’ beliefs and practices, so that each can implement an optimally
effective mathematics program, with informed consideration of the others’
practices.

The inevitable differences in educational orientation and practice
between the generalist and the specialist require specific acknowledgement
in the teaching practices of both. The nature of the discontinuity was a
function of each individual’s educational and personal history, but two
aspects of secondary school mathematics could be identified specifically
with the experience of transition as discontinuity: language and pace.
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Secondary mathematics teachers, by virtue of their specialist expertise,
have a far greater fluency in the use of formal mathematical language than
their primary counterparts. Teacher explanations of previously met content
using unfamiliar and abstract terms, and textbooks which employ exclusively
technical language with levels of redundancy much lower than that of normal
conversation can serve to render mystical that which was once familiar.

Assessment techniques are required which are sensitive to more than
the recall of a fact or the replication of a procedure. If the abstract struc-
tures of which secondary mathematics largely consists are to be founded on
a meaningful understanding of basic concepts and skills, teachers must
monitor student construction of these abstract structures with a greater sen-
sitivity than has previously been the case. This need is receiving increasing
recognition (Clarke, 1989b).

Secondary teachers of mathematics must be sensitive to the destruc-
tive possibilities of excessive pace of instruction. Equally, more able students
reported finding progress too slow. It may be that other classroom struc-
tures are required: interactive within-class grouping, for instance (See
Yackel, Cobb, Wood, Wheatley, & Merkel, 1990) or that new instructional
practices will better enable teachers to cater to the competency-range (See
Sullivan & Clarke, 1991a, b).

The individuality of each student’s experience of the mathematics classroom
makes it essential that a mechanism be established whereby the teacher can
both monitor and respond to the changing needs of each student.

Such a mechanism has been trialled with some success (Clarke, 1987a).

Challenge

The commencement of secondary school unquestionably represents a
significant challenge to established behaviors and roles. Several of the study
students interpreted this challenge socially and measured the success of their
first year of secondary school in social terms. The first year of secondary
mathematics presented students with few new academic challenges, though
possibly with reminders of earlier defeats. Even though the algebra met
during grade 7 amounted to no more than generalized arithmetic, it appeared
to provide some students with positive learning experiences. This may have
been due to its novelty, the lack of preconceptions as to its difficulty, or the
extent to which its relative sophistication represented a mathematical coming
of age.

The commencement of secondary mathematics offers some students the chance
to experience success in new areas for which past inadequacies represent no
disadvantage.
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The challenge offered by secondary mathematics had an impact on all
aspects of student mathematical behavior. Whether the challenge was
successfully met appeared to depend as much on the social resources
available to the student as it did on individual cognitive capabilities. The
frequent reference to social concerns in students’ accounts of their experience
of the secondary mathematics classroom makes it clear that secondary
schools must view the social adjustment of beginning students as an essential
correlate to their academic progress.

Adjustment

By mid-year 8, all ten study students had indicated their contentment
with the high school environment. All had established a role for themselves
within the secondary school community. The significance of this achievement
was recognized by the study children and represented as such. Not all the
children developed roles conducive to academic success. The differences in
the nature of each student’s adjustment call into question the findings of
studies which draw superficial conclusions of the form, “Most students ...
quickly adjust ... The majority report that they prefer high school.” (Power
& Cotterell, 1981). This superficial satisfaction cannot usefully inform the
actions of those educators concerned to ensure that a pupil’s initial experi-
ences of secondary school maximize the likelihood of that child’s continued
successful participation in all aspects of secondary schooling.

While social adjustment dominated the children’s accounts of the
transition to secondary schooling, a study concerned with mathematical
behavior must address the question of academic adjustment. Academic
adjustment as a goal of the transition process should encompass the
development of mathematical and other academic practices, attitudes and
beliefs optimally likely to lead to continued academic success in the
secondary environment. If “familiarity” was the key to social adjustment,
then ‘continuity’ appeared to have a similar significance in the academic
domain. The negative side of the adjustment process involves feelings of
social dislocation and academic discontinuity. Both are inevitable compo-
nents of the transition process, and the minimization of discontinuity has
already been discussed. However, the challenge offered by new studies in a
new environment can represent a beneficial discontinuity, and the consequent
adjustment can be a process of personal growth for the student. Darren and
Chris responded in very different ways to the loss of role experienced in
year 7, and with very different consequences. While Chris found ways to
establish within the new community something of the status he had held in
the old, Darren acquiesced to a role, determined for him by the high school
community, characterized by a passive approach to learning, a non-academic
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class profile, and by disruptive classroom behavior. The implications for
their continued successful participation in secondary mathematics were very
different.

Both social and academic behavior may be enhanced in a classroom
environment which requires students to accept greater responsibility for their
learning and their social interactions and which offers them strategies by
which they might do so.

CONCLUSIONS

The transition from primary school to secondary school has arguably
become a major ‘status passage’. As the transition from home to school
may be seen as co-incident with the transition from infancy to childhood,
and the transition from school to work co-incident with the transition from
adolescence to adulthood, so the transition from primary to secondary school
is co-incident with the transition from childhood to adolescence.

Schools are concerned, among other things, with cultural maintenance;
however, the increasing multiculturalism of contemporary communities
raises the question of “Whose culture?”. This question takes on a very per-
sonal dimension once it is recognized that mathematics (as one aspect of
culture) is constructed by individuals both independent of formal schooling
and coincident with formal schooling. Studies of the development of math-
ematical knowledge have frequently adopted a product-oriented approach,
where the concern was with the identification of competence levels within
a population, or a clinical approach, where the concern was with the processes
of individual cognition. Neither approach can adequately describe the process
of learning mathematics; in particular, because both fail to give practical
recognition to the social context in which personal mathematics is con-
structed and mathematical competence attained and displayed. This social
context takes in the school as the purveyor of the commodity “school
mathematics”; the home as the embodiment of certain values and beliefs
relating to education and the utility of mathematics; community, society
and culture as enfolding environments; and the mathematics classroom as
the location explicitly identified with the learning of mathematics.

The same effort which secondary schools expend in developing familiarity as
an aid to social adjustment must be exerted in presenting new mathematics
content in ways familiar to the student, drawing on instructional techniques
and cognitive strategies with which the student is already confident.

This approach would involve changes in the nature of communication
in the secondary mathematics classroom, calling for an increase in the op-
portunity provided for students to express their mathematical understandings
and articulate their strategies, and for constructive teacher-student dialogue
about learning to be a regular part of the classroom routine.
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Andrea’s successful negotiation of the passage from childhood to ado-
lescence encouraged an optimistic approach to the academic aspects of
transition. Bernie had the courage to give the academic challenge priority
over social alliances with evident success. The pathways by which students
made their transition to secondary school were many, various, and highly
idiosyncratic. It is clear that a theory of transition cannot prescribe an opti-
mal pathway for any individual. However, this discussion has set out those
factors which appeared to exert the most significant influence. Where pos-
sible, recommendations have been made concerning practices by which the
challenge of secondary mathematics might be more likely to result in a stu-
dent’s personal growth.

The transition from primary to secondary mathematics appears to
involve separate adjustments within the domain of each element of math-
ematical behavior, and these may occur at entirely different times. The
necessity to employ a model of mathematical behavior which provides a
means of relating the environmental and personal with the affective and
cognitive is clear. The most significant finding of this study and its most
emphatic statement concerning the commencement of secondary school
mathematics is that the social and academic adjustments required by
transition are inextricably linked and, in many ways, mirror each other.
Attempts to facilitate student development must acknowledge this.
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MATHEMATICIANS AND
MATHEMATICAL EDUCATION
IN ANCIENT MAYA SOCIETY

Michael P. Closs

University of Ottawa, Canada

The Classic Period of the ancient Maya is usually assigned to the
centuries from A.D. 300 to A.D. 900. After this period, the Maya civilization
continued in existence until the Spanish conquest in the 1540’s. Perhaps the
most brilliant achievement of the Maya was the development of a system of
writing that accurately reflected the sounds of human speech. It consisted
of large numbers of intricate logographic and syllabic signs commonly
referred to as hieroglyphs, or more briefly glyphs. The last independent
Maya kingdom, still using the ancient writing system, was not reduced until
1696.

Diego de Landa, who had joined the Franciscan Order in Toledo in
1540, first came to Yucatan in 1549. In 1564 he returned to Spain to take
part in an inquiry concerning charges about his behavior towards the natives.
Around 1566, while in Spain, he wrote an account of the history and traditions
of the Maya people (Tozzer, 1941). This work includes practically every
phase of the social anthropology of the ancient Maya, much of it supplied
by learned native informants. In particular, it contains the first accurate
information (in a European language) on the principal Maya calendars and
writing system and provides us with some information concerning Maya
education. By 1573, Landa, having been exonerated by the inquiry, returned
again to the New World where he took office as the second Bishop of
Yucatan.

Today we have access to large numbers of pre-Columbian Maya texts.
The inventory includes four screen-fold books called codices, thousands of
carved stone monuments, and thousands of ceramic vessels. The ability to
read such texts was lost within a few hundred years of the conquest. However,
through the painstaking labor of a relatively small number of scholars over
the last century, we are now able to read, in part, the script. Impressive
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advances in decipherment have been made in the last few decades. Although
many questions remain, there is widespread agreement on the linguistic
interpretation of numerous glyphs.

Texts relating to Maya numeration, chronology, calendars, and astron-
omy were among the first to be understood. These texts show that the ancient
Maya employed positional notation and a zero. They also performed sophis-
ticated calendrical and chronological calculations using tables of multiples
and a form of residue arithmetic. Their mathematical virtuosity is best
indicated by their astronomical achievements. A record of a commensuration
of the natural cycle of Venus with their 260- and 365-day calendars has
survived in the Dresden Codex in the form of a five-page Venus table. This
table maintained its astronomical integrity over several hundreds of years
by employing calculation factors embedded within a preface to the table.
A second multi-page table in the Dresden Codex commensurates solar and
lunar eclipses with the 260-day calendar. This table enabled the Maya to
predict potential solar and lunar eclipses, both of which were regarded with
an apocalyptic fear. Again, there are mechanisms in the table that allowed it
to be serviceable over several hundreds of years.

The common notation for numbers in Maya writing consisted of bars
having value 5 and dots having value 1. Combinations of bars and dots were
used to represent numbers from 1 to 19. There were also special symbols
for zero and twenty. In the surviving Maya texts, these numbers were almost
always used for recording chronological counts and calendar dates.

Chronological counts were expressed in two fashions. One method
was to attach numerical prefixes to glyphs representing the chronological
periods involved: k’ins (days), winals (periods of twenty days), tuns (periods
of 360 days), and vigesimal multiples of the tun, most commonly the k’atun
(= 20 tuns) and the baktun (= 400 tuns). The second method employed a
system of positional notation in which the lowest position was reserved for
the k’in count, the next higher position was reserved for the winal count,
and successively higher positions were used for the place values of the
vigesimal tun count. The zero signs were used in both types of represen-
tations.

THE ANCIENT MAYA CURRICULUM

Landa’s manuscript provides some details on the subjects studied by
the ancient scribes during the last few centuries before the conquest. The
archaeological and epigraphic evidence suggest that this information can
be extrapolated back to the Classic Period with considerable consistency.
Landa (Tozzer, 1941: 27-28) describes the scribal curriculum in the following
words. “The sciences which they taught were the computation of the years,
months and days, the festivals and ceremonies, the administration of the
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sacraments, the fateful days and seasons, their methods of divination and
their prophecies, events and the cures for diseases, and their antiquities and
how to read and write with the letters and characters, with which they wrote,
and drawings which illustrate the meanings of the writings.”

The computation of the years, months, and days refers to chronologi-
cal reckoning, that is to the count of tuns, winals, and k’ins. It is perhaps the
most common application of Maya mathematical skills found in the ancient
inscriptions. A second reference to this type of computation is made else-
where, when Landa (Tozzer, 1941: 168) writes that “... this computation of
katuns ... was the science to which they gave the most credit, and that which
they valued most and not all the priests knew how to describe it.” The last
comment is of great import since it tells us that not all scribes were compe-
tent in areas requiring some degree of mathematical specialization. Moreover,
those who had such competence also acquired a higher prestige.

Drawing on our knowledge of the content of the ancient Maya writings
and on Landa’s remarks, it is possible to offer a summary of the ancient
Maya school curriculum. The subjects should be divided into two categories,
according as some mathematical specialization is required for the subject
matter or is not. I would describe the curriculum as follows.

Arts and Letters: agriculture; disease and medicine; drawing and paint-
ing; history; mythology; reading and writing with Maya glyphs; religious
ceremonies; tribute and commerce.

Mathematical Sciences: astronomy; chronology and calendrics; divi-
nation and prophecy; genealogy.

Evidence that there was a similar division in the curriculum during
the Classic Period comes from two sources. One of these relates to the de-
pictions of Maya mathematicians as adistinctive subgroup of scribes, of
which more will be said later. The other is a Classic Maya vessel from around
A.D. 750 showing back-to-back classroom scenes (Figure 1).

Figure 1. Rollout of a Classic Maya vase depicting back to back classroom scenes
(Kerr, 1989: 67).
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Both of the scenes illustrate a patron deity of scribes, Pauahtun,
instructing two students. Pauahtun can be recognized by his aged face and
net headdress. In each case, the first student is the same individual. He is
named in a glyphic caption above his neck and back. The second student is
clearly different in the two scenes.

In the first case, a speech scroll issues from Pauahtun’s mouth and
leads to an initial glyph that can be analyzed phonetically as ta-ta-bi, for
tatab or tatabil, inflections of a verb pertaining to written works or sermons.
In the second scene, Pauahtun is sitting before a folded codex and holds a
paintbrush in his left hand. A speech scroll issues from his mouth leading to
a sequence of bar and dot numerals: 11, 13, 12, 9, 8, 7.

The vessel portrays two different aspects of the scribal curriculum in
a straightforward manner. The first scene pertains to written works (the
literary arts) whereas the second pertains to mathematics. It confirms the
notion that mathematics was regarded as a specialization in scribal studies.

THE EDUCATIONAL ESTABLISHMENT

Landa (Tozzer, 1941: 27) also writes of the organization and function
of scribe teachers in Maya society.

... they had a high priest whom they called Ah Kin Mai and by another name
Ahau Can Mai, which means the priest Mai, or the high-priest Mai. He was
very much respected by the lords and had no repartimiento of Indians, but
besides the offerings, the lords made him presents and all the priests of the
towns brought contributions to him, and his sons or his nearest relatives
succeeded him in his office. In him was the key of their learning and it was to
these matters that they dedicated themselves mostly; and they gave advice to
the lords and replies to their questions. He seldom dealt with matters pertaining
to the sacrifices except at the time of the principal feasts or in very important
matters of business. They provided priests for the towns when they were
needed, examining them in the sciences and ceremonies, and committed to
them the duties of their office, and the good example to people and provided
them with books and sent them forth. And they employed themselves in the
duties of the temples and in teaching their sciences as well as in writing books
about them.

They taught the sons of the other priests and the second sons of the lords who
brought them for this purpose from their infancy, if they saw that they had an
inclination for this profession.

Landa begins his account, by mentioning the sage who presided at the
top of the educational pyramid. His specific reference is to a priest (Ah
K’in) or high-priest (Ahau Can) with the surname Mai. However, the second
title includes the term ahau “lord” and informs us that the person in question
is a Maya noble. This reality is apparent from his relationship to other lords
(who “made him presents” and by whom he was “yery much respected”)
and priests (who “brought contributions to him”). Moreover, it is implied
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by the hereditary nature of the office he held. I will refer to the person
occupying this high office as a scribe lord.

The scribe lord, and the master scribes under him (for Landa lapses
into the plural), rarely dealt with religious matters. They were primarily
educators who “provided priests for the towns when they were needed,
examining them in the sciences and ceremonies”. They assigned to the priests
“the duties of their office” and “provided them with books and sent them
forth”. Above all, they were engaged “in teaching their sciences as well as
in writing books about them”.

Figure 2. A Classic Maya polychrome plate in which the central
image is a scribe lord seated on a throne (Coe, 1977:
Fig. 7, pp. 336-337; drawing by Diane G. Peck).

This late pre-conquest model of scribal organization can also be
extended back to the Classic Period. Indeed, I would argue that the central
figure on a Classic Maya polychrome plate, previously described by Michael
Coe (1977: 336-337), is a frontal portrait of a scribe lord seated on a stone
throne (Figure 2). Coe has suggested that this figure is a young god with
waterlily headdress and a vertical row of death spots on the cheek. I interpret
these spots as personalized scars. In his right hand is a conch-shell ink pot;
in his left hand is a feather pen. Placed above his ear is a deer ear with an
infixed glyphic element often found on scribal figures. Around the sloping
inner wall of the plate are eight figures arranged in four pairs. Dividing two
of the pairs from the other two are jaguar-skin bundles (one seems to be a
throne) with conch-shell ink pots on top. The pair immediately above the
central scene consists of two individuals with deer-like extra ears having
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the same glyphic infix noted above, and with monkey-like features super-
imposed on human forms. Coe refers to these as monkey-men. They gesture
towards what may be a codex. Two of the other pairs are engaged in painting
masks. One member of each pair is a monkey-man, the other being a Fox
God. Both members of each pair wear the extra deer ear with infixed glyphic
element and the net headdresses characteristic of Pauahtun, a patron of
scribes. The scenes around the edge of the plate represent supernaturals
engaged in scribal activities of painting and writing over which the scribe
lord has charge.

A second depiction of the same scribe lord appears on another Classic
polychrome vessel also described by Coe (1977: 332, 336). I would identify
the theme of the vase painting as a classroom scene set in a palace (Figure 3).
On one side, the scribe lord is seated upon the same throne as before but
now in a profile view. He has the same vertical line of spots on the cheek,
the same waterlily headdress, and is likely wearing the same pectoral
ornament. An apprentice scribe is seated on a dais in front of him, and is
shown painting a mask. Seated on the floor, with his back to the scribe lord,
is a Vulture God (?) holding a pen above a closed codex upon which rests a
conch-shell ink pot. I suggest that the scene represents an apprentice scribe
practising his painting skills under the watchful gaze of a scribe lord. The
student may be the son of a ruler since he is shown seated on a dais. The
codex with ink pot and pen are in the care of a supernatural servant of the
scribe lord, probably until the apprentice is ready to begin another stage of
his studies.

Figure 3. Rollout of a Classic Maya vase showing a scribe lord and student
(Kerr, 1989: 39).
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MATHEMATICS IN MAYA ICONOGRAPHY

Mathematics, as a discipline, had sufficient presence and concreteness
in Maya thought that it is incorporated as an element in the iconography of
Maya artists and in the paleography of Maya scribes. An excellent example
of this has already been seen in the pottery scene of the mathematics lecture
(Figure 1). Other examples are found in the Madrid Codex, a pre-Columbian
Maya book dating from around A.D. 1325. The three section almanac on
pages 22d-23d of this codex is a case in point (Figure 4). In the first section,
the Maya god Itsamna, to whom was attributed the invention of writing, is
seated and holds a vessel of black paint in one hand and a brush for painting
or writing in the other. His name glyph and an augural glyph occur above
the scene. The middle section illustrates the death god. His name and an
augury of death appears in the associated glyphic text. The last section
portrays the seated rain god Chak holding a brush and ink pot. The generic
term for “god” and an augural glyph is recorded above the scene.

Figure 4. The almanac on pages 22d-23d of the Madrid Codex.

The brush and ink pot shown in the first and last sections are the tools
of scribes and painters. They are intended to indicate the activities of the
deities wielding them. Of special interest in the last section is a scroll with
bar and dot numerals, coming out of the mouth of Chak. In this instance the
iconography tells us that the rain god is not only engaged in writing but is
doing some specialized writing involving mathematics.

A related almanac on page 23c of the Madrid Codex is also divided
into three sections. The first and the last sections each show a god, Itsamna
and a generic deity respectively, seated in front of a temple and, as in the
above example, holding a paint brush and an ink pot. The middle section
does not have a picture but the glyphic text names the death god as the
protagonist. Interestingly, the initial glyph in the passage, the verb of the
sentence, describes the action that would be represented if there had been a
picture below. Jim Fox (cited in Justeson, 1984: 344) has read this glyph as
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u ts’ib, “his writing, painting.” That reading has since been fully substanti-
ated by David Stuart (1987: 1-11). Thus there is linguistic justification for
the belief that scenes in which figures are holding a paint brush and ink pot
do indicate that the figure is writing or painting.

The almanac on page 73b of the Madrid Codex also depicts the rain
god Chak with a number scroll coming out of his mouth (Figure 5). Once
again he is holding a paint brush and ink pot, suggesting that he is getting
ready to do some mathematical writing or calculation. Such scenes emphasize
that Maya scribes distinguished between ordinary and mathematical writing.

Figure 5. The almanac on page 73b of the Madrid Codex.

That the distinction also existed in the Classic Period is shown by a
polychrome vessel illustrated and discussed by Coe (1978: 106-110). Among
the various deities represented are a pair who are clearly connected with
writing (Figure 6). The deity on the right has the facial features of a monkey
and carries a codex with effigy head in his right hand. The deity on the left
holds one hand to the back of the former figure and carries a conch-shell
paint pot in the other. Of special interest is a vegetative scroll, containing
bar and dot numerals, which emanates from his armpit. There is also a curl,
with single digits, running down from his cheek. Coe describes this pair of
seated deities as supernatural patrons of mathematics and writing. The
existence of such a pair, one with number scrolls and one with a codex,
underlines the distinction which has been made between mathematics and
writing in Maya iconography.
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Figure 6. Gods of mathematics and writing portrayed on a
Classic Maya vase (Coe, 1978: 109-110).

MATHEMATICIANS

The divine patron of mathematics described above is not the only scribe
figure having a number scroll emanating from his armpit. The same feature
is also found on a number of human scribes portrayed on Maya ceramics
(Stuart, 1987: Fig. 12; Schele & Miller, 1986: Pl. 47; Robicsek & Hales,
1981: Vessel 62). This iconographic convention surely marks these scribes

s mathematical specialists.

One Classic Maya vase portrays two seated scribes writing in opened
codices bound in jaguar skin (Figure 7). It may be noted that only the second
scribe has a number scroll emanating from the armpit. This indicates that
while both scribes have been trained in the art of writing, it is only the
second who is a mathematician. The differentiation in the portraits of the
two scribes supports the notion that the mathematical specialists used the
number scroll as a rank symbol to distinguish themselves from other scribes.
This is exactly the type of differentiation implied by Landa’s comment that
not all scribes understood the “computation of the katuns” and that those
who did so acquired additional prestige.

Figure 7. Rollout of a Classic Maya vase showing two seated
scribes (Robicsek & Hales, 1981: Vessel 71).
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Another Classic Maya vase of special interest shows two young scribes,
with distinct facial characteristics, writing in opened codices bound in jag-
uar skin (Figure 8). They have large vegetal scrolls emanating from their
armpits with bar and dot numbers upon them. In the first case, the number
13 is clearly rendered, while in the second case, only remnants of the num-
bers, effaced by erosion, remain. A skyband containing astronomical symbols
in rectangular cartouches runs around the upper edge of the vase. The por-
tion of the skyband above the first scribe begins with a cartouche containing
the symbol for Venus and the portion above the second scribe begins with a
cartouche containing the symbol for Sun. This indicates that the scribes are
indeed engaged in an activity for which mathematical specialization is re-
quired. They are working on astronomical texts. Since the vase lacks a
glyphic inscription, the content of the image must be interpreted through
the iconography alone. This underscores the importance of the skyband and
affirms the hypothesis that the number scrolls are emblematic of mathemat-
ical specialists.

SIS

Figure 8. The vase of the Maya astronomers (Robicsek & Hales 1981:
Vessel 61; drawing by Michael Closs).

A third Classic Maya vase of unusual importance in the present context
exhibits a complex palace scene and lengthy, but for the most part opaque,
glyphic text (Figure 9). The central figure is an anthropomorphic supernatural
with deer ears and hooves seated on a dais. He is apparently being tickled
by a woman standing behind him and is busy vomiting into a bowl held in
one hand by an elderly woman who filters the vomit with her other hand.
Two other women are seated further back on the dais, one of whom is gazing
into a mirror. Facing the central figure is a kneeling scribe mathematician.
In this case the scroll emanating from the armpit contains the sequence 13,
1,2,3,4,5,6,7,8,9.

In the vignette at the upper right of the illustration is the small picture
of a seated scribe. It comes at the end of the glyphic text and appears to be
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added as a final comment. This strongly suggests that it is a self-portrait of
the scribe who painted the scene and text on the vessel. The artifact provides
good evidence that some, if not most, of the Maya vessels with scribe scenes
portray contemporaneous individuals and not supernatural entities.

Figure 9. A Classic Maya vase showing vomit scene and
scribe mathematicians (Clarkson, 1978: Fig. 5).

Persis Clarkson (1978) has described the scribe in the vignette as a
woman. She is depicted with a number scroll emanating from her armpit,
writing in a codex. The scroll identifies her as a mathematical specialist.
The last glyph in the associated text is a title read as Ak Ts’ib, “The Scribe”
(Stuart, 1987: 2). Given the likely syntax of the text, the name of the scribe
should precede the title. If this is the case, then we have both the name and
the portrait of a mathematician. It is remarkable that the first mathematician
to be identified in this way among the ancient Maya is a woman!

The existence of female scribes among the Maya is attested by yet
another ceramic vessel that has been examined by the author (Closs, 1992).
The glyphic text on this artifact includes a parentage statement in which the
mother is a noble woman called “Lady Scribe Sky, Lady Jaguar Lord, the
scribe” (Figure 10). Not only does she carry the scribe title at the end of her
name phrase but she incorporates it into one of her proper names, an
indication of the importance she herself placed on that reality.

Figure 10. Lady Scribe Sky, Lady Jaguar Lord, the scribe
(drawing by Michael Closs).
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LES MATHEMATIQUES
COMME REFLET D'UNE CULTURE

Jean Dhombres

Université de Nantes, France

Culture : quoique peu souvent prononcé, voila bien un mot qui pourrait
servir de banniére sous laquelle rassembler la plupart des questions soulevées
al'occasion du septi¢éme Congrés international sur I'enseignement des mathé-
matiques. C'est précisément parce que les mathématiques constituent une
composante fondamentale de la culture, dans ses modes d'expression, dans
ses représentations comme dans ses ressorts cachés, que leur enseignement
souléve tant d'intérét, tant de passion, mais aussi tant de difficulté. Culture
et non technique puisque, tout comme la musique, la mathématique n'est
pas réductible a un solfege.

Or elle fait partie du savoir élémentaire de ceux qui ont suivi une
scolarité, et méme s'il faut sans cesse rappeler que dans le monde d'aujour-
d'hui encore bien des hommes et des femmes n'ont pas eu cette opportunité,
l'installation des mathématiques a la base de toute formation est un fait
majeur de civilisation. Par contraste, soulignons que dans les colleges
frangais d'il y a un peu plus de deux siécles, la mathématique se présentait
toujours comme optionnelle. Ni Robespierre ni Talleyrand n'en fréquentérent
les bancs. A la méme époque, aux Tripos de Cambridge, résoudre une équa-
tion du second degré relevait de la performance !

Parce que les angles d'attaque sont trés nombreux — la vitalité de la
didactique des mathématiques en témoigne lors de ce congrés tenu a
Québec — mon propos ne saurait étre une analyse des conditions de I'inté-
gration culturelle des mathématiques dans la société d'aujourd’hui, quand
bien méme je me résoudrais a adopter une perspective historique, laquelle
m'obligerait tout aussitot a parler de sociétés au pluriel. C'est dans une direc-
tion tout autre que je vous convie a porter le regard, comme un retournement
méme de la problématique habituelle.
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Retournement sur le fond, car au lieu de chercher l'expression des
mathématiques dans la culture générale, c'est dans leur coeur méme que je
vous propose de lire les modes culturels d'une époque.

Retournement dans le temps, car c'est dans le monde baroque des XVI®
et XVII€¢ siécles que je vous invite 2 un voyage, un monde réduit a I'Europe
pour ne pas faire trop long.

Mais deux mots encore avant le départ, en guise de précaution. En
associant mathématique et baroque, en visant une époque bien déterminée
de I'histoire, un siécle et demi entre le sac de Rome par les lansquenets de
Charles Quint en 1527 et la fondation des grandes académies scientifi-
ques vers 1660, je vise aussi et simultanément une science. Et j'associe cette
science a 1'histoire d'une fagon particuliére puisque, 1'adjectif baroque I'an-
nongant, je vais évoquer un style. Dans ma ligne de mire, il y donc une
forme.

MATHEMATIQUES ET HISTOIRE : UN COUPLE ANTAGONISTE

C'est grace a cette forme — ou a ces formes — qu'une époque — 1'¢re
baroque — put exprimer des faits, des résultats, des raisonnements, décrire
des objets, faire du nouveau ou refaire de l'ancien dans I'ordre mathématique.
Je n'ai alors besoin d'aucune précaution oratoire pour me défier de 'analogie,
causalité ou corrélation, des mathématiques a l'art ou de I'art aux mathéma-
tiques, puisque j'ai établi mes barriéres a l'intérieur d'un seul champ, celui
de la mathématique.

Certes, la forme, le regard qu'on lui porte, le discours qui la décrit,
c'est ce qui appartient trés certainement au critique d'art, au commentateur,
j'allais dire plus simplement au consommateur. Et je brille d'envie de vous
rendre consommateur de la mathématique des années 1600 et suivantes. Ma
subjectivité se servira d'outils artistiques, de critique artistique dois-je aus-
sitdt corriger, pour viser, pour rendre compte de ces mathématiques, ou
plutot de certaines de ces mathématiques seulement (car vous vous doutez
qu'il y a un choix). Je ne requiers donc nulle antériorité de la science sur
I'art. On peut tour a tour les valoriser en certaines occasions; hic et nunc, je
ne soutiens pas l'une par l'autre.

Autre versant, trop classique, forme et contenu. Il est clair, au moins
pour moi, que si je traite 'ccuvre de science comme une ceuvre d'art, comme
une construction manifestant un style, une architecture par laquelle s'engage
un homme seul — l'auteur — ce n'est nullement pour refouler le contenu.
Ma démarche reléve d'une quéte épistémologique sur les procédures et les
imaginations par lesquelles fut, une fois, posé puis approprié ce qui est
devenu un patrimoine scientifique, patrimoine nécessairement banalisé et
réduit par la pratique scolaire.
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De la géométrie algébrique dont il va étre question, en un sens bien
différent de celui aujourd'hui adopté, j'entends faire une unité stylistique,
c'est-a-dire que je me refuse a la réduire a ses deux composantes, géométrie
et algebre, car un ou des hommes incarnés dans l'histoire la pensérent de
cette fagon unitaire.

Le « comment » de 1'origine de cette géométrie algébrique n'est donc
nullement la géométrie algébrique toute préte, telle qu'on l'enseigne et la
pratique aujourd'hui. Ce « comment » est l'atteinte d'une conscience initiale
qui fut en méme temps une intuition d'essence et détermina un horizon.
Deux faits irréductibles sont en présence : le projet et l'effectuation de la
géométrie algébrique se déroulérent dans la conscience subjective de ou
des inventeurs, dans leur univers spirituel d'une part. D'autre part, la géo-
métrie algébrique n'est pas dans la seule existence psychique : elle n'est pas
existence de quelque chose de personnel dans la sphére de la conscience ;
elle est désormais existence d'un étre-1a, objectivement, pour tout le monde.

Voila deux extrémes qui doivent encadrer notre voyage, all the way.

MARQUES EXTERIEURES DU BAROQUE
ET DU CLASSICISME EN MATHEMATIQUES

Style, ai-je annoncé. Qui, se penchant sur les années 1630-1650, ne
consentirait a reconnaitre au moins l'opposition entre une mathématique
« grasse » ou « copieuse » et une mathématique « maigre » ? Comment ne
pas soupeser en effet d'un coté les 1225 pages in-folio du P. Gregorii a
S' Vincentio Opus geometricum quadrature circuli et sectionum coni decem
libris comprehensum!, et de 1'autre les quelques feuillets de La géométrie
de Descartes (ouvrage paru dix ans plus tot a Leyde?) ? D'ailleurs, le jugement
du Frangais sur l'ouvrage de Grégoire de Saint-Vincent s'engage précisément
dans le sens d'une condamnation de 1'obésité :

[...]je n'ai encore rien rencontré dans tout ce gros livre, sinon des propositions

si simples et si faciles que l'auteur me semble avoir mérité plus de blame
d'avoir employé son temps a les écrire, que de gloire a les avoir inventées3.

Tous les contemporains soulignent cette opposition : Mersenne,
Huygens, Roberval, etc. Baroque contre classicisme ? Nous n'en sommes
pas la ; j'ai prévenu d'entrée de jeu que je ne m'arréterais pas a des formes
extérieures, quoiqu'elles aident cependant i classer.

Ouvrage paru chez I. et I. Meursios, 2 Anvers en 1647, et copieusement illustré.

Le Discours de la méthode occupe 78 pages. La Géométrie, qui est « un des
Essais de cette méthode », couvre 117 pages, sous un format réduit.

Lettre du 9 avril 1649 de Descartes 4 van Schooten, Correspondance, Euvres de
Descartes, A. Adam et P. Tannery (éd.), Paris, t. III.
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Ne cédons pas non plus a la tentation de réduire la comparaison des
deux ouvrages 2 une différence d'acuité intellectuelle qui serait manifestée
aujourd'hui par la différence de renom : si elle est facile a constater, I'épais
ouvrage du jésuite flamand n'en contient pas moins la premiére démonstration
du comportement logarithmique des aires sous I'hyperbole (un résultat tout
A fait remarquable sur le plan purement technique et de portée théorique
notable), ainsi que la résolution du paradoxe de Zénon — celui d'Achille et
de la tortue — par sommation de séries géométriques infinies (une premiére
mathématique indéniable, grosse d'une longue tradition philosophique). Le
lourd in-folio d'Anvers comporte également un traitement des cubatures au
moyen d'un procédé nouveau, le ductus, procédé propre a préparer — ce qui
ne veut pas dire inventer — le calcul intégral, et en tout cas a familiariser
les esprits avec la géométrie dans l'espace, deux domaines notablement
absents du si petit et si remarquable traité de René Descartes. Tout cela était
apprécié des contemporains.

Derechef, entrons dans l'explication de la résolution mémorable du
paradoxe de Zénon. Elle débute par une expérience quasiment visuelle de
géométrie.

LA GEOMETRIE PREMIERE

Le donné que Grégoire de Saint-Vincent donne a voir est un triangle
OAB avec choix arbitraire d'un point C entre les points A et B, point déter-
minant une sécante OC. De C, on méne une paralléle au coté OB coupant le
coté OA en A, puis une paralléle 2 AB coupant OC en C,, puis une parallele
a OB, puis une paralléle a AB, et ainsi de suite. Alternativement sur le c6té
OA et sur la sécante OC, deux familles de points sont ainsi établies A, A,,
A, A, Ag ete C,C,,C,, C, etc. De méme, en prolongeant les paralléles,
intervient sur AB une famille A, C, D,, D;, D,, etc., et sur OB une autre
famille B, B,, B;, B,, etc.

Tirant parti de la double famille de droites paralléles, une multiple
application du théoréme, dit de Thalés en France, fournit itérativement la
stabilité du rapport*

4 En repérant 'usage du théoréme de Thalés par des triangles, on a en effet :
AC _ OA :
A,C; - OA, (triangles OAC et OA,C;)
ocC
0oC,
OA,
OA;
_AG
AyCy

L'itération est acquise puisque OA, - 0C, (triangles OA,C, et OA;C;),

(triangles OAC et OA,C,)

(triangles OA,C et OA;C,)

(triangles OA,C, et OA;C;).
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AC _AGC _AGC
A,C, AC;  ALC,

Par conséquent, on obtient autant de progressions géométriques’ sur
les droites OA, OB, OC ou AB. Qui plus est, la figure géométrique décom-
pose le continu ou segment AB selon un empilage de segments visuellement
distincts AC, A,C, (= CD,), A,C, (= D,D,), etc. Il en est de méme pour le
continu OB, décomposé en A,C (= B,B), A,C, (= B;B,), A,C, (= B,B,), etc.
Cet empilage est une somme — infinie. Dés lors, a partir de ses deux seuls
premiers termes, il n'est plus difficile d'évaluer en toute généralité la somme
d'une progression géométrique que 1'on écrit aujourd'hui avec des points de
suspension :

AB=AC+CD2 +D2D3 +D3D4 +...
=AC+A2C2 +A3C3 +A4C4 +... .

0

Aq By
As Cs \ B;
IWANN B,

Cs
A, /\m B,
C,
b C D,

A,
VANAN
D

D, D, D

Figure 1

En effet, la stabilité du rapport ﬁgz’ puis celle du rapport® Ai‘gz ,

en se transmettant sur la droite AB, fournit 1'égalité :

CB = D,B" o)
Le calcul est itératif :
CB _D;B_
2B D3;B

5 Proposition 70 du livre 2 de 'Opus geometricum. On a bien sir (en écriture

moderne) A C, = x"~! AC pour n = 2.

6 Griace aux triangles OAB et OA,B,.
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La proportion (1) se transforme en

AB_ AB-CB _ AC

CB~CB-D,B_CD,’ 2
que 1'on modifie a son tour en tenant compte du premier et du dernier rapport
en

AB-CB _ AC-CD, (3)
AB AC
Finalement, la somme AB de tous les termes d'une progression géo-
métrique dont les deux premiers termes sont AC et CD, s'obtient a partir
d'une moyenne géométrique ol ne jouent que ces deux termes :

AC AC-CD,
AB~ T AC - )
Grégoire de Saint-Vincent énonce a la proposition 80 du livre 2 de son
Opus geometricum : « la totalité est troisi¢éme proportionnelle de la différence
entre les deux premiers termes et du premier terme ». Telle est la rhétorique
usuelle pour I'énoncé d'un résultat qu'un moderne a plutdt tendance a écrire
sous la forme

__ AC?
AB=Z¢_CD; - (5)
En vue d'une lecture géométrique, Grégoire de Saint-Vincent pose
AD',= AC - CD,, c'est-a-dire construit le point D', a l'intersection avec la
droite AB de la parallele 3 OC menée par A, .

AC = /AB-AD;] .

Obnubilés par le seul résultat — la formule de sommation (5) — nous
ne mesurons peut-étre plus aujourd'hui la force manifestée dans l'expérience
visuelle donnée par la seule figure 1, cet empilage itératif de segments, et
nous nous laissons prendre par les quelques calculs supplémentaires.
Torricelli utilise 2 son tour le méme dessin dans un manuscrit ot il traite de
la série géométrique’. Indéniablement, il y eut en ce début du XVII® siecle
une présence sous forme répétitive de représentations géométriques qui par-
lerent a l'imagination du mathématicien.

Ce pourrait donc n'étre que banal — un jeu du temps — si Grégoire de
Saint-Vincent n'entreprenait pas tout aussitot une démonstration entiérement
analytique de la relation (4), démonstration qui devrait avoir pour but de
renier aussi bien le dessin que la géométrie qui le porte. Or, et c'est ce qui
est particulierement significatif, il ne gomme pas le dessin, il ne le présente

7 Opera di Evangelista Torricelli, G. Loria e G. Vassura (ed.), De dimensione
parabolz, vol. 1, Faenza, 1919, pp. 147-148.
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ni comme seulement préparatoire, ni comme artifice pédagogique. Une
attitude didactique — I'indication d'un cheminement de l'intellect, du sensible
figuré a l'abstrait calculé — serait pourtant justifiée puisque Grégoire de
Saint-Vincent est un enseignant : toute sa vie se déroule dans le cadre édu-
catif mis en place par les Jésuites, les colléges ou les maisons de formation
de 1'Ordre, que ce soit 2 Rome au Collége romain, a Anvers, 2 Prague, 2
Louvain, ou a Gand o il se retira enfin. Si en toute conscience Grégoire
donne simultanément et le dessin et la démarche analytique, c'est que cela
convient a sa facon scientifique, et son discours explicatif doit se lire comme
révélateur d'une attitude culturelle : la profusion — le mélange des genres —
est la forme qu'il choisit pour annoncer ce qui sans doute aucun est un résultat
original.

Mais il ne s'agit nullement d'un désordre de la pensée chez l'auteur
jésuite, pas plus que la cohabitation du droit et du rond, de l'arc et de sa
troncature, ne défigure la fagade du Gesii de Rome dont I'effet de masse est
garanti®. Car, 3 bon escient, le dessin de la figure 1 apparait presque isolé et
créant la surprise dans le livre 2 de I'Opus geometricum, un livre qui de fait
est dédié a I'algebre. Non pas certes l'algébre polynomiale dont Descartes
allait faire le pilier de sa méthode, mais une algébre trés particuliére, celle
que les siécles avaient dégagée 2 partir du livre V des Eléments d'Euclide,
c'est-a-dire l'algébre des proportions®. Une des identités les plus familiéres
de cette algebre, aussi banale qu'aujourd'hui le

a?-b? =(a-b)a+b)
était la séquence

a_c_atc (6)

Une séquence qui ne s'écrivait pourtant pas, et se pronongait : « Si a
est 2 b comme c est a d, alors a est 3 b comme la somme des antécédents i
la somme des conséquents. » Nous avons vu les effets de cette facon de
procéder avec le passage des relations (1) a (2) et a (3). C'est souvent dans
le cadre de cette seule algébre que d'autres auteurs inscrivent le résultat
manifesté par (4). La formulation (5), qui est déja présente chez Vietel?, est
reprise comme chose désormais bien connue par Fermat dans un texte écrit
vers 1657 et dont il avait communiqué beaucoup plus tot les résultats a
quelques amis sous la forme :

Due a Giacomo della Porta en 1575, cette facade termine 1'édifice construit par
Vignola en 1568.

J. Dhombres, Nombre, mesure et continu, épistémologie et histoire, Nathan,
1978.

F. Viete, Variorum de rebus mathematicis responsorum libri VIII, Turino, 1593 ;
Opera mathematica, Leiden, pp. 347-435.

10
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Etant donnée une progression géométrique dont les termes décroissent 2 l'infini,
la différence de deux termes qui constituent cette progression est au plus petit
terme, comme le plus grand des termes de la progression est a la somme de
tous les autres a l'infini!l.

En fixant les deux premiers termes — alors que Fermat laisse la liberté
de deux termes successifs — cette formulation indique

AC-CD, AC

CD, ~AB-AC’

dont il était immédiat de déduire par les régles des proportions la formule
(5), du moins :

__AC___AB
AC-CD, ~AC"

C'est pourtant dans ce monde résolument « algébrique », ol les seules
éventuelles figures sont des segments de droite alignés, qu'en un impromptu
d'autant plus visible intervient le dessin itératif de la figure 1 chez Grégoire
de Saint-Vincent. L'effet est aussi saisissant que le trompe-1'eeil du Bramante
a San Satiro de Milan.

L'ONTOLOGIE ANALYTIQUE

L'effet ne vaut pas preuve, mais il la souligne. Porté par un habitus
culturel, le mélange opéré par Grégoire de Saint-Vincent a un sens ou, autre-
ment dit, 1'effet figuratif ne fait sens que dans la mesure ot il est accompagné
par la démarche analytique. Cette derniére procure un théoréme d'existence,
et c'est ce qui est tout a fait exceptionnel dans la mathématique du XVI° et
du début XVII¢, une existence dont précisément la géométrie n'a pas a
s'encombrer. Par contraste, tel est bien 'effet recherché qui favorise la prise
de conscience d'un requis nouveau. La formulation quasiment scolastique
du théoréme indique suffisamment I'importance philosophique attribuée a
la premiére proposition analytique que nous traduisons :

Si l'on a une grandeur AB qui soit 2 la grandeur BK comme la grandeur BCa

la grandeur CK, je dis que la proportion de AB a BC peut étre poursuivie en

acte sans terme final a l'intérieur de la grandeur AK, de telle maniére qu'elle
ne parvienne jamais a K 12,

A B C D E F K

Figure 2

11 De zquationum localium transmutatione et emendatione ad multimodam cur-
vilineorum inter se vel cum rectilineis comparationem, cui annectitur proportionis
geometrice in quadrandis infinitis parabolis et hyperbolis usus, Euvres de
Fermat, P. Tannery, C. Henry, (éd.), Paris, Gauthier-Villars, t. I, pp. 255-288.

12 Opus geometricum, livre 2, proposition 75, p. 95.
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En somme, si nous revenons a la figure 1, il s'agit de démontrer que,
sous la seule régulation itérative, les points A, A,, A,,... ou les points C, C,,
C,,... n'atteignent pas le point K. En I'occurrence, et portée sur une seule
ligne, la régulation est devenue

Gy BCCD~DE~

Grégoire de Saint-Vincent, minutieusement, prouve!3 que si les quatre
points A, B, C et K sont placés sur une méme droite de sorte que

AB _ BC

BK ~ CK' @)
les points suivants D, E, F, etc., calculables pas a pas par la formule (Gy),
sont tels que

CD < CK, DE < DK, EF < EK, etc.

Naturellement, cette insertion selon (G,) de points situés avant K ne
donne pas le point K lui-méme, point qui a d'ailleurs été a priori construit
par la relation (7). Pourtant, l'objectif de toute la démarche consiste 2 obtenir
K a partir de (G,) seulement car on « voit » comment les points successifs
s'en approchent. De sorte qu'une opération nouvelle doit entrer en jeu,
l'attribution d'un « terme » a une série, une opération qui donnera un sens 2
I'écriture interminée :

AK = AB+BC+CD+:--. (8)

La définition est magistrale : « Le terme de la progression est la fin
des séries a laquelle s'il nous est permis de poursuivre a l'infini, aucune
progression ne peut aboutir, mais a laquelle il est loisible d'accéder d'aussi
prés que de n'importe quel intervalle donné »'4. C'est, en latin, exactement
le langage des ¢ et des 8 qu'adoptera Weierstrass au XIX® siécle, et nous a
sa suite. Pour que (8) soit justifiée, il suffit avec cette définition de montrer
que la suite des longueurs BK, CK, DK, etc., tend vers 0, c'est-a-dire qu'elle
peut étre rendue inférieure a tout segment donné. Grégoire de Saint-Vincent
n'a aucun mal a fournir cette preuve.

LES OPPOSITIONS BAROQUES

I ne s'en contente pas, ou plutdt jouant comme avec 'opposition précé-
dente entre un dessin et un calcul, il use — procédé véritablement baroque —
d'une nouvelle confrontation. Celle-ci prend comme antagonistes (G,), que

Pour une traduction et un commentaire de la preuve, voir J. Dhombres, Les pro-
gressions de l'infini : réles du discret et du continu au XVII¢ si¢cle, Actes du
colloque L'infini en mathématiques, Brest, mai 1992, 57 p.

!4 Définition 3 du livre 2 de I'Opus geometricum.
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je peux qualifier de régle discréte d'une part's et la régle (7) étendue sous
une forme que je veux qualifier de reégle continue :

AK _ BK _ CK
(Go)

BK CK DK

L'opposition est naturellement dans le fait que, selon (G,), le point
ultime K n'intervient pas : on construit « discrétement », pas a pas, les points
successifs qui correspondent a des termes de calcul et en s'ajoutant donnent
AB, AB + BC, AB + BC + CD, c'est-a-dire a, a + ax, a + ax + ax?, etc., avec
notre notation algébrique contemporaine. Alors que, selon la formulation
(G,), le « terme » K apparait dés le départ pour successivement définir les
points C, D, E, etc. De sorte que dans la définition (G_) le continu AK est
fondateur de la division AK, BK, CK, qui donne ensuite, mais seulement
ensuite, AB + BC + CD + - .

L'opposition est d'autant plus forte que (G,) et (G,) sont des régles
logiquement équivalentes. La démonstration de cette identité n'est autre
qu'une application de la loi opératoire (6) adaptée aussi bien sous forme
soustractive. En effet, a partir de (G_) il est facile de calculer

AK-BK _BK-CK _CK-DK _. .

BK CK DK ’
soit
AB_BC_CD_ . .
BK CK DK

En échangeant les termes m(ﬁfens dans la premiére proportion des
égalités précédentes, on a F(]é—:g_K et la régle (6) a nouveau appliquée
fournit

AB _ AB+BK _ AK

BC BC+CK BK"

Par itération, on déduit aussitét (G,), prouvant d'ailleurs que la raison
de la progression croissante AB, BC, CD, etc., est la méme que celle de la
progression décroissante AK, BK, CK, etc. Réciproquement, si l'on part de
(Gy), et l'on prend soin de définir K par la relation (7), alors on déduit
facilement (G _). Mais définir K par (7), c'est aussi bien construire le « terme »
de la série (8), ou bien appliquer (4). En termes modernes, c'est user de la
sommation ol n'interviennent que le premier terme et la raison de la
progression :

(©) e

n=

15 (C'est ce qui justifie l'indice d dans (G,).
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Une lecture trop rapide de Grégoire de Saint-Vincent, notre lecture
modernisante, consiste a réduire!® tout son discours a la preuve de (G). Or
le style méme adopté par le professeur jésuite consiste a juxtaposer les équi-
valences (G_) et (G,), en profitant de I'opposition entre ce qui est construit
et ce qui est donné. Michel-Ange nous surprend de la méme facon par ses
fréles demi-colonnes encastrées au rez-de-chaussée des arcades du palais
des Conservateurs sur le Capitole 8 Rome : la surprise vient de ce qu'elles
ne supportent rien, ce qui magnifie d'autant 1'équilibre des masses par rapport
au premier étage, et contraint l'eeil a l'intelligence du batiment. Ici, dans
I'Opus geometricum, c'est la rencontre de deux horizons qui porte la compré-
hension. Coexistent I'horizon du discret continué (c'est la relation (G)) :
« J'appelle progression géométrique la succession d'un nombre quelconque
de termes selon la méme raison » et 'horizon du continu morcelé (c'est la
relation (G,)) : « I'appelle série géométrique une quantité finie, divisée en
succession ininterrompue, selon une raison donnée quelconque ». Nous
sommes tellement habitués a4 la premiére définition que la seconde nous
parait inutile !

Or, Grégoire ne présente pas un discret qui serait sommé, mais un
continu dont seul le découpage est discret ; c'est tout le sens originel de la
figure 1. Il fait alors voir le discret continué et, en plus, il prouve un théo-
réeme d'existence : le « terme » de la somme. L'emphase est donc nette : une
somme infinie ne peut étre considérée comme simple extension du cas fini ;
il y faut la détermination d'un objet mathématique. Cependant, Grégoire ne
fournit pas sa lecon en une glose et c'est la juxtaposition de I'analytique
contre la géométrie qui la fait ressortir.

Il ne tranche pas pour autant au profit de 'analytique. Chez Grégoire,
continu et discret restent a parité. Doit-on vraiment clore ce qui doit passer
pour une mise en perspective ? Dans le Mariage de la Vierge qui est présenté
a la Pinacothéque de la Brera a Milan, Raphaél n'emprisonne pas le point de
fuite du regard : au-dela du long dallage qui rythme 1'élévation du regard,
au rez-de-chaussée du temple dont les portiques sont inscrits dans un poly-
gone apparait une porte a la fois ouverte et lumineuse.

Par le jeu de ces contrastes, on pergoit dans 1'Opus geometricum toute
une construction baroque dont les tensions contradictoires ne sont pas réso-
lues ; mais il n'y a pas confusion et ce n'est pas kitsch. Si la regle (G,) dit
évidemment que tendent vers zéro les restes successifs BK, CK, DK, etc.,
des sommes AB, AB + BC, AB + BC + CD, etc., la régularité méme de ces
restes n'intervient pas pour la définition d'une limite nulle, pour la définition

16 Nous avons vu par exemple que la raison n'est pas intervenue dans les formules

fournies par Grégoire de Saint-Vincent.
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d'un « terme ». Autrement dit, pour fonder un concept, Grégoire de Saint-
Vincent sait éliminer I'anecdotique, que celui-ci releéve d'une figure ou d'une
formule : en 'occurrence, il néglige a juste titre le fait que les restes d'une
série géométrique forment aussi une progression géométrique.

La preuve de cette pensée bien structurée est assénée par la résolution
du paradoxe de Zénon, celui que depuis Aristote on décrit avec 1'Achille
courant désespérément derriére une tortue sans parvenir a la dépasser. Cette
résolution fait date.

Qu'on suppose qu'Achille le plus rapide des coureurs, partant du point A veuille
rattraper une tortue qui rampe sur le chemin BC en une course trés lente.
Pendant le temps qu'Achille va de A a B la tortue s'est déplacée d'un certain
espace et arrive 2 F. Donc Achille n'a pas encore rattrapé la tortue. Derechef,
pendant le temps qu'Achille court 2 partir de B pour rattraper la tortue qui
était en F, la tortue s'est déplacée jusqu'au point H. Donc Achille parvenu en
F n'a pas encore rattrapé la tortue, et cela écherra indéfiniment!’.

A B F H C
D E G 1
Figure 3

En choisissant d'attribuer a2 Achille une vitesse double de celle de la
tortue, la solution proposée fonctionne a partir d'une longueur AC fixée qui
sera lue sur deux niveaux, et de son milieu B. La tortue part de D, mais ce
point qui coincide avec B est placé en dessous (figure 3) et Achille quant a
lui est placé en arriére au point A et ses positions successives sont indiquées
en dessus. Deux progressions géométriques entrent en jeu : le mouvement
d'Achille qui, par la pensée, est décomposé en segments successifs AB, BF,
FH, etc., F étant le milieu de BC, H celui de FC, etc. ; et le mouvement
idoine de la tortue DE, EG, GI, etc., ol E est le milieu de DC, G le milieu de
EC, etc.!8. D'aprés la forme (G), avec x = l , les deux « termes » de ces pro-
gressions sont les mémes : il s'agit du pomt C. Ce résultat s'obtient aussi
bien avec la formulation (4) du XVII® siecle :

AB+BF+FH +---= AC
DE+EG+---=DC.

17 Opus geometricum, livre 2, p. 101.

18 Bien sir, selon (G,), %l?=%HE='“ =2 et de méme Eg —%([i—m=2.
Mais, simultanément, Grégoire pose la forme (G,)
: AC_BC_FC _ .. _» m-.&_ﬂ=...=2
puisque BC - FC ~ HC ou EC T GC :
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Par conséquent, Achille rencontre bien la tortue (en C) et ... Zénon n'a
été qu'un philosophe « captieux ».

Le terme d'une série tel que défini par Grégoire de Saint-Vincent n'est
pas un terminus. Quoique le jésuite ne poursuive pas par ce que nous atten-
dons de lui, 4 savoir une théorie des séries. Mais c'est que son horizon est le
continu, et les propriétés qui lui sont attachées. Le discret sommé est a ses
yeux un outil, rien de plus, et il ne le travaillera pas plus. Et pourquoi fau-
drait-il que sous la forme des séries 'analytique triomphe, quand il s'agit
de le mettre au service de la géométrie qui gére le continu ? Ce sont les
oppositions et les tensions qui doivent ressortir, non I'anéantissement d'un
genre par l'autre. On constate ainsi qu'une fagon culturelle ne porte pas néces-
sairement le futur mathématique.

Tout aussi dramatiquement mises en scéne, bien d'autres oppositions
scandent le lourd volume de Grégoire de Saint-Vincent. Il n'hésite d'ailleurs
pas a jouer de belles vignettes allégoriques — le jour et la nuit par une
poule couvant de nuit ses ceufs tandis que le coq annonce le jour — ou tout
simplement adopte un rythme alterné de gauche a droite, et de droite a gauche
pour le placement d'une branche d'hyperbole entre ses asymptotes. Un cas
d'opposition savamment construit est particuliérement significatif'®. D'un
cOté, Grégoire de Saint-Vincent dispose d'une propriété repérée par les axes
de coordonnées (dans la figure 4, si OB=.,/OA-OC, les aires curvilignes
sous I'hyperbole ABED et BCFE sont égales) ; dans I'autre cas?® la propriété
parait tenir aux seuls diamétres naturellement liés a la courbe (dans la fi-
gure 5, si C est le milieu de la corde AB et D désigne l'intersection de OC et
de I'hyperbole, les triangles ou secteurs hyperboliques DFA et DEB possédent
la méme aire). Cependant, les deux propriétés apparemment opposées des

A
— D
C F
E D
F E
Oa B ﬁc\ . Y
Figure 4 Figure 5
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aires curvilignes (trapézes ou triangles) sont en fait équivalentes comme il
n'est pas difficile de le voir par la simple géométrie de I'application des
aires?!. De sorte que, pour l'auteur de I'Opus geometricum, 1'analytique des
coordonnées (figure 4) est placé au méme niveau d'intérét que la géométrie
intrinséque de la courbe (figure 5).

Une fois de plus, le pére jésuite ne tranche pas : il juxtapose. Descartes,
quant 2 lui, a tranché pour la seule analytique : c'est un classique !

UNE PAUSE DIDACTIQUE

Dans l'ordre pédagogique, plusieurs réflexions peuvent découler de la
description historique a laquelle nous n'avons pourtant accordé qu'un court
espace sans suivre |'écriture usuelle de I'histoire des mathématiques, mais,
je l'espére, sans dénaturer une démarche inscrite dans le temps?2. Je donnerai
i ces remarques une rédaction succincte, quasi télégraphique. La plus simple
de ces réflexions concerne d'abord la démonstration originale et plaisante
de la somme d'une progression géométrique qui peut faire 'objet d'une riche
séquence didactique orientée sur la géométrie?* : les mathématiques du passé
sont ainsi un grand réservoir de formes, de calculs, de présentation et tout
comme le peintre se fait la main en recopiant les maitres du passé, de méme
1'éléve — et pourquoi pas le professeur — peut s'exercer l'esprit en reprenant
les textes d'autrefois.

En adoptant de front plusieurs modes d'expression, Grégoire de Saint-
Vincent invite a pratiquer une mathématique « circulaire », c'est-a-dire une
mathématique qui ne soit pas une progression toujours tendue vers un plus
lointain, mais au contraire ou est privilégié le jeu des équivalences, avec
des retours en arriere. Nous avons bien vu qu'il ne s'agissait en rien d'une
mathématique du cercle vicieux, mais bien plutét d'une mathématique que

19 Opus geometricum, livre 6, proposition 108.
20 Opus geometricum, livre 6, proposition 108.

21 J Dhombres, « Is one proof enough ; travels with a baroque mathematician »,
Studies in Math. Education, i paraitre, avril 1994.

22 | ‘histoire des mathématiques est une discipline, avec ses régles d'écriture, de
citation, ses rites qui permettent aussi bien de discriminer les amateurs ; bref
c'est un lieu professionnel qui n'a pas besoin de chercher en dehors de son champ
propre une justification de ses objectifs ou de ses méthodes. Je n'ai pas respecté
toutes ces régles dans les pages qui précédent : je n'ai, par exemple, pas systé-
matiquement cité le latin de Grégoire de Saint-Vincent, ni respecté ses notations,
ni rendu compte linéairement de son Opus geometricum (puisque j'ai sélection-
né une séquence particuliere). Je n'ai pas plus tenté de faire la différence entre
des manuscrits (datés a partir de 1617, donc bien longtemps avant la parution de
1'Opus geometricum) et 'ouvrage publié, ni de fait raconté, méme en bref, la vie
de Grégoire — sa date de naissance 2 Bruges en 1584 ne figure pas dans mon
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l'on pourrait qualifier de ludique, encore que je préférerais parler d'une mise
en scéne 2 la Pirandello : de temps 2 autre, on redistribue et les roles et les
cartes ! Cette scansion de I'apprentissage mathématique doit pouvoir exciter
la curiosité de plus d'un éléve en évitant de donner cette impression
désespérante d'un espace toujours plus grand entre ce qu'on sait faire, réduit
a si peu, et tout ce qu'il va falloir apprendre 2 faire.

Le jeu méme d'une opposition volontairement maintenue entre deux
approches — analytique ou géométrique ; discret ou continu — opposition
reflétée aussi bien par le dessin que par le calcul et par les raisonnements,
présente l'avantage de conserver la liberté de choisir?®. Alors que, trés
souvent, au cours des démonstrations scolaires qui ne sont pas de pure
routine, on apprend a éliminer ce qui est annexe pour ne dérouler qu'un seul
fil. Ici, deux fils au moins sont constamment en cause et disponibles. Le
«stress » li€ a la psychologie du choix peut donc étre amoindri, une situation
que certains psychopédagogues reconnaissent comme favorable25.

Grégoire de Saint-Vincent ne sépare pas 1'algébre — une certaine alge-
bre — de la géométrie : cette « géométrie algébrique », bien éloignée prati-
quement de celle de Descartes (qui fait intervenir quant 2 lui le degré des
courbes algébriques, la décomposition polynomiale, etc.) s'en rapproche
cependant sur le plan des principes par la conjonction de deux domaines des
mathématiques. Auprés des éléves, ne peut-on mieux faire saisir la force et
l'efficacité de la fagon cartésienne en examinant a nouveau, et avec un ceil
critique, la démarche grégorienne ? Chez certains enfants rebelles a l'alpha-
bétisation, des linguopédagogues ont bien expérimenté — en Californie —
l'utilisation préalable de caractéres chinois pour I'apprentissage de la lecture
anglaise !

texte jusqu'a cette ligne. Cette fagon de présenter est voulue, car I'histoire des
sciences entendue au sens strict n'est faite, du moins aujourd'hui, que pour les
professionnels. De méme que les mathématiques ou la philosophie contempo-
raine. Or, il doit étre possible de donner de I'histoire des mathématiques, non
pas une vision vulgarisée, mais en quelque sorte des applications au profit de
l'enseignement. Si l'expression peut paraitre exaspérante a I'historien — I'un
d'entre eux a malgré tout commis en France une Legon d'histoire pour une gau-
che au pouvoir —, elle est toute naturelle au scientifique. En décrivant un bout
de l'ccuvre de Grégoire de Saint-Vincent, j'ai pensé didactique. En focalisant sur
la forme particuliére du style d'expression sur laquelle je me suis déja exprimé,
j'ai donc réalisé une construction bien particuliére. Cela ne contredit nullement
le choix d'une perspective historique.

2 Clest en tout cas une fagon de justifier I'adjectif « géométrique » accolé au mot

série. L'habitude des manuels est de sommer une progression géométrique en
termes finis, puis de passer a la limite. Grégoire de Saint-Vincent fournit une
alternative heureuse. Je dis alternative, et non seule maniére « historiquement »
convenable !
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UN BAROQUE DESABUSE

Pour évoquer jusqu'a présent le monde baroque, j'ai choisi un auteur —
méme une démonstration particuliére de ce dernier — et tenté a partir de ce
découpage de saisir des lignes de force qui me paraissent caractériser une
facon historique. Les esprits positifs refuseront sans doute l'utilisation du
mot « baroque », quand bien méme ils adopteraient mon analyse. Mais a
utiliser un autre mot, ne risquent-ils pas surtout de faire sortir du champ de
I'histoire une démarche intellectuelle qui s'y inscrit pourtant.

En tout cas, l'observatoire que j'ai adopté doit étre replacé dans son
contexte. Grégoire de Saint-Vincent est un des nceuds du réseau jésuite des
colléges, réseau établi largement dans 1'Europe catholique du XVII® siecle
et auquel on doit aussi bien la culture baroque?®. Créé en 1553 par Ignace de
Loyola, le Collége romain, « ceil du siége apostolique et du monde chré-
tien2” » selon I'ambition du fondateur, est le modéle. Modele a la fagon
jésuite, qui pose comme principe la nécessaire adaptation aux circonstances
et aux lieux avec, autant que de besoin, la mise en parenthése des régles.
Dans ce Collége, les mathématiques sont instituées comme un rite de passage
incontournable et une indispensable formation : la chose est acquise avec
Clavius, le mathématicien du Collége jusqu'en 1612, qui dirigea la réforme
du calendrier adoptée par Grégoire XIV en 1582. Le Collége devint l'objet
de toutes les bienveillances du Saint-Siége, au moins jusque vers 1620.
Clavius « engendre » Grégoire de Saint-Vincent et bien d'autres mathéma-
ticiens, comme ce Matteo Ricci dépéché en Chine et qui, a partir de la lecture
donnée par Clavius, aidé d'un converti, publie vers 1610 la traduction chi-
noise des six premiers livres d'Euclide. Grégoire a son tour « engendre » de
Sarasa, Tacquet, Guldin, de la Faille, etc.

C'est bien avant la « révolution scientifique » que les Jésuites adoptent
la mathématique ; avant en tout cas que Galilée et quelques autres ne fassent
la preuve de son efficacité dans le décryptage du monde naturel. L'objectif
des Jésuites n'est nullement de faire de leurs éléves des ingénieurs et encore
moins des physiciens : les mathématiques sont congues dans les colléges
comme un moyen pour apprendre a penser juste. De fait, elles permettent

24 R, Nimier, Mathématiques et affectivité, Paris, Le Seuil, 1972.

25 (vest sans doute dans ce maintien simultané des contradictions que le baroque,
tout en marquant une périodisation de I'histoire de l'art, s'inscrit constamment
dans la pensée humaine. Eugenio d'Ors a écrit a ce propos quelques trés belles
pages auxquelles je reconnais volontiers ma dette (Lo Barroco; traduction fran-
caise, Du baroque, Gallimard, 1933).

26 Voir E. Male, L'art religieux du XVII® siécle, Paris, A. Colin, nouvelle édition,
1984.

27 Selon la constitution du College.
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d'évacuer une autre discipline, considérée désormais comme obsoléte, et
c'est bien une Europe mathématique qui se constitua ainsi contre la logique
aristotélicienne (ce qui n'exclut pas des courants logicistes). I suffira d'in-
diquer que la mathématique devenait une matérialisation, une concrétisation
de la logique a laquelle un contenu tangible était ainsi trouvé.

L'intervention majeure des mathématiques dans les colléges jésuites
ou dans les maisons des profés elles-mémes n'est que l'un des versants de la
culture ainsi propagée. L'autre versant est le peu d'intérét porté aux résultats
auxquels cette science conduit, ou peut conduire. Non seulement la démarche
prime sur les objets qu'elle atteint, mais, en outre, le nombre de ces objets
est réduit a ceux envisagés par les mathématiques élémentaires, grosso modo
les mathématiques contenues dans les Eléments d'Euclide. Aussi belle soit-
elle, la mathématique est seulement scolaire : c'est un exercice volontai-
rement dépouillé de ses applications. De sorte que dans cette culture,
I'ambition n'est pas d'ouvrir de nouvelles pistes afin d'adopter de nouvelles
théories : elle serait bien plutét la réalisation du manuel parfait, résumant
toute la science euclidienne dans 1'ordre le plus nécessaire. Une utopie
semblable guette trop souvent les éducateurs qui n'accordent a la science
dont ils ont la charge que le statut d'un apprentissage. Voila bien une tension
baroque dans 'ordre intellectuel : I'indéniable prise au sérieux des mathé-
matiques s'oppose a leur réduction a un exercice de formation28.

Aussi inventif soit-il — les témoignages concordent a ce sujet —
Grégoire de Saint-Vincent n'échappe donc pas a la limitation euclidienne,
et il inscrit étonnamment son ceuvre dans une quéte que, presque a priori,
ses propositions les plus marquantes contredisent. Il veut la quadrature du
cercle, c'est-a-dire la construction 2 la régle et au compas d'un carré d'aire
égale a celle d'un cercle donné et partant la quadrature de toutes les coniques.
Pourtant, son calcul des aires sous I'nyperbole — le comportement loga-
rithmique indiqué par la proposition 108 du livre 6 (cf. figure 4) — ne pouvait
que le convaincre de ce que I'égalité des aires a I'infini ne les ramenait pas
a un carré connu, ne permettait en rien la quadrature au sens classique. Elle
ouvrait un autre monde, celui de I'intégration.

Qu'importait ! Malgré les quolibets, malgré méme plus de vingt ans
d'interdiction de publier décrétés par le général des Jésuites dés 1624,
Grégoire de Saint-Vincent en 1647 inscrivait crinement « plus ultra qua-
dratura circuli » dans la dédicace de son ouvrage a l'archiduc d'Autriche.
Un tel entétement est fabuleux — mais il ruinera la réputation de Grégoire —
puisque dés la parution de I'ouvrage, Descartes et bientot Huygens en

#  Ce théme est développé dans J. Dhombres, Une mathématique baroque en

Europe : réseaux, ambitions et acteurs, Colloque Mythes et réalités de I'Europe
mathématique, Paris, avril 1992,
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signalérent, non sans dénigrement, la faille algébrique au 10° et dernier livre.
Mais on ne peut lui dénier un courage baroque.

Courage qui n'est nullement synonyme d'optimisme, de poursuite béate
d'un réve. A plus d'une reprise, et sous la rhétorique d'un latin profus, perce
le désarroi, causé par le trop grand écart entre une ambition considérée
comme naturelle et une réalisation qui au terme de propositions savamment
enchainées, de lemmes calculatoires élégants et originaux, n'atteint pas ses
objectifs. Grégoire de Saint-Vincent ne peut que recourir au mode condi-
tionnel : « Ce qui aurait réussi assurément si nous avions pu proposer et
résoudre avec un bonheur égal... »29. Dés la préface, d'ailleurs, le ton est
donné puisque l'auteur oppose en les rassemblant ses tribulations — guerres
et maladies — aux ordonnances harmonieuses et divines de la mathématique
qui n'en sont pas moins trouvées et prouvées dans la téte d'un homme :

Et voila, Lecteur bienveillant, ce qu'a ma maniére, c'est-a-dire tout franche-
ment, j'avais en téte de vous communiquer. Dans ces conditions, si dans le
cours de mon ceuvre se trouve quelque chose de moins parfait, je désirerais
que vous le missiez sur le compte d'une trop grande hite. Car, alors qu'a Prague
les forces réprimées de ma maladie reprenaient & nouveau de la violence et
semblaient parfois étouffer le vieillard que j'étais en lui enlevant toute énergie,
m'étant entouré de toutes parts de collaborateurs sur 'ordre de mes Supérieurs
dont je suis les désirs et non seulement les commandements, dirai-je que j'ai
tiré de moi cette ceuvre que vous voyez ou que je l'ai composée avant qu'une
mort subite, toujours menagante, ne fit avorter cet embryon... Comme, en effet,
nous ne nous appartenons pas 4 nous-mémes, les produits de notre esprit éga-
lement ne sont pas a nous et doivent encore moins étre revendiqués comme
noétres — nous que notre profession a soumis entierement a une Régle.
Si cependant vous trouvez ici quelque chose digne de louange, mon veeu est
que vous le mettiez sur le compte de Dieu, 2 I'honneur et la gloire de qui j'ai
travaillé toute ma vie, non sans une immense admiration pour son art éternel,
méme dans les petites choses. Car cette ordonnance, cette symétrie, cette
proportion que nous avons montrées dans chacune des surfaces et des corps,
ce n'est point nous qui, par notre industrie ou notre art les avons créées, mais
nous les avons trouvées toutes faites et ainsi disposées par des lois éternelles,
grice a une certaine heureuse disposition d'esprit, ou (ce qui m'est advenu, je
le reconnais) grice a sa faveur qui dispose dans ses parties tout avec tant
d'harmonie — et les ayant trouvées, nous les avons démontrées3C.

Les mathématiques d'une époque s'inscrivent jusque dans les aventures
d'un homme : certains peuvent regretter cette intrusion du contingent dans
la science pure, d'autres s'en nourrir. Il n'en reste pas moins la signature
d'une sensibilité baroque.

2 Opus geometricum, suite du scholie venant aprés la proposition 135 du livre 6.

30 Opus geometricum, préface.
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IMAGERY AND REASONING IN
MATHEMATICS AND MATHEMATICS EDUCATION

Tommy Dreyfus

Tel Aviv University, Israel

Visual reasoning plays a far more important role in the work of today’s
mathematicians than is generally known. Increasingly, visual arguments are
also becoming acceptable as proofs. Cognitive studies, even though identi-
fying several specific dangers associated with visualization, point to the
tremendous potential of visual approaches for meaningful learning. Comput-
erized learning environments open an avenue to realizing this potential. It
is therefore argued that the status of visualization in mathematics education
can and should be upgraded from that of a helpful learning aid to that of a
fully recognized tool for mathematical reasoning and proof.

INTRODUCTION

Visualization is generally considered helpful in supporting intuition
and concept formation in mathematics learning. Fischbein (1987), for ex-
ample, notes that “one of the characteristic properties of intuitive cognitions
is immediacy. Visualization ... is very frequently involved ... ” Similarly,
Bishop (1989), in a recent review of research on visualization in mathe-
matics education, concludes “that there is value in emphasizing visual
representations in all aspects of the mathematics classroom”. Two qualifi-
cations should be added to these generally positive evaluations; one concerns
difficulties with visualization, and the other concerns the status accorded to
visualization in mathematics education, in other words its epistemological
value.

During the past few years, many student difficulties with visualization
have been identified. These include students’ inability to see a diagram
different ways (Yerushalmi & Chazan, 1990), their difficulty in recognizing
transformations implied in diagrams (Goldenberg, 1991), their incorrect or
unconventional interpretation of variation and co-variation in graphs
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(Clement, 1989), their lack of distinction between a geometrical figure and
the drawing that represents this figure (Laborde, 1988) and, most importantly,
their lack of connections between their visualizations and analytic thought
(Presmeg, 1986). These difficulties are all related to what Fischbein called
an “intervening conceptual structure”. Diagrams and figures contain relevant
mathematical information in a form that is determined by certain rules and
conventions, which often are specific to a particular type of diagram. They
are therefore not accessible to students who have not had the opportunity to
get acquainted with these rules and conventions.

The second qualification, and the one that will constitute the central
concern of this paper, concerns the low status accorded to visual aspects of
mathematics in the classroom. This is typified by the student who, after a
detailed and lengthy presentation of a visual argument by the teacher, raises
a hand to ask: “Can you also give a mathematical proof for this?” The reluc-
tance of students to use visual reasoning has been documented widely in the
literature. To cite one typical source: “Despite the calculus teacher’s predi-
lection for diagrams, our research indicates that students resist the use of
geometric and spatial strategies in actually solving calculus problems.”
(Balomenos, Ferrini-Mundy, & Dick, 1988). More details on students’ avoid-
ance of visual considerations have been reported, for example, by Vinner
(1989) and by Eisenberg and Dreyfus (1991).

A significant piece of evidence on the status of visual argumentation
is constituted by various classifications of proofs that have been established
by mathematics educators. For example, Blum and Kirsch (1991) classify
inhaltlich-anschauliche (content-visual) proofs as pre-formal. The message
is that visualization may be a useful and efficient learning aid for many
topics in high school and college mathematics; but nevertheless it is an aid,
a crutch, a step, sometimes a necessary and important step, but only a step
on the way to the real mathematics. Such an attitude on the part of mathe-
matics educators and teachers, whether justified or not, is bound to influence
students to avoid the use of visual arguments.

This situation has unfortunate effects: it eliminates a versatile tool of
mathematical reasoning for all students, and it may prevent some of the
weaker ones from successful problem solving. In fact, Bondesan and Ferrari
(1991) report that even poor problem-solvers adapt or invent new strate-
gies in a geometric setting, but not in an algebraic one. And Presmeg (1986)
has found that while children have little difficulty in generating visual images
their imagery is predominantly concrete pictorial, with far less pattern
imagery, and hardly any dynamic imagery. Since pattern and dynamic
imagery are more apt to be coupled with rigorous analytical thought
processes, this means that students are likely to generate visual images but
they are unlikely to use them for analytical reasoning. In this paper, we
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want to make the argument for precisely such visually-based analytical
thought processes or, in short, for visual reasoning.

To make the idea of visual reasoning more concrete, consider an
example taken from a unit on geometric loci, designed specifically for
developing visual reasoning patterns (Hershkowitz, Friedlander, & Dreyfus,
1991). Suppose you have to deal with the following problem: Given two
intersecting lines in the plane, find the geometric locus of all points the sum
of whose distances from the two lines equals a given length. One (global)
way of starting out is to argue that the locus must be contained in a bounded
region of the plane because any point that is very far away must be far from
at least one of the lines. A more local way of starting is to ask whether any
points of the locus are going to lie on the given lines, and to start searching
along these lines. This search may be approached dynamically by starting
at the point of intersection and moving out along one of the two lines.

As one does so, the distance from the other line grows from zero without
bound, therefore one must at a certain stage pass a point which belongs to
the locus. By symmetry reasons, this yields four points. The locus turns out
to be the rectangle whose corners are these four points. Establishing this is
not trivial but needs a detailed analytical argument, which may be based on
appropriate ratios in suitably chosen similar triangles. Every part of the
above argument will be considered to be visual reasoning because it makes
essential use of visual information. Visual reasoning used in this kind of
argument may be global or local, dynamic or static, but it is never purely
perceptual. It includes valid analytical argumentation leading from step to
step. The thesis of this paper is that such visual reasoning is very frequently
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used and accorded increasing value in mathematics, and that it would
behoove mathematics education to follow suit.

VISUAL REASONING IN MATHEMATICS

Many indicators point to the fact that most mathematicians rely very
heavily on visual reasoning in their work. But with few exceptions, mainly
in combinatorics and category theory, these same mathematicians do their
utmost to hide this fact. Indeed, mathematicians tend to be secretive about
their work; they tend to hide very carefully how they obtained their results.
They present only the final, finished, formalized product. They do not let
the reader see any of the processes. And many mathematicians behave the
same way when they lecture about their work.

There are a few instances where mathematicians explicitly describe
how they obtained their results. One of these is contained in a publication
by Van der Waerden (1954) on the topic of idea and reflection in mathemat-
ics research. He used as illustration a discussion with two colleagues during
which they found a proof of the following conjecture by Baudet: If the set
of natural numbers is split into two disjoint subsets, then at least one of the
subsets contains an arithmetic progression of length L (where L is arbi-
trary). The report on their discussion takes up seven pages and contains
eight figures with possible patterns for number sequences to be distributed
into two (or more) subsets. The first of these figures is reproduced below. It
is accompanied by the sentence “Wir zeichneten die Zahlen als kleine Quer-
striche ... auf zwei waagrechten Linien, die die beiden Klassen darstellen
sollten.” (We drew the numbers as small crossbars ... on two horizontal
lines which were supposed to represent the two subsets.)

X

The entire argument rests on the patterns given in these figures. As
Van der Waerden states: “Der Beweis den ich im Nieuw Archief voor
Wiskunde 15, 212 (1927) dargestellt habe, ist die genaue Ausfiihrung des
hier anschaulich erliuterten Gedankenganges.” (The proof, which I have
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presented in Nieuw Archief voor Wiskunde 15, 212 (1927), is the precise
execution of the line of thought presented visually here.) The five-page paper
in which he published this proof does not contain a single diagram. I doubt,
however, whether many mathematicians are able to understand the proof in
that paper without recreating van der Waerden’s diagrams (or other, similar
ones). Diagrams are essential for mathematical thinking, but their use is
hidden by mathematicians as best they can.

Other reports on how mathematicians think also point to the
overwhelming importance of visual aspects. A systematic attempt to dis-
cuss mathematicians’ research thoughts was undertaken and reported by
Hadamard (1945). Although he insists on individual differences in the
manner in which mathematicians’ thoughts rely on mental images, Hadamard
concludes that they, very generally, use images and that these images very
often are of a geometric nature. He recounts that when thinking, practically
all mathematicians avoid not only the use of words but also algebraic or
other symbols; they use vague images. In particular, Einstein wrote to
Hadamard: “Words and language, written or oral, seem not to play any role
in my thinking. The psychological constructs which are the elements of
thought are certain signs or pictures, more or less clear, which can be repro-
duced and combined at liberty.” (Hadamard, 1945, p. 82).

Why, then, do mathematicians hide their visualizations and the argu-
ments based on them? Several reasons come to mind. Some, like Einstein’s
vague images, may never have become sharp enough to be describable in
word or picture. Others, like Van der Waerden’s diagrams, have probably
been judged unacceptable by the standards of mathematical publication
common throughout most of the 19th and 20th centuries; these standards
were strongly influenced by both logicism and formalism. History shows
that the standards have not always been so inimical to visual argumentation
(Berra, 1986); and there is some evidence that the situation may be rapidly
changing again.

In the past few years, many mathematicians have addressed the
importance of visual reasoning not only in discovering but also in describing
and in justifying mathematical results. Rival (1987), for example, has written
an article with the subtitle “Mathematicians are rediscovering the power of
pictorial reasoning”. The Journal of Combinatorial Theory accepted a paper
by Mayer (1972) whose complete text is “B(K,¢) = 37; the remainder of the
paper consists of three labelled planar graphs which prove that equation.
The fact that these graphs, in and of themselves, constitute a proof of the
equations is explicitly confirmed in the abstract of Mayer’s paper in
Mathematical Reviews. The usefulness, even necessity, of visual reasoning
patterns in modern mathematical research has also been stressed by Devaney
(1989). He recounts how he and three students described certain dynamical
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processes through sequences of transformations in the complex plane,
represented them graphically by means of computer programs, and then
filmed these sequences. According to Devaney, the results of these rather
time-consuming experiments have always been mathematically stimulating
and many new mathematical results have been proved as an outcome.

Davis and Anderson (1979) go beyond stressing the power of visual
reasoning for discovering new results in mathematics. They not only describe
mathematics “done in actuality—as a series of nonverbal, analog, often
kinesthetic or visual insights,” but suggest that the “excessive emphasis on
the abstract, analytic aspects of thought may have had deleterious effects
on the profession.” Among their examples is the Jordan Curve Theorem (a
simple closed curve in the plane separates the plane into two regions, one
bounded and one unbounded), which is visually obvious but whose analytic
proof requires notions from algebraic topology and is therefore rarely
presented at the undergraduate level. Finally, and most importantly, Davis
and Anderson refer to the existence of “purely visual theorems and proofs,”
and encourage the production of such theorems. Many but not all of these
theorems have been found by means of computer-graphical support.

If, following Davis and Anderson, visual arguments are to be admitted
as (parts of) mathematical proofs, the question naturally arises how (and
even, whether) incorrect visual arguments can be avoided. How often have
we seen children rely on particular features of a diagram in a geometry
proof, and thus present an invalid or at least incomplete proof? And although
one would not expect mathematicians to fall into the same trap as tenth
graders learning Euclidean geometry, some mistakes in visual arguments
are far more subtle (see e.g. Blum & Kirsch, 1989, for a beautiful example),
and it is not known where the limits of such subtlety lie (if there are limits
at all). Who is to judge the validity of a visual argument?

D C

A B

Three replies to this question will be given: first, that in many proofs
visual arguments are unavoidable; second, that judgment of the validity of
non-visual arguments is not safe either; and, third, that criteria for better
judgement of visual arguments should be developed.
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In a paper of a philosophical nature, Stenius (1981) analyzes the epis-
temic function of the figure in a Euclidean geometrical proof. This proof is
a modification of Euclid’s proof that, in a parallelogram, opposite sides are
equal. Given a parallelogram ABCD, in which AB is parallel to CD and BC
to AD, prove that AB = CD (and BC = AD). The proof proceeds by drawing
the auxiliary line AC (a diagonal of ABCD), and showing that the triangles
ABC and CDA are congruent, from which the result follows. Who could
understand this proof, even if many more details were spelled out verbally,
without imagining a parallelogram in the mind’s eye? This already demon-
strates that we use the figure in following the proof. But beyond this, Stenius
asks, how do we know that BAC and DCA are alternate angles on parallel
lines? Could not the point D lie inside the triangle ABC?

Most teachers are well aware that they do use figures in proofs. But
many will say, you are only allowed to use those features of the figure which
are not particular to the figure; in our case, those which are true for all
parallelograms, for which the particular drawn figure serves as a model.
And who judges, asks Stenius, whether a figure can or cannot serve as such
amodel, and which features of the figure are generic? This has not been for-
malized, and if it had, the formalization would be quite useless to the
beginning student of Euclidean geometry. Therefore, the use of diagrams
in teaching and learning Euclidean geometry must not be avoided, but quite
the contrary, must be analyzed and dealt with explicitly.

Some readers may remain unconvinced and fear that proofs relying on
visual reasoning are dangerous, because they depend on a substantial measure
of validity judgment by mathematicians and mathematics teachers. These
readers should consider that the situation for sentential proofs is not different
in essence, only in degree. In a wonderful dialogue between the ideal
mathematician and an inquisitive student, in the book by Davis and Hersh
(1981), the best definition of a mathematical proof (as opposed to a proof in
formal logic) which the ideal mathematician comes up with is “A proof is
an argument that convinces someone who knows the subject.” In other words:
the validity of the argument is judged by the expert—there is no machine
algorithm to check a mathematical proof; and there is thus no a priori reason
why some of the reasoning in a proof should not be diagrammatic or visual.
Why, then, do mathematicians often object to visual arguments in proofs
and why do they attempt to eliminate the visual reasoning before they publish
a proof? This point is eloquently explained by Barwise and Etchemendy
(1991). Although they agree that “we are all taught to look askance at proofs
that make crucial use of diagrams, graphs, or other non-linguistic forms of
representation, and we pass on this disdain to our students,” they claim
“that diagrams and other forms of visual representation can be essential and
legitimate components in valid deductive reasoning.” They point out that
mathematicians’ expertise in judging the validity of linguistic reasoning is
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based on careful and lasting attention to this form of reasoning and that
such a tradition and ensuing expertise for visual reasoning is lacking. Hence,
they advocate and have begun a research program to devote similar attention
to the judgment of the legitimacy of visual and mixed, heterogeneous
reasoning patterns.

We thus conclude that the reasons behind attempts to minimize visual
reasoning in proofs are not based on a valid principle. Mathematicians, the
experts who are supposed to judge the validity of the proofs, have neglected
to develop their ability to carry out this judgment in the case of visual argu-
ments.

To summarize, a clearly identifiable if still unconventional movement
is growing in the mathematics community, whose aim is to make visual
reasoning an acceptable practice of mathematics, alongside and in combi-
nation with algebraic reasoning. According to this movement, visual
reasoning is not meant only to support the discovery of new results and of
ways of proving them, but should be developed into a fully acceptable and
accepted manner of reasoning, including proving mathematical theorems.
The availability of powerful graphics computers has played a non-negligi-
ble role in the emergence of this movement.

INDICATIONS FROM COGNITIVE SCIENCE

In a review of more than a decade of work on the use of conceptual
models for understanding, Mayer (1989) concludes that such “models will
improve the ability of students to transfer what they have learned to creatively
solve new problems”; the ability to creatively solve new problems is what
Mayer terms understanding. There is little doubt that such understanding
implies certain forms of reasoning, but this is not spelled out. Obviously, it
is crucial for us to know what is meant by conceptual models. They are
descriptions of systems from science, technology, programming, and
mathematics which spell out the major parts, states, and actions in the system;
in each case, the model includes a pictorial representation of the explanatory
information, highlighting the key concepts and suggesting relationships
between them. Although Mayer specifically includes text in his conceptual
models, his findings show that “illustrations help students organize infor-
mation into meaningful mental models” and these, in turn, are at the root of
their successful problem solutions. Thus, Mayer has also avoided explicitly
identifying the contribution of the visual component. Therefore the question
may be asked, to what extent are the visual features of his conceptual models
crucial?

Recently, interest among cognitive scientists in investigations of vis-
ual reasoning in general, and in the role of visual reasoning in problem
solving in mathematics and science in particular, appears to have grown.
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Studies which treat the effect of visual support on making inferences and
solving problems show that appropriate visual support has positive effects
on students’ understanding and problem solving. The following seem par-
ticularly relevant here.

Chandrasekaran and Narayanan (1992) argue that there are many
commonsense situations in which human reasoning is tightly coupled with
perception, in particular with perceptually represented experiential knowl-
edge. They use the term “perceptual reasoning” and explain such reasoning
in terms of perceptual inference rules. Koedinger (1992) further points out
the advantages of diagrammatic representations for reasoning and learning.
However, specifically with science and mathematics problems, the situation
is more complex: Larkin and Simon (1987) compare the accessibility of
information needed to solve problems when they are presented in diagram-
matic versus sentential form. The distinguishing feature is that diagrammatic
representations explicitly preserve spatial relationships between components
of the problem, whereas sentential representations do not. In diagrams,
information is indexed by its location, thus giving the possibility of grouping
all information about a single element together, and expressing logical
relationships spatially. Thus, diagrams not only describe spatial arrange-
ments: they have inherent interpretations and conventions without which
they are unintelligible. Those who know these interpretations and conven-
tions can develop visual reasoning patterns exploiting the advantages of the
diagram. Larkin and Simon have thus given precise expression to Fischbein’s
“intervening conceptual structure” mentioned in the introduction.

A further illustration of the usefulness of diagrams in scientific
reasoning is provided by Qin and Simon (1992). They used Einstein’s 1905
paper on special relativity, which (like Van der Waerden’s paper mentioned
earlier) contains no diagrams to guide the reader. Qin and Simon’s subjects
had to reconstruct the reasoning in the first few paragraphs of Einstein’s
paper. They concluded that all subjects formed mental images during this
process, even those who usually claimed not to be able to do so. The way
the subjects derived the equations was closely related to their images.
Subjects were able to “watch” these images evolving dynamically, and the
images were essential in drawing qualitative conclusions.

Finally, Dorfler (1991) has expanded Lakoff’s idea of image schemas
as a theoretical basis for generating meaning in mathematics learning. As
he states, for very many mathematical concepts, an adequate image schema
must include a figural component which has to be complemented by oper-
ative, relational, and symbolic ones. The carrier for the figural component
will often be a visual representation of the concept. The associated operative
components facilitate visual reasoning with and about this concept. Dérfler’s
theoretical framework is thus not only compatible but fully resonant with
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Hadamard’s description of mathematicians’ thinking patterns, and conse-
quently with most of what has been said heretofore about visual reasoning.

IMPLICATIONS FOR MATHEMATICS EDUCATION

Theories and analyses from cognitive science clearly show the potential
for an extremely powerful role for visual reasoning in learning many
mathematical concepts and processes. A warning should, however, be
associated with this promise: Visual reasoning is based on expertise—it
will be unhelpful if not impossible for the uninitiated. The promise made by
cognitive science appears to be borne out by mathematical research activity:
experts make extensive use of visual reasoning during the creative process.
In addition, there is an emerging movement to give legitimacy to visual
arguments in the presentation of mathematical results.

Mathematics educators seem to have recognized the potential power
and promise of visual reasoning; but in spite of this, implementation is
lagging: students tend to avoid visual reasoning. The slowness of educational
change in general may be one reason for this. But two additional weighty
reasons are suggested by the above description. Firstly, while visual
reasoning enters curricula and is even presented by teachers in the classroom,
it is often given the air of an introductory, accessory, or auxiliary argument,
precisely because the experts, be they mathematicians, curriculum devel-
opers, or teachers, do not assign full value and status to it. And from this
attitude, students soon conclude that they do not really need to know and
use visual arguments. Secondly, visual reasoning is difficult; it is achieved
by hard reflective work. Unreflective, careless or too rapid introduction of
visual representations are likely to result in failure and disappointment.

In order to give our students the chance to profit from and to appreci-
ate the power of visual reasoning we, as a profession, need to upgrade the
status of visual reasoning in mathematics. In our own mathematical think-
ing, we need to generate visual arguments, to learn how to examine their
validity and to accord them the same weight which we accord to verbal and
formal arguments. In order to overcome students’ tendency to avoid visual
reasoning we, as teachers, need to use it not only frequently and consistent-
ly in searching for problem solutions but also at crucial junctures of our
mathematical justifications with the aim of making evident both the full
power of visual reasoning and the importance accorded to it. We need to
give our students many opportunities not only to visually solve problems
but also to discuss valid and invalid visual arguments. Finally, we need to
give our students full credit for correct visual solutions. In order to be able
to do all this, and to make it permeate teacher education we, as researchers,
need to expand our understanding of the cognitive and mathematical proc-
esses involved in visual reasoning. Detailed, content specific knowledge
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about the mathematical and educational validity of visual representations
and reasoning patterns needs to be obtained for many different mathemati-
cal notions and processes. This includes the investigation of limitations,
difficulties, obstacles and possible misinterpretations associated with the
proposed visual representations.

Visual reasoning obtains its clearest expression if no alternative is
available: that is if some mathematics is presented in purely visual form.
Several developments in this direction have been proposed recently, some
have been carried out, and a few have been systematically implemented in
classrooms. Two which are explicit in their reliance on visual reasoning
will be briefly described here as exemplary.

Artigue (1989) has developed and taught a university-level curricu-
lum in which suitable computer software is used to help students develop a
qualitative, geometric approach to the properties of solutions of differential
equations. This qualitative study of differential equations is based on rea-
soning with functions which are not given explicitly by a formula, but only
by means of information about their derivative(s). One of the explicitly stated
aims of the curriculum is to lead students to work with curves without the
support of a formula: in other words, to infer graphical information about
the curves from graphical information about their derivatives. In order for
this aim to become realistic, a complete break with the usual, formula-based
treatment of function at the high school level has to be made. Some of the
phases in the curriculum are to get acquainted with basic notions such as
slope field, isoclines, solution curves, and symmetries, to produce curves in
a dialectic interplay between prediction and justification, and to learn about
higher level graphical notions such as branching and flows, including the
variation of the type of flow in equations depending on parameters. One of
the conclusions of the experiment was that, once the break with the habitu-
al, purely algebraic approach had been effected, students accessed the
geometric framework with relative ease, due to the fact that the complexity
of their tasks was reduced by the possibility of using appropriate software.

Goldenberg (1989) evokes the vision of a radical restructuring of the
pre-college mathematics curriculum centered on an introduction of fractal
geometry in junior high school. He proposes to “adopt a visual and exper-
imental type of mathematical inquiry and learning” in order to “foster the
development and use of qualitative, visually-based reasoning styles”; among
these, he specifically includes visual proofs. He illustrates how problem
posing may originate at the visual level and shows that questions about
trigonometric relationships, about limits, about series, and about iterated
processes arise naturally out of the detailed investigation of the geometry
of fractal curves, their perimeter, border, enclosed area, etc. The corre-
sponding mathematical notions “are approached in visual, concrete, informal,
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and intuitive fashions, with formal tools acquired as they are needed.” In
particular, a concept of function is apt to develop that is not only more
general than the one usually developed at high school level, but also more
robust and flexible. The entire approach is conditioned by appropriate
software tools, that give the students freedom to explore the geometric objects
under consideration by changing parameters and variables, including basic
shapes and recursion rules.

Other projects based on purely or predominantly visual reasoning have
been designed, among others, on feedback systems (Janvier & Garangon,
1989), plane geometry (Yerushalmi & Chazan, 1990), geometric loci
(Hershkowitz, Friedlander, & Dreyfus, 1991) and linear programming
(Shama & Dreyfus, 1991). It is no accident that in all these projects,
computerized learning environments play a major role. We will conclude
this paper with some remarks on the potential and the problems arising in
the use of computers for visual reasoning.

COMPUTERS AND VISUAL REASONING

Computers make it possible to represent visual mathematics with an
amount of structure not offered by any other medium. Graphic computer
screen representations of mathematical objects and relationships allow for
direct visual action on these objects (rather, their representatives) and
observation of the ensuing changes in the relationships. Moreover, the
situation can be inverted: it is possible also to investigate which will lead to
a given change in the relationships. The result of such actions can often be
dynamically implemented. Actions can be repeated at liberty, with or without
changing parameters of the action and conclusions can be drawn on the
basis of the feedback given by the computer program. The power of the
computer for learning visual reasoning in mathematics derives from these
possibilities.

Several projects have used the above considerations and exploited them
in the development of software to achieve and investigate specific learning
goals. To mention but a few examples: Tall (1991) reports using the computer
to encourage visually based concept formation in calculus; specifically, local
straightness rather than a limiting process is suggested as a basis for
developing the notion of derivative. Tall stresses that the goal is not only to
provide solid visual intuitive support, but to sow the seeds for understanding
the formal subtleties that occur later. This implies that students learn to
reason visually with the details of screen representations of concepts such
as function, secant, tangent, gradient, gradient function, etc. Kaput (1989)
has used concrete visual computer representations to build on natural actions
in the students’ world with the aim of supporting the learning and application
of multiplicative reasoning, ratio, and proportion. In particular, he aims to
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tie the visually concrete and enactive operations on objects on the screen
with more formal and abstract representations of these operations. Thus
students’ visual operations are directly used in the learning process.
Yerushalmy and Chazan (1990) have given students the opportunity to
generate empirically visual information about geometrical constructions and
to infer conjectures from such information. Again, this cannot be done
without visually based action (to generate the geometric information) and
visually based cognitive activity to infer a conjecture. Shama and Dreyfus
(1991) have used computer-screen presentations of linear programming
situations to allow students to develop their own solution strategies. For
this purpose also, students need to analyze problems in terms of the visually
presented information and thus to give a visual basis for their strategies. All
of these projects thus aim for detailed analysis of the relationships contained
in the visual screen presentation and for reasoning based on such analysis.

In computerized learning environments it is possible to directly ad-
dress and overcome some of the problems associated with visualization,
mainly those related to lack of flexibility in the students’ thinking. It is also
possible to transfer a large measure of control over the mathematical actions
to the student; but the potential of computers for visual mathematics does
not by itself solve the more important problems that were mentioned in the
introduction. In every case, visual representations need to be carefully
constructed and their cognitive properties for the student need to be
investigated in detail. The adaptation and correction of features of these
visual representations on the basis of student reaction to them is an integral
part of the development, and in some cases has been reported in the literature.
Tall’s choice of local straightness rather than a limiting process for the
derivative is a case in point. Similarly, Kaput describes how he has found
dissonances between students’ visual experience and the semantic structure
of the situation being modelled and has consequently designed a way to
avoid such difficulties. These difficulties associated with visual repre-
sentations can be overcome, but only if they are systematically searched
for, analyzed and dealt with. In this endeavor, the design of student activities
within the learning environment plays at least as important a part as the
design of the computerized environment itself (Dreyfus, in press).

Little has been said in this paper about two important topics: ver-
balization and multiple-linked representations. Verbal argumentation in
mathematics suffers, to a large extent, from similar problems as visual
reasoning. My insistence on visual reasoning should by no means be
construed as an argument against verbalization—quite the contrary. There
are in fact some indications of positive interaction between the visual and
the verbal (Bondesan & Ferrari, 1991). Moreover, many of the cited examples
do link the visual representations to algebraic ones and thus open the
possibility for integrated visual-algebraic reasoning. I have consciously
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downplayed those aspects because the purpose of this paper was to make
the point that visual representations and visual reasoning in mathematics
must not be considered as a crutch for those who cannot otherwise make the
step to “real mathematics.” I have attempted to show that visual reasoning
in mathematics is important in its own right and that therefore we need to
develop and give full status to purely visual mathematical activities.
Although I pressed one point of view, namely the visual one, the final goal
is not to be one-sided: not on the algebraic side, not on the verbal side, not
on the visual side. One goal is balance, as has been stressed already by
Davis and Anderson (1979); and we should aim for more than balance: we
should aim for the integration of visual, verbal, and algebraic thinking.
Before one can aim for integration, however, one needs balance. And in
order to achieve balance, visual reasoning needs to be given equal status to,
and as much attention as, algebraic reasoning.
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INTERWEAVING NUMBERS, SHAPES, STATISTICS,
AND THE REAL WORLD IN PRIMARY SCHOOL AND
PRIMARY TEACHER EDUCATION

Andrejs Dunkels

Luled University, Sweden

Statistics is viewed, by tradition, as an advanced subject whose study
is a secondary school matter. Applications like statistics must wait until the
basic mathematics has been learnt. However, if one examines the math-
ematics of primary school, then one finds that much of it is statistics, that
is, data handling and describing events, situations, phenomena of the real
world with the aid of numbers and geometrical figures.

It is important, I feel, that practicing and future teachers are made
aware of this, so that they can explicitly take advantage of situations where
one learns something about the real world, while at the same time new
insights are gained into numbers and shapes. Most primary teachers I have
met have not known how much statistics they have been dealing with all
their professional lives.

There is a growing interest in statistics at the primary level (Russel &
Corvin, 1990; Rangecroft, 1991; Vere-Jones, 1991 Aberg-Bengtsson, 1991).

This paper contains first a vision, or something that will happen, then
an account of something that has happened in some student teacher class-
rooms and in some primary school classrooms in Sweden.

SUN AND CUSTOMERS
In winter I get up at night I have to go to bed and see
And dress by yellow candle light. The birds still hopping on the tree,
In summer, quite the other way, Or hear the grown-up people’s feet
I have to go to bed by day. Still going past me in the street.

And does it not seem hard to you,
When all the sky is clear and blue,
And I should like so much to play,
To have to go to bed by day?
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This poem, “Bed in summer” by R.L. Stevenson, is the real world for
everybody, not least primary children, in Luled on the east coast of northern
Sweden. Is there data about this?

Figure 1. Diagram showing the times of sunrise and sunset on the
22nd of each month in Luled in northern Sweden, latitude
65° 35'N, less than 1° from the Arctic Circle.

Each day the local newspapers in Luled publish the times of sunrise
and sunset. We could either make a long term project and mark these times
each day or once each month, or do the whole year at once by consulting
some calendar.

Let us say that we choose the latter alternative, mark the hours along
a horizontal scale and depict each day as a long strip (Figure 1). We could,
rather than just drawing, choose to cut strips of paper and make the diagram
more concrete, and perhaps more spectacular.

After completing the diagram we would spend time describing to each
other what the shapes of the various parts of the diagram tell us, relating to
our experiences of day-lengths at various times of the year. We would also
discuss daylight saving time.

This example would give good practice and might trigger the interest
in hours and minutes, telling the time, finding out the duration of events,
and so would be useful when treating the concept of time. Working out the
duration of the “day” would involve thinking and probably a portion of
arithmetic. The sun-data may very well be combined with the study of the

124



DuUNKELS

time of the day that all the pupils in the class were born (Dunkels, 1992b).
It may also be combined with writing or telling a story about long and short
days. Or writing a letter to a friend further south—perhaps in Nanyuki in
Kenya. What would their sun diagram look like?

Days can also be visualized as in the interesting table in Figure 2.
What is its purpose? What does it want to say? To whom is it saying this?
Does it do it well? A caption alongside the table, not reproduced here, states
that it is easier for the company to give good service at the beginning of the
week.

Although there is an indication about absolute numbers of customers
in each time slot the intention is most likely not for the receiver actually to
work out the numbers. Rather, he or she should get a visual impression—
worth more than a thousand numbers. Had the dots been systematically
grouped or ordered then some of the visual impact may have been lost.

The table in Figure 2 is an excellent starting point for a discussion
with student teachers as well as with children about numbers, shapes, and
interpretation of real life situations. Being basically a table, all the time
slots are the same width and height, although some represent a shorter time
interval, some a longer. Thus we are misled and might get the impression
that Thursday 18.00-19.00 is as crowded as Monday 12.00-14.00.

En typisk vecka kan illustreras s3 hir:

M3 Ti On To Fr
09.30 XX ) e o e® o eele o
® e® o LX) o o o |®® o
12.00 L e o 'Y e®e0 0,
e ®e e _ o ° oo ® eeo0 o

. o° oo. e leo .°® oo.‘.‘

14.00 i oo
16.00 o o | e® o ° o e ® @ P O

®
Toet | NtT e | oE [T
18.00 ®%e |o G o © o [Seg5,%’
.
o. o
19.00

® = 10 000 kunder

Figure 2. A table on the last page of a price list from Systembolaget, the
state-owned company that has the monopoly of selling alcohol in
Sweden. The text above the table reads, “A typical week may be
illustrated thus.” The word “kunder” means “customers”, and the
table heading has abbreviations for the five workdays of the week.
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The table can easily be improved to account for such differences by
adjusting the heights of the time slots accordingly. Note also that the time
slots carry no indication about the number of cashiers on duty.

This also gives rise to quite a few arithmetical questions for the chil-
dren to pose and, above all, thoughts about the possible arrangement of
dots. What would we have chosen if we really wanted to see the numbers of
customers in each time-slot without difficulty? This leads to thinking about
dice patterns, tallying, and numerals. I would take the opportunity of dis-
cussing the tally-by-ten scheme of Figure 3 (Tukey, 1977; Dunkels, 1991)
and suggest that the pupils investigate how tallying is done in different coun-
tries or cultures (Dunkels, 1992a).

4 is 8 is 10 is

Figure 3. Tallying by tens uses four dots, placed in the corners of a square,
then the four sides are filled in, and lastly the diagonals of the square,
making the final character for 10, which, by the way, resembles the
Roman numeral for 10 which is no disadvantage. The order in which
the four dots are placed is unimportant, as is the order of the four
sides and the diagonals. However, no side may be filled in before
all dots have been entered, and all four sides must be there before a
diagonal is drawn. Some counts thus have more than one tally
pattern, some have just one. This is in itself worth exploring.

The table for Figure 2 has a connection to real life that might be useful
as an introduction to the social joys and problems with alcohol, matters that
are extremely hard to address, particularly in primary school. Nevertheless
they have to be dealt with sooner or later, and so if mathematics, or statistics,
can provide a gateway to this part of the real world then we should seize the
opportunity.

HALVING

Some countries use A4-size paper. Sweden is one of them. This
particular size offers rich experiences in geometry.

In a student teacher’s class we cut out a paper rectangle with dimensions
of each one’s own choice. We folded it in half with the fold parallel to the
shorter side. These three were among the questions that arose:

1) What can be said about the shape of each half rectangle compared
to the original rectangle?

2) Are there other ways of folding a rectangle in half?

3) How many?
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Question 1 was addressed in class, the rest was left as homework.

Question 1 was not very interesting, the shapes are different, that is
all. What if we took a rectangle that really belongs to the real world for all
Swedes, the A4-rectangle (Figure 4a)?

() (b)

Figure 4. a) An A4-rectangle and half of an A4-rectangle side by side.
b) The Ad-rectangle and half of it put on top, both equipped with
a diagonal fold.

We compared the original A4-rectangle with half of it by folding both
along their diagonals. We put them on top of each other and found that the
diagonals then matched exactly (Figure 4b). We tried the same procedure
with the rectangles we had used in the previous investigation and found that
the diagonals did not match. The conclusion was that the shapes of A4 and
half of A4 are the same, or, using the proper technical term, are similar.
This is in fact the very idea behind the A-size.

:Il

Figure 5. The A4-rectangle is halved 5 times and the successive halves put
on top each other. Here is one way of arranging the rectangles,
they all have the same relative positions and one common vertex.

Many students knew that on some copying machines one can diminish
the size of an A4-document to AS, which is what half of A4 is called. But
then the setting of the machine has to be 71%. Why this is so they did not
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know. Somebody knew that doubling is possible too with the setting 141%.
The students said that they had, at times, wondered about these, as it seems,
strange settings.

First of all we had to clarify what we mean by “halving” and “dou-
bling”. We could clearly see that the shorter side of AS is not half of that of
A4, and so “halving” could not refer to the linear measurements of the fig-
ures. We agreed it refers to area.

When the A5-rectangle is put on top of an A4 as in Figure 4b, then the
smaller rectangle is of course still half the larger. Yet the students and I felt
that the part outside the smaller rectangle seemed bigger. Tangrams are
another source of similar experiences (Dunkels, 1990).

Measuring sides and calculating we found the ratio of corresponding
sides of A5 to those of A4 to be 0.7, or taking the larger first, 1.4. The
students were now motivated to do exact calculations, finding the ratios to
be %=0.71 and 2 ~1.41, respectively. The mystery of the settings was
resolved.

The students agreed that they had heard the phrase “the area ratio is
the square of the linear ratio,” but it had never had any real meaning to
them.

We then continued along two different paths.

One was halving the AS rectangle successively until we had 6 similar
rectangles, using yellow and blue paper. Then we arranged the rectangles as
in Figure 5 with rectangles in alternate colors. This in turn led to activities
along the lines of Gibbs (1990) and Taylor et al. (1991), related to art and
culture.

The other was to see how this is reflected in diagrams of real life, for
example, Figure 6. The impression one gets there is that Gorbachev’s
popularity has decreased more than the numerals indicate, since the visual
impression is much stronger than the numbers.

It happens all too often in diagrams in newspapers and journals that
linear measurements are doubled vertically as well as horizontally and the
resulting figure is thought to be doubled. The visual impression of such a
doubling is definitely not just a doubling. What one sees is the magnification
of the area by a factor 4. Therefore I find it important that the future primary
teachers are made aware of such dangers and given a proper platform for
educating the young.

Later we had a methodological follow-up of these two paths of activ-
ity. Among other things we discussed the use of geoboards to confront the
children with these ideas at an early stage. Starting with the smallest square
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with just one rubber band one can double the lengths in just one direction
and note how this affects the size of the square, then double all sides in both
directions and note the result. These are rich geometry activities for prima-
ry pupils with relevance to real life.

Allt firre haller pA Gorbatjov

Under senaste aret har Gorbatjovs popularitet
minskat i Sovjetunionen. S& har manga, i procent,
sympatiserar med Gorbatjovs politik.

Dec-89- =-~. - Jan-90 -Maj -90 v Juli -90 Aug -90 - Okt -90

Diagram: Lennart Lindgren

Figure 6. Diagram from Dagens Nyheter (Daily News), December 9, 1991.
The heading reads, “Fewer and fewer favour Gorbachev”. The area
of the smallest picture corresponds to only 9% if the biggest
corresponds to 52%. Thus the diagram gives the impression that
Gorbachev’s popularity has decreased much more than it actually
has. An additional difficulty in this particular case is that this
newspaper, issued in Stockholm, has a narrower paper size in the
north, due to the fact that it is electronically sent and printed in a
city in the north, where the width of the Stockholm edition could
not be handled. So all the linear measurements are decreased
horizontally whereas they are maintained vertically.

The discussion also led to a realization that all this has ties to the
much celebrated region model, sometimes also called “area model,” for
multiplication. If one doubles one of the factors, how will the region be
affected? If one doubles both factors?

Some 3-dimensional considerations were made. The students played a
little with building blocks, predicted.and investigated how volume is affected
when the linear measurements are doubled in all three directions.

Here a discussion of a generalization of the concept of dimension to
fractional dimensions is appropriate for student teachers who specialize in
mathematics and natural sciences. This leads to studying something as
modern as fractals (Peterson, 1988, in particular pp- 116-120).
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STEM-AND-LEAF DISPLAYS

Let me confess at the outset that [ am very fond of the stem-and-leaf
display—love at first sight (Tukey, 1977)—this ingenious, simple, and ver-
satile mixture of table and diagram. The splitting of numbers into two parts
has a particularly strong appeal to me, and my joy was complete when I
realized that the splitting can in fact be done physically and used with learners
of place value. This was in 1984, late in Grade 1, with 7 and 8 year olds.
The purpose was to review and strengthen ideas about place value through
data from the real world that the pupils cared for. We worked with parents’
ages, and wrote them down on rectangular cardboard cards. Then the cards
were cut in two halves, the tens digit on one of the pieces and the units digit
on the other. And with these half cards we eventually made a physical stem-
and-leaf display of the mothers’ ages. (For further details see Dunkels, 1986.)

I wish to point out one important feature of the stem-and-leaf display:
The display develops from left to right and from above downwards. This
means that it follows the directions of writing and reading of Swedish and
many other European languages. This I find most important, and it makes
the stem-and-leaf display useful with young children.

An important ingredient in primary education is estimation, for exam-
ple estimating the duration of a minute, the length of a stick, the weight of
a stone. Stem-and-leaf displays enter at the recording phase (Dunkels, 1988;
Pereira-Mendoza & Dunkels, 1989; Vinnman & Dunkels, 1984).

The steam-and-leaf display also gives good insights into the cardinal
and ordinal aspects of counting numbers, and so serves several purposes in
primary teacher education (Dunkels, 1991, 1992b).

Since 1984 I have introduced stem-and-leaf displays to different pri-
mary classes, as well as in inservice courses, in various ways, often seizing
opportunities that have arisen unexpectedly out of pupils’ queries or com-
ments (Dunkels, 1987, 1988, 1991).

Here I will describe one such unexpected situation. I visited a Grade 3
class (9-10 year olds) to work with multiplication. On entering the classroom
one of the pupils asked about my age. I knew very well that children are
interested in ages and that grownups in Sweden often react in strange ways
to questions about their age, and often children do not get answers to such
questions.

What was I to do? Should I just tell the pupil? Or should I have him
guess? Or should I invite the whole class to guess? If so, how should I
collect the data? Ask one of the pupils? Or collect everybody’s guesses?

I knew that this particular class had not done any stem-and-leaf
displays. I decided to change my plans and do some age estimation instead.
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I invited everybody to guess my age, to write the guess down without
revealing it to their neighbors.

Then on the chalk board I wrote, without explaining, 3, 4, and 5 in a
column, the stem, and a vertical line segment immediately to the right (Fig-
ure 7a).

I asked the pupils one by one to read, aloud, their guesses, while I
recorded on the chalkboard. The first guess was 38, and I entered the 8 in
the 3-row.

The next guess was 55, and so a 5 was entered in the 5-row, the next
was 52, and so a 2 was entered in that same row. We now had three leaves
in our display (Figure 7b). Before we were through I had had to add two
rows to the display, so my prediction of the range had not been correct.
When all the guesses were recorded the situation was as portrayed in Fig-
ure 7c. For a discussion of numerals having a 0 in one of the places see
Dunkels (1986, 1992b).

tens | units

2|9 2|9 2|9 (1)
3 3|8 3|829 3| 289 3|289 ()
4 4 4| 498 4489 4489 )
5 5|52 5|52480 5| 02458 5] 02458 (5)
6|0 6|0 6|0 (1)
(13)

(a) (b) (c) (C)) (e)

Figure 7. Successive steps when introducing stem-and-leaf displays to a primary
class. The pupils had guessed my age. (a) gives the tens digits of the
guesses that I expected the pupils to give. (b) shows the situation
when 3 pupils have given their guesses: 38, 55, and 50. (c) contains
all the guesses, and I have had to add two more tens digits, 2 and 6. In
(d) the units digits have been ordered within each row. In (e) frequen-
cies of all rows and column headings have been entered .

There were immediate suggestions that we should order the units digits,
or, using the terminology of Tukey (1977), the leaves, by size leading to
Figure 7d.

The time had come for me to tell my age, and I was faced with a prob-
lem. My birthday was just 16 days later, and so I considered myself 49, but
was in fact 48. I decided to postpone a discussion about accuracy, and claimed
that I was 49. The following week I was forced to admit that I had been
lying, for of course the inevitable question about my birthday was asked.
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This led to a worthwhile discussion about difficulties of deciding what is “a
correct answer” in surveys (Dunkels, 1992b).

After having entered the frequency of each row (Figure 7¢) we talked
about the display, looked at the smallest and the largest guesses, found the
middle guess to be the “correct” 49, and reflected about the nice features of
the place value system.

I knew that some of the pupils in this class in relation to mental addition
and subtraction needed practice and encouragement in splitting numbers
into their components, practice and encouragement in viewing the tens’ digits
as counting multi-units and at the same time seeing them as tens, practice
and encouragement in moving units around from one number to the other in
mental addition and subtraction with two-digit numbers.

I took this opportunity to enhance the merits of place value, for example
the fact that we compute in exactly the same way with the tens digits as we
do with the units’ digits.

We also played around with our stem-and-leaf displays. We noted that
the rows look like bars or strips when viewed from a distance. We emphasized
this visual impression by covering the ones’ digits (Figure 8), thereby relating
the new display to earlier experiences.

2|9 24 r17)
3/829 3V /A 37

4 |498 4|498 al771]

5 (52480 552480 sy 7771
6|0 6|0 64

(@) (®) (©

Figure 8. Connecting the stem-and-leaf display to earlier experiences of strip
graphs. (a) is the display of Figure 7. In (b) two of the rows have been
changed into strips with chalk on the board or crayon in the notebook.
In (c) all have been changed. What are the advantages of each kind?

“Here we see how the number of people is translated into centimetres,”
I said. This triggered several pupils’ memories, “It is like the spaghetti
display,” they said referring to something we had done before based on an
idea in Kamratposten, a journal for school children.

The idea was to measure the size of helpings of spaghetti in centimetres
by tying ribbons around 1, 2, 3, 4, etc. helpings which then could be displayed
as a strip graph with those same ribbons. A standard helping was estimated
to 70 g.
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Anything, said one of the pupils, can be a strip, the weight of spaghetti,
the time I spend watching TV, the height of people, the measurements around
our heads, and the number of people.

All people are interested in their body measurements, for example
heights. With Grade 1 pupils, before the whole class has covered numbers
greater than 100, one can measure the excess over 1 m of each child’s height
(Dunkels, 1991).

The heights, expressed as the excess in cm over 1 m, of our

MOTHERS FATHERS
tens | units tens | units

5| 78999 (5) 5

6 | 003333334 ©) 6

6| 5678 ) 6|88 @

7|0 5) 7|00 @)

7 (1) 7 | 577889999 ©)

8 8 [ 0024 @)

8 8199 (2)
(19) (19)

Figure 9. The excess over 1 m of the heights of the parents of a Grade 2 class in
northern Sweden. The children themselves initiated the investigation.
The rows have been split into two, since they would otherwise have
been too long.

YEAR
tens | units
193 |7 (1)
194
194
195 |3 (1)
195 |7 (1
196
196 | 6888999 (7)
197 | 0002223333344 (13)
197 | 55556666666677777777788999 (26)
198 | 000233344 (9
198 | 555677 ( 6)

(64)

Figure 10. The year of birth of siblings of pupils in a school in a rural area in
1988. The pupils themselves initiated this investigation.
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CONCLUDING REMARKS

In order to develop number sense a child needs a rich variety of
experiences to build upon. Handling real world data is one source—if it
then is called statistics or mathematics is not so important. What matters is
that the child gets many opportunities of digging many holes, each hole
having its merits, joys, surprises, and limitations. I will end the way I started,
with a poem by R.L. Stevenson, “At the seaside”.

When I was down beside the sea
A wooden spade they gave to me
To dig the sandy shore.

My holes were empty like a cup,
In every hole the sea came up
Till it could come no more.
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TEACHING MATHEMATICS AND
PROBLEM SOLVING TO DEAF AND
HARD-OF-HEARING STUDENTS

Harvey Goodstein!

Gallaudet University, United States

I was born deaf to deaf parents, and thus the American Sign Language
(ASL) was my first language, and English my second language. After
attending residential schools for the deaf in New York, I attended Gallaudet
College (later, University), where I now teach, and obtained my bachelor’s
degree in mathematics. Gallaudet University is the world’s only liberal arts
college for deaf and hard-of-hearing students, attracting students not only
nationally but internationally as well. For my doctoral dissertation I studied
the mathematical preparation of pre-college teachers of deaf students and I
have subsequently been involved in organizing and conducting summer
institutes for pre-college teachers of deaf students.

For the purpose of this paper, deaf and hard-of-hearing students will
simply be referred to as deaf students. It should be noted that some deaf
students are doing exceptionally well academically in their schools or
programs. However, the examples presented in this paper relate to the large
majority of deaf students who for the most part have endured restrictive
communication environments during their formative years which have
adversely affected their language and cognitive development.

There are four parts to this paper. First, I give a few examples of prob-
lems in mathematics and problem solving encountered by deaf students based
on my observations in schools and “mainstreamed” programs serving deaf
students in the United States. Second, I explain some of the difficulties in
teaching and learning mathematics and in problem solving, relative to deaf
students. Then, after a few brief historical remarks, I outline the desired

! Professor Goodstein delivered his paper in American Sign Language (ASL),

which was translated into spoken English by an interpreter.
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bilingual/bicultural (or multilingual/multicultural) learning environment
involving American Sign Language (ASL) and English. Some suggested
teaching strategies appropriate for deaf students are highlighted. Such
learning environment and teaching strategies have their parallels in bilingual/
bicultural programs designed for other learners of English as a second lan-

guage.

EXAMPLES OF THE MATHEMATICAL DIFFICULTIES
OF DEAF STUDENTS

1.

138

Standing in front of a class of 9-11-year-old deaf students, holding
a one-foot ruler in my hands for them to see, I asked the class to
estimate my height. Impulsively, irrational answers were given,
ranging from 10 feet to 50 feet. After the class went through the
motions, measuring and learning that my height was between five
and six feet tall, I then asked a student (about four feet tall) to
stand by me, and challenged the class to estimate her height. Again,
quickly (and happily), they answered, 10 feet, 25 feet, etc. (with
all of the answers larger than six feet).

A class of 10-12-year-old deaf students was assigned to compute
the areas of rectangles, given figures with the lengths of the sides
shown. The students had no difficulty computing the areas using
the formula A = bh, yielding answers like 15 for a 3 x 5 rectangle,
etc. So, I asked one student, “15 what?” Puzzled, the student re-
plied, “Huh?” I repeated, “15 what? 15 shoes? 15 cows, 15 what?”
Bewildered, the student said, “15, that’s all.”

In a class of 7-9-year-old deaf students, given four nickels on the
table, one was able to count aloud by fives, and ended up with 20
cents as the result. However, the same student was not able to
compute mentally (by fives) the answer to a written “4 x 5 =7
problem, nor to understand that “4 x 5” is a symbolic representation
of four groups of fives.

In most classes, deaf students of practically all ages face particular
problems with the concepts of percentages, decimals, and fractions.
Incorrect responses are made to questions involving fractions; for

example, they will offer statements like “3+3 =27, “§ is larger

than }”, and others.

A group of deaf students, ages 17 through 19, volunteered to par-
ticipate in a research project (in progress at the time of the lecture).
Individually, and one at a time, the students were given a story
problem such as:
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“Jack has 245 videotapes and wants to put them equally in 4 boxes.
How many extra videotapes would there be?”

The students were asked to read the problem, and to sign aloud
while reading. Nearly all of them could sign at least 80 percent of
the words, fingerspelling the rest (i.e., words they could not com-
prehend). Then the students were asked to solve the problem,
writing everything on paper. Some subtracted 4 from 245; others
added or multiplied the two given numbers, or involved some oth-
er unrelated, irrational processes or operations. When asked to give
a mental picture of the given story problem, as if watching a movie
in their heads, nearly all said, “There was none” or, “Blank in head,”
and some even challenged the question: “What for?” or, “No need
for that picture.”

At first glance, these examples may not appear different from the sorts
of experiences that teachers of hearing students can report, nevertheless a
large proportion of deaf students tend to make these errors. Further, al-
though the second and fourth examples can be readily matched among hearing
students, the first and fifth examples show a striking failure to coordinate
perceptions in the “real” and “mathematical” worlds. The student in the
third example makes no connection between a simple counting situation
and related symbolic statements.

The examples are just anecdotes, of course, and do not prove anything
conclusively about the mathematical difficulties that deaf students are likely
to have simply because they are deaf. To get closer to that question we need
to take account of the fact that deafness is not solely a physiological
condition, which provides difficulty enough, but a constellation of associated
factors which affect the upbringing and education of deaf students.

SOME TEACHING AND LEARNING DIFFICULTIES
OF DEAF STUDENTS

Considering the home environment first, it is important to note that
nearly 90% of deaf students are born to hearing parents, most of whom have
had no previous exposure to deafness. Many parents, dismayed and even
crushed by their child’s condition, are often not able to reconcile themselves
to it for a long while. They tend, in the beginning at least, to adopt the
pathological view of deafness that they find expressed in the attitudes of
doctors, audiologists, speech therapists, etc., who are in most cases the people
they first consult for advice and help before they have had the chance to
encounter the diametrically opposed viewpoint, held by the Deaf? community

2 The capitalized word “Deaf” is used in the literature whenever the distinctive

cultural aspects of deaf people are being emphasized.
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and professional staff at schools for the deaf, that Deaf people constitute an
authentic linguistic minority. The standard medical view places an over-
whelming emphasis on the “hearingization” of a deaf child. In this climate
many deaf children grow up with low self-esteem and develop emotional
and social problems stemming from their certainty that they can never hope
to keep up with their hearing peers.

The majority of deaf students enter school with poor or non-existent
skills in ASL and English, not because of their deafness per se, but because
of the restrictive communication available in their early environment. Not
many teachers of the deaf are fluent in ASL, so the communication environ-
ment remains impoverished even in schools and programs intended to serve
deaf students. Studies show that the average deaf student leaves high school
with a fourth grade reading level and an eighth grade mathematics (compu-
tational) level.

Most pre-service training programs for teachers of the deaf at the
master’s level do not make competence in ASL a graduation requirement.
ASL competence is not currently required for teacher certification either.
Teachers of the deaf who cannot sign fluently are unable to engage in natural
and spontaneous communication with the students in their classrooms.
Studies show that deaf students of deaf parents perform at significantly higher
academic levels than deaf students of hearing parents. Nevertheless, even
those students favored with an early exposure to ASL at home are often
unable to use that advantage to the fullest when they enter school because
their teachers cannot use ASL well enough to work with them.

One of the reasons for the lack of deaf teachers is that many of them,
although intelligent and possessing average English skills, are not able to
pass the National Teacher Examination (NTE) exam which is mandatory in
many states. A few states have waived the NTE requirement for deaf
applicants pending further study on the test and the claim that it is culturally
biased. There is therefore a small percentage of deaf teachers in schools for
the deaf, but virtually none in the “mainstreamed” programs in regular
schools. The scarcity of appropriate role models for deaf students in the
classroom contributes to their further disadvantaging.

The great majority of teachers of deaf students at elementary through
secondary levels have weak backgrounds in mathematics, poor problem
solving skills, high anxiety, and poor attitudes towards mathematics. As a
group they find it most convenient to teach with an emphasis on rote memory
and computation, avoiding story (word) problems as much as possible; they
generally do not teach for understanding or concept mastery. Moreover,
because of the wide range of backgrounds and cognitive skills in each class
and the low level of sign communication between teacher and students, most
teachers organize their classrooms for individual drill and do not attempt to
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encourage group discussion or cooperative learning. Because of the critical
shortage of qualified interpreters, deaf students placed in classes of hearing
students are for the most part unable to participate in the discussion of
mathematical topics or any other interactive situations in the classroom.

I can summarize the situation of mathematics in most schools and pro-
grams serving deaf students through the following items of current folklore.
(1) The dominant emphasis in the curriculum is on language (English)
development, often at the expense of other subject areas such as mathematics,
science, and social studies. The “English is intelligence” mentality is all-
pervasive. (2) There is a common belief that deaf students “do well” in
mathematics, but this is because educators tend to identify mathematics with
purposeless computation. Mathematics as problem solving, or as the study
of patterns and relationships, is ignored. (3) Story problems are skipped or
deferred because teachers have low expectations about the students’ capacity
to handle the necessary language demands of the tasks. Where they are
covered, instruction focuses on looking for cues, not on understanding the
nature of the problems.

In the next section I deal briefly with one of the arguments that has
dogged deaf education until now. Then in the final section I consider what
steps should be taken to improve the generally unsatisfactory state of
mathematics in deaf education.

THE GREAT SIGN CONTROVERSY

ASL has its roots in France where, in the 1760s, a methodical sign
language system began to be developed by the Abbé de I’Epée from the
natural sign language used by Deaf children and Deaf staff members at his
school. By 1791 the school had become the Paris Institute for Deaf-Mutes.
In 1816 Thomas Gallaudet, accompanied by Laurent Clerc, who was born
deaf and had been first a student and later a teacher at the Institute, brought
the language of signs to Hartford, Connecticut. Over time, and shaken free
of the inflections that had related it to French grammar, this language grad-
ually became the ASL that is now used by a half a million people in the
United States of America and Canada.

From the beginning, there has been an ideological struggle between
the proponents of oral and sign instruction for the deaf. Behind the well-
intentioned concerns of some of those who have argued for oral instruction—
that deaf people should be helped to learn the ways of the dominant majority
and not forced to become ghettoized, as well as genuine worry about the
linguistic shortcomings of sign language—there have often lurked the
irrational fears of people faced with behavior they did not understand, and
perhaps did not wish to understand. It is not only the simple and uneducated
who have associated severe deafness with severe mental limitations. (How

141



ICME-7 SeLecTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

significant that being “dumb” is still carelessly and commonly used to mean
unintelligent!) Those on the other hand who favored sign instruction, even
those who shared doubts about the linguistic adequacy of sign language,
knew that signing “unlocked” the intelligence of deaf people and showed
them to be as educable as anyone else.

For a hundred years or so the victory went to oralism. The Second
World Congress to Improve the Welfare of the Deaf and the Blind, now
usually known as the International Congress on Education of the Deaf, in
Milan in 1880, pronounced the dangerous inadequacy of signing as an
instructional medium and proposed to ban it, and almost all institutions in
almost all countries accepted a recommendation from a meeting of exclu-
sively hearing people, few of whom could use a sign language. In the United
States of America, for example, ASL was the instructional medium in all 26
institutions for educating deaf children in 1867, but by 1907 ASL was not
permitted in a single one of the 139 schools then operating.

As far back as 1827, Jean-Marc-Gaspard Itard (better known perhaps
as the would-be teacher of the Wild Boy of Aveyron) had carefully studied
two deaf-mute students and showed that the student taught through signs
was superior. Comparative tests on matched pairs of congenitally deaf
students in the 1970s showed that the signing students were significantly
better in reading, writing, psychological adjustment, oral speech, graduation
from high school, and college entrance. The future of the exclusively oral
approach, though, may be even more affected by post-Chomskian studies
which have been able to show that sign language is in fact an adequate
instructional language, and by the greatly increased politicization of the
issue of deaf education, which must in today’s climate be regarded as too
important a matter to be left entirely to the determination of hearing people,
however well-intentioned.

THE DESIRED TEACHING/LEARNING ENVIRONMENT
AND STRATEGIES FOR ACHIEVING IT

Recommendations

1. Bilingual/bicultural programs, involving ASL and English, and the
Deaf and American cultures, should be employed as far as possible.
Bi/bi programs are currently in operation, officially or otherwise,
in only a few schools/programs serving deaf students in the United
States of America. Nevertheless, the concept of such a program
has gained a strong level of interest among an increasing number
of teachers and administrators as evidenced by the large number of
workshops and task forces on this topic in recent years. It is
anticipated that such heightened interest will ultimately lead to the
wider acceptance of bi/bi programs nationally. In these programs
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ASL (which includes a variation with some English elements) is
used as the language of instruction via visual communication, while
English is used primarily for reading and writing.

. Before most deaf students can begin to communicate and reason
mathematically in a precise or formal fashion (in English), they
have first to overcome three primary obstacles during the forma-
tive years, sequentially if not concurrently: (1) learning how to
communicate naturally and visually via ASL; (2) learning and un-
derstanding the mathematics concepts and properties involved
through visual communication, acting out, use of manipulatives
and experimentation; and (3) reading and writing about these con-
cepts and properties while learning English as a second language.

Educators of deaf students need to realize that there is more to
education than precision in English. Some have even challenged
the proposition: What is wrong with telegraphic English as long as
one gets the message across? Workshops for elementary school
teachers can give them a third grade story problem in Russian,
which most of them will not be able to solve until nearly 45 percent
of the words are translated into English. They can also be given
another problem in simple English, which they can readily under-
stand (say, involving a ball dropped from the top of the Washington
Monument), but are not able to solve because they do not have the
necessary calculus and science background. The teachers will be
quick to agree that students should not be denied opportunities to
solve story problems because of their limited English skills. Further,
the teachers will quickly acknowledge the importance of having
sufficient hands-on experience involving relational thinking,
number sense, measurement sense, concept of fractions, etc., in
the development of students’ cognitive schemas.

. Atthe very least, litigation, legislative, and advocacy efforts should
be conducted to ensure that teachers of deaf students do not create
communication barriers in the classroom. In other words, teachers
of deaf students should at least be competent in ASL. Measures
should also be taken so that equity in testing of deaf teachers is
assured, especially in national and state examinations.

. Additional in-service courses and workshops in mathematics
content and pedagogy are needed to enhance the mathematics back-
ground and preparation of teachers. The teachers must also be
trained to teach for mathematical understanding, with emphases
on problem solving, communication, reasoning, and making con-
nections, as recommended in the National Council of Teachers of
Mathematics Curriculum and Evaluation Standards.
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6. The sooner the deaf child and the parents of the deaf child accept
the deafness, the better. The condition may not be ameliorable, but
the stigma associated with it is. The late Frederick C. Schreiber,
former National Association of the Deaf Executive Director, liked
to say, “It’s what is between the ears that counts.” The Deaf com-
munity has existed for many generations, using ASL as its primary
language, and transmitting Deaf culture from generation to gener-
ation. For that reason, Deaf people as a group often prefer to be
viewed as a linguistic minority, like Hispanics and other ethnic
groups, than as disabled.

7. Due to communication barriers deaf students have endured at home
and school during the formative years, they may have difficulties
in understanding story problems in English. It is recommended that
in such instances teachers work through a problem with the stu-
dents using visual communication, acting out, and so on, until the
students understand the problem and the required concepts and
processes. Cooperative problem solving should be encouraged.
Adaptive materials can also be used—like simplified descriptions,
smaller numbers—as long as the students ultimately return to the
original problem, however wordy or difficult. Other helpful teach-
ing strategies include: posing problems without numbers to force
students to focus on the processes involved; asking students to cre-
ate questions and problems to fit a given statement or set of facts;
solving each other’s made-up problems, etc.

8. Writing journals or “learning logs” can be helpful in encouraging
students to express their mental images of certain mathematical
concepts or relations. In the beginning, because of their low level
of confidence in their English skills, students will write very little,
maybe only a sentence or two. Gradually, with practice, they begin
to feel less hesitant about writing, particularly if given positive
feedback together with guidance for further refinements. Mistakes
in English should not be emphasized, however, or their discour-
agement will negate the value of the task.

FINAL REMARKS

Teaching deaf students through bilingual/bicultural programs, as is
recommended here, draws deaf education into the more general orbit of
teaching English as a second language, with the advantage that the more
mainstream experience and techniques that have been accumulated in the
practice of ASL can be drawn upon. But there are significant differences
that should not be forgotten. Hearing students have considerable aural
exposure to English words through radio, TV, interaction with first-language
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English speakers, and so on, before they enter school; deaf students do not.
Hearing students who have acquired a spoken language, even when that
language is not English, have experienced the coordination of mouth and
ear in the production of utterances and, in particular, know how to monitor
what they utter by listening to it; deaf students lack this capability.

Deaf students learn mainly through their eyes. ASL, the language of
signs used in the Deaf community in America, through the natural process-
es of use, disuse, and refinement, has evolved in its own right into a
sophisticated language most appropriate for visual communication. On the
other hand, the English-based methodical sign systems, commonly classi-
fied as Manually Coded English (MCE), which were artificially constructed
as “manual codes” for spoken English, have over the past twenty years proved
to be ineffective.

I have talked exclusively about ASL because it is the sign system I
know and use. In other countries, of course, deaf educators would do well to
adopt the language of signs that is current in their own Deaf community in
order to comunicate with deaf students about the world, including the world
of mathematics, and to teach the spoken and written language of that country
as a second language.
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THE ORIGIN AND EVOLUTION
OF MATHEMATICAL THEORIES

IMPLICATIONS FOR MATHEMATICAL EDUCATION

Miguel de Guzmdn

Universidad Complutense, Spain

In this paper I am concerned to consider the right way to introduce
young people to mathematics research. How should they be introduced to
mathematical content and to mathematical theories? What is the attitude we
should try to foster in them? What do those who are most successful in
preparing young mathematicians actually do?

The questions need to be answered quite concretely for it must be
admitted that the way to prepare researchers is not a matter of general agree-
ment in the profession, it is not always carried out well, and too many details
are often left to chance.

Of course there are many ways to involve students personally and
actively in their learning of any mathematical topic, especially by motivating
them with problems. For example:

* Here is a problem. Don’t read anything, just plunge in and try to
solve it straight away.

* Read these several passages from these books carefully, then come
and get a problem from me.

* Read this recent paper and then work on the problems it leaves open.

* I will be giving you suggestions for problems to solve throughout
the course. Choose the ones that you think will be most productive,
that most interest you, that you believe you have a chance of solving.

I strongly believe that the crucial insights in research in a particular
field tend to come from a deep knowledge of the origins and evolution of
the theory one is working with, and a familiarity with the style of thought in
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that area. This is acquired by learning its motivations, the circumstances of
its origins (historical, social, personal), the right ways of asking questions,
and so on.

I shall try to give substance to this claim by looking first of all at what
a knowledge of the history of mathematics in general, and of the specific
subject in particular, can offer us that is relevant to the context we are
exploring here, and by briefly examining afterwards the lessons that can be
derived from the knowledge of the evolution of a field in which I was
personally involved some years ago.

WHAT KNOWLEDGE ABOUT THE HISTORY OF MATHEMATICS
AND ABOUT A PARTICULAR SUBJECT CAN OFFER THE STUDENT

They offer a vision of science and mathematics as human activities.

We see that the truths, methods, and techniques of mathematics do not
come out of the blue. They are not impersonal facts and skills without a
history, but are the results of the efforts of passionate and deeply motivated
people.

We see that, in spite of its many wonders, mathematics is not really a
“godlike” or perfect science. Because it is an artefact of human beings it is
also incomplete and fallible. Its history gives us many great discoveries and
great discoverers to admire, but it also shows us that much of what we now
take to be established and obvious truth was only arrived at after many
errors and much controversy.

They offer a frame within which to organize the elements of our mathematical
knowledge.

We see better how to relate events that took place centuries apart, how
to appreciate the temporal contexts in which mathematical discoveries were
made.

We see how people invested their efforts in the pursuit of certain
questions, how “fashions” arose, and how the fashions of the past can alert
us to those of the present.

We get a sense of how the various threads in the fabric of the subject
we are working on were woven together over time.

They offer a dynamic vision of the evolution of mathematics.

We understand the driving forces at work developing the basic ideas
and methods of mathematics. We get closer to the springs of creativity that
generated particular subjects, consequently gaining a sense of their genesis
and progress and a better appreciation of their true nature.
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We get a flavor of the thrill and adventure of working in mathematics.

We are immersed creatively in the past and better able to understand
our own problems.

There is the possiblity of extrapolating towards the future.

We realize the tortuous paths of creativity, the ambiguities, obscurities,
and partial illuminations that accompany the first attempts to shape the field.

We see how we can inject some dynamic, some life, into our educational
tasks.

They offer an appreciation of the intertwining of mathematical thought and culture
in human society: of the importance of mathematics as a part of human culture.

We see the influence of historical trends and developments on mathe-
matics and, conversely, the impacts of mathematics on human culture, its
sciences and philosophies, its arts and technologies.

They offer a more profound technical comprehension.

The more simple a theory is in the beginning the easier it is to unders-
tand and work with. Technical complications coming along later can begin
to obscure the theory unless one grasps their motivations.

The lines of development of a theory point towards the future and
provide guidelines for research.

They offer an awareness of the special life of any mathematical theory.

Each theory has its own peculiar character, molded by the special cir-
cumstances that gave rise to it. It was born at a particular moment, the result
of particular concerns. It was motivated by curiosity about some phenome-
non, the wish to apply some known results, to expand some collection of
techniques, to complete some existing theory, and so on.

Each theory developed according to its particular style, its expectations
and disappointments, its correct intuitions and its false starts.

Each theory inhabits its own “local” atmosphere generated by the
personal and social forces that surrounded it.

It seems to me that one can conclude that: Familiarity with the origin
and evolution of a mathematical theory has profound lessons to offer to
anyone trying to be inducted into the field.
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A CASE STUDY: THE DIFFERENTIATION OF INTEGRALS

By following the lines of development of a specific theme in math-
ematical analysis from this century—Lebesgue differentiation and its
extensions—I shall now try to show some of the lessons which can be
extracted from this study that could be of use to those seeking to do research
in this area. If I am fortunate, the example will have some lessons for people
working in other fields too.

Some of the ideas and methods stimulated by this theory during this
century have proved very useful in other areas of mathematical analysis,
particularly in Fourier analysis and in some aspects of geometrical measure
theory. I will present a non-technical description of the main highlights of
the theory, taking into account that we are not interested in its technicalities
here but rather in the educational implications for those wanting to be
introduced to the subject. For the sake of brevity I will trace the main points
of the theory from its origins in 1904 to the time its progress was interrupted
by the Second World War.

The beginning: the Lebesgue differentiation theorem
Towards the completion of an interesting theory.

The Lebesgue differentiation theorem, the equivalent of the funda-
mental theorem of calculus, was the culminating point of his measure theory.
He first proved it for R! (1904): If f € L(R") then at almost every point x

.1 b
lim oL [ foende = fx)

Essentially this meant that the means of an integrable function over
intervals containing a point x converge, at almost every point, to the value
of the function at that point when the intervals contract to the point. The
idea followed by Lebesgue in the proof was ingenious but not translatable
to R2. Since the order structure of the real line is so crucial for the proof in
R!, what might be the corresponding tool for R??

As in so many other cases, the first impulse to develop new techniques
came from the need to extend a theory to more general situations.
Vitali’s covering theorem

Sharpening tools that have proved to be interesting, deep, and useful;
pushing their scope further.

At the end of the 19th century a number of covering theorems were
discovered that helped substantially to clear up the structure of Euclidean
space from an analytic point of view. The so-called Heine-Borel covering
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theorem, the Lindeldf theorem, and others, became important tools in this
respect. Vitali’s covering theorem was an important advance: Let M be a
measurable set in the plane with a Vitali cover V for M (i.e. for every point
of M a sequence of square intervals centered on the corresponding point
and contracting to that point is given). Then one can extract from V a se-
quence {Q,} of disjoint squares such that

IM-UQ,|=0

Vitali’s theorem was not invented for the purpose of obtaining a proof
of the Lebesgue differentiation theorem in R?, but this was the use Lebesgue
made of it in 1910, showing that his theorem for the line could be generalized
to the plane if one takes the means of an integrable function over squares or
circles containing the corresponding point.

The Lebesgue differentiation theorem in R?

The solution of an interesting problem often leads to deeper questions;
a good problem is never exhausted.

The result Lebesgue obtained was quite satisfactory, but it led imme-
diately to a natural question: Can one replace the squares by more general
intervals (e.g. by rectangles in the direction of the coordinate axes, or pe-
rhaps by rectangles in arbitrary position)? These natural questions turned
out to be quite challenging and these problems remained open for a long
time, as we shall see.

The value of paradox
A paradoxical situation can be the beginning of a new development.

From 1908 until 1924 there was in the air a belief that Vitali’s theorem
would also hold if intervals were substituted for squares. The theorem of
Lebesgue would then admit a nice and direct generalization. The fact, first
proved by H. Bohr (1918) and first published by Banach (1924), that intervals
in the plane do not satisfy Vitali’s lemma seemed counterintuitive. This
sort of paradox made the study of the covering properties of different systems
of sets in the plane more challenging, and at the same time started to throw
some new light on the subject.

This is in many cases the effect of perceived paradoxes. It has been
reported that in the midst of working on a difficult problem the physicist
Niels Bohr was overheard to say: “How wonderful! We have met a paradox.
Now we have some hope of making progress.”
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An impasse concerning the strong density problem (1924-1934)

There are periods of impasse when progress can come from many directions;
one must remain open to all possibilities.

Since Vitali’s lemma fails for intervals, what will happen to the
differentiation theorem of Lebesgue? Even in the case when the function f
is the characteristic function of a measurable set, the problem of generalizing
the theorem to the plane seemed to be quite difficult. This so-called strong
density problem (the local density of a measurable set with respect to
intervals in the plane) remained open for many years—until 1933, when
Saks was able to prove the strong density theorem. In the meantime, many
mathematicians were looking in other directions to find some light that could
illuminate this challenging question.

The role of a good game
A good mathematical game can be the beginning of a deep theory.

In 1917 S. Kakeya proposed a problem that looked like a puzzle: What
is the infimum of the areas of those plane figures within which a needle of
length one can be inverted by continuous motions? The problem has a very
long and interesting history in which some important mathematicians show
up: e.g., Besicovitch, Perron, Rademacher, Schoenberg. Those interested in
the ramifications of it are invited to consult the bibliography proposed at
the end of the paper. (By the way, the surprising solution, given by
Besicovitch in 1928, is that the infimum mentioned in the statement of the
problem is zero.) Here it should suffice to mention that the problem has had
very profound implications for the subject of differentiation of integrals
and for Fourier analysis. By means of the tools developed in order to solve
it C. Fefferman in 1971 was able to solve an important problem which had
remained open for many years (the multiplier problem for the ball).

Different lines of thought concerning a theory

At the point where different subjects intersect can often be found many deep
questions and much light on those subjects.

At the beginning of the century the theory of Lebesgue measure was
recognized as an important tool in many connections in mathematical
analysis. It generated a strong interest in the geometric structure of
measurable sets. Some of the questions proposed at the time later proved to
have deep implications for differentiation theory. In 1926 Banach proposed
the question: How large in measure can a linearly accessible set in the unit
square Q be? (“Linearly accessible” means that each point of the set can be
reached by a straight line originating outside Q.) In 1927 Nikodym solved

152



GuzMAN

the problem in a long and complicated paper by constructing a set N contained
in Q and having measure 1 (a set of full measure in Q) such that through
each of its points there is a straight line not intersecting the set N again. N
is a strange set that, in spite of “filling” Q, seems to leave many more points
of Q in its complement Q — N. At the end of Nikodym’s paper appears an
observation of Zygmund that shows that the collection of all rectangles in
the plane is an unsatisfactory system for proving the Lebesgue differentiation
theorem, and, further, that the density theorem with respect to the system of
plane rectangles does not hold.

Later on, R.O. Davies, working in this same direction, constructed
still more paradoxical and spectacular sets than that of Nikodym.

The versatility of mathematical tools
When you find a good tool, try to make use of it in some connected problems.

The strong density theorem was proved by Saks in 1933. By then
F. Riesz was already in possession of a powerful tool concerning continuous
functions in R, the so-called rising sun lemma (also called the water flowing
lemma). He was able to apply it to solving several interesting problems of
the moment with ease, presenting another simple and easy proof of the strong
density theorem in 1934,

In this same year, Jessen, Marcinkiewicz, and Zygmund were able to
give the definitive theorem in the direction of differentiation of functions
by the system of intervals in R": If f is a function in L(log*L)*'(R") then
the intervals differentiate the integral of f and this space of functions is in
some sense the best one.

After climbing the peak

When the evolution of a theory along a particular path seems to be close
to the summit, one may need to start looking for different lines of thought.

After the Jessen-Marcinkiewicz-Zygmund theorem, the attention of
the mathematicians concerned with the differentiation of integrals turned in
a natural way in other directions. Busemann and Feller took a new path in
1934 and R. de Possel yet another in 1936.

The abstract and the concrete

Examine the concrete and try to discover a general pattern.

Busemann and Feller introduced into the field the consideration of
what has been called the halo of a measurable set with respect to a differen-
tiation basis (a generalization of the system of all spheres or of all intervals
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used in the differentiation theorem). From the concrete ideas introduced by
Saks and Riesz in their treatment of the strong density theorem, the idea of
the halo was a natural development. By means of it Busemann and Feller
were able to present the characterizations of systems of sets that would
have good differentiation properties. The time had come to try to leap from
the concrete cases to some more general formulations which could be used
in other cases. They managed it by giving a quantitative characterization—
by means of something which was later perceived to be a (1,1) weak-type
inequality for the maximal Hardy-Littlewood operator—of the systems of
sets used for differentiating the integral.

For his part, R. de Possel proceeded in a similar vein, from the concrete
to the abstract. He observed what happens in the plane with respect to the
differentiation and covering properties of the different systems:

a) Squares satisfy Vitali’s lemma; squares allow the differentiation of
LY(R?).

b) Rectangles in arbitrary directions do not satisfy Vitali’s lemma;
rectangles do not have the strong density property.

c) Intervals allow the differentiation of Llog*(R?); but not of L! (R?).

In a natural way, he decided to try to explore what are the covering
properties, if any, of the system of intervals. He was able in this way to
initiate an interesting line of research, looking for the quantitative connec-
tions between the differentiation properties and the covering properties of a
differentiation basis.

So we can see here in action another interesting principle, which should
be kept in mind:

When you notice a qualitative connection, try to find the quantitative
reasons for it.

The progress of the theory was interrupted by the Second World War.
After it came many other interesting developments: in particular, from the
work of Besicovitch in connection with Geometric Measure Theory, and
from the intervention of many analysts working in Fourier Analysis. Those
interested in following up this subject in detail are invited to consult some
of the references below.
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LE CALCUL INFINITESIMAL
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LES INFINITESIMAUX AU FIL DES AGES

It is interesting that a method which had been given up as untenable has
at last turned out to be workable and that this development [...] was
brought about by the refined tools made available by modern mathe-
matical logic. (Robinson, 1973, p. 16)

Le concept d'infinitésimal, de quantité « infiniment petite », a connu
un sort variable au fil des ages. Bannis par les uns, utilisés de facon
heuristique mais souvent avec circonspection par les autres, les infinité-
simaux, jusqu'a tout récemment, n'avaient pas droit de cité en mathématiques,
surtout aprés que les analystes du XIX¢ siécle eurent introduit dans le calcul
différentiel et intégral, par I'approche en €-8, un canon de rigueur ayant
cours jusqu'a nos jours. Bien siir le physicien et I'ingénieur avaient persisté
dans leur utilisation intuitive des infinitésimaux, mais le mathématicien
savait que tout cela pouvait (et devait !) étre remplacé par un discours
rigoureux évacuant toute notion d'infiniment petit actuel.

Déja les Grecs utilisaient les infinitésimaux pour résoudre certains
problémes de géométrie. Ainsi Archimede (287-212 A.C.) s'autorise 2 opérer
sur des décompositions infinies des figures. Toutefois, il s'agit 1a pour lui
strictement d'une méthode de découverte de propriétés, non d'une fagon
acceptable de les démontrer rigoureusement. Travaillant dans la tradition
d'Aristote et d’Euclide, Archiméde voit les nombres comme satisfaisant a
ce qu'on appelle aujourd'hui la propriété d’Archiméde : étant donné deux
nombres, le plus petit, additionné a lui-méme un certain nombre (fini !) de
fois, en viendra toujours a surpasser l'autre. Un tel contexte interdit donc
I'existence d'infiniment petits. Néanmoins, comme il le révéle dans son traité
La méthode (découvert en 1906 seulement), Archiméde n'hésite pas a faire
appel a son intuition des quantités infinitésimales pour identifier certaines
relations (comme le volume d'une sphére). Intervient ensuite une étape de
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validation dans laquelle ces relations sont prouvées par une argumentation
indirecte (Ia « méthode d'exhaustion »), débarrassée de toute présence
infinitésimale.

Pour illustrer I'apport des infinitésimaux, considérons une preuve de
Nicolas de Cuse (1401-1464) établissant le rapport entre l'aire d'un cercle et
sa circonférence (Davis et Hersh, 1980, p. 238). Soit un cercle de rayon r
que nous envisageons comme un polygone ayant une infinité de cOtés
infiniment petits et tous égaux entre eux (voir figure 1, o une portion du
cercle est observée a I'aide d'un « microscope infinitésimal » & grossissement
infini, tel qu'utilisé dans Keisler (1986)). Chacun de ces cdtés est la base
d'un triangle isocéle dont le sommet est le centre du cercle et dont la hau-
teur h est le rayon r du cercle, puisque la base du triangle est infiniment
courte. L'aire du cercle, étant la somme des aires de ces triangles, est donc
égale 2 la somme des bases (c'est-a-dire la circonférence) multipliée par 5.
Une telle argumentation pourrait étre remplacée, par exhaustion, par un
raisonnement par contradiction n'utilisant que des constructions finies (Davis
et Hersh, 1980, p. 240). On obtient ainsi une preuve répondant aux canons
classiques de rigueur mais occultant forcément, par son approche indirecte,
l'intuition forte suggérée par la vision infinitésimale.

Z

Figure 1

La mise en place d'une théorie générale de la différentiation et de l'in-
tégration fut réalisée simultanément par Newton (1642-1727) et Leibniz
(1646-1716). Si Newton utilise 2 la fois une vision infinitésimale et une
vision reposant sur la notion de limite, accordant finalement sa préférence
3 cette derniére, Leibniz, de son c6té, choisit résolument l'approche infinité-
simale. Mais pour lui, les infiniment grands ou petits n'ont pas d'existence
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véritable: ce ne sont que des « fagons de parler », des « fictions ». Il oppose
I'emploi des infinitésimaux au « style d'Archiméde » (entendre les argu-
ments indirects résultant de la méthode d'exhaustion — Leibniz ignorait
évidemment les heuristiques infinitésimales d'Archiméde dévoilées dans La
méthode) :
[---] on n'a pas besoin de prendre l'infini ici 2 la rigueur [...] Car au lieu de
I'infini ou de I'infiniment petit, on prend des quantités aussi grandes et aussi
petites qu'il faut pour que l'erreur soit moindre que l'erreur donnée, de sorte
qu'on ne differe du style d'Archiméde que dans les expressions, qui sont plus

directes dans notre méthode et plus conformes a I'art d'inventer. (Robinson,
1974, pp. 261-262)

Le calcul développé par Newton et Leibniz a vite connu des succés
€clatants dans ses applications. Cependant de sérieuses difficultés logiques
sont apparues quant a ses fondements, tant selon l'approche de Newton que
celle de Leibniz. Ainsi le recours aux infinitésimaux améne une contradiction
flagrante, comme l'illustre le calcul de la dérivée de x2:

=2x+dx =2x

d(x*)  (x+dx)? -x2
dc dx

L'accroissement infinitésimal dx, qui se comporte comme zéro a la fin du
calcul, ne peut bien siir étre nul au départ. Cette ambivalence n'a pas manqué
d'étre séveérement attaquée, en particulier par Berkeley (1685-1753). Dans
son célebre pamphlet The analyst, celui-ci condamne avec virulence 1'utili-
sation de ces « incréments évanescents » :

For when it is said, let the increments vanish, i.e., let the increments be nothing,
or let there be no increments, the former supposition that the increments were
something, or that there were increments, is destroyed, and yet a consequence
of that supposition, i.e., an expression got by virtue thereof, is retained. [..]
I have no controversy about your conclusions, but only about your logic and
method. (Berkeley, 1734, pp. 25, 30)

Méme si la controverse entourant le statut des infinitésimaux n'empéche
pas Euler (1707-1783) de les utiliser avec art (voir Robert, 1985, pp- 3-5),
de telles attaques eurent néanmoins un effet dévastateur. Et si les infiniment
petits se retrouvent encore un siécle plus tard dans les textes de Cauchy
(1789-1857), c'est essentiellement dans un role heuristique « d'intermé-
diaires qui doivent [...] conduire 4 la connaissance des relations qui
subsistent entre des quantités finies » (Robinson, 1974, p. 275), comme chez
Archimeéde. Car avec Cauchy, et plus tard avec Weierstrass (1815-1897), se
construit la théorie moderne des limites et de la continuité telle que nous la
connaissons aujourd'hui, ot les considérations infinitésimales cédent la place
a des inégalités en £—8. Pour le mathématicien, les infinitésimaux tombent
alors en désuétude compléte, méme s'ils restent un outil commode dont ne
se privent pas d'autres scientifiques.
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Il y a un peu plus de trente ans, Abraham Robinson (1918-1974) a
découvert comment certains outils de la logique mathématique, plus préci-
sément de la théorie des modeles, permettent de construire un corps de
nombres hyperréels grice auquel le calcul différentiel et intégral peut Etre
développé de fagon rigoureuse dans un contexte infinitésimal : cette 1égi-
timation a posteriori permet au mathématicien d'aujourd'hui de revenir en
toute sérénité aux méthodes si fécondes faisant intervenir explicitement
I'infiniment grand et l'infiniment petit (et remet en lumiére I'expression
traditionnelle calcul infinitésimal).

Aprés un rappel des fondements logiques du calcul infinitésimal
moderne, nous en présentons certaines versions qui débouchent sur des
approches congues spécifiquement a des fins pédagogiques en vue du
renouvellement de I'enseignement élémentaire de l'analyse.

LE CORPS DES HYPERREELS

Skolem's works on non-standard models of Arithmetic was the greatest
single factor in the creation of Non-standard Analysis. (Robinson, 1974,
p- 278)

Nous voulons examiner brievement de quelle fagon la logique mathé-
matique intervient dans la construction primitive de Robinson. A cette fin,
nous indiquons comment des résultats de Skolem, d'abord pergus comme
témoignant d'aspects pathologiques des formalismes, recélent l'idée mai-
tresse sous-jacente 3 une introduction rigoureuse de quantités infiniment
grandes et petites.

L'étude des langages formels implique une double vision syntaxique
et sémantique, rendant compte a la fois des aspects déductifs (énoncé
formellement démontrable) et interprétatifs (énoncé vrai sous telle inter-
prétation). Plus généralement, on s'intéresse 2 la notion d'ensemble d'énoncés
cohérent (n'engendrant pas de contradiction) et possédant un modéle (c'est-
a-dire une structure d'interprétation rendant vrais ses énoncés). Le théoréme
de complétude, démontré par Gédel en 1930, affirme justement I'équivalence
entre la syntaxe et la sémantique, dans le sens qu'un ensemble d'énoncés est
cohérent si et seulement s'il a un modéle. Un corollaire immédiat en est le
théoréme de compacité, qui donne I'équivalence entre l'existence d'un modele
pour un ensemble I' d'énoncés et l'existence, pour chaque sous-ensemble
fini de T, d'un modele. C'est cette propriété de finitude qui joue le role-clé
dans la construction suivante, donnée par Skolem en 1934.

Soit la structure A’ de l'arithmétique dans les naturels et le langage
formel correspondant £ muni des symboles appropriés (entre autres pour
l'addition et la multiplication). Nous désignons par Théorie (N\) l'ensemble
des énoncés de £ vrais dans A . Le « truc » syntaxique permettant d'obtenir
un modéle non standard de l'arithmétique consiste a enrichir £ par l'ajout
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d'un nouveau symbole formel a jouant le role d'élément infini par l'inter-
médiaire des énoncés n < a ol n est un naturel quelconque. Nous obtenons
ainsi, au niveau du langage enrichi £, I'ensemble d'énoncés L = Théorie (N)
U {n<a | n naturel} qui, par compacité, posséde un modéle, disons A*,
dont la restriction au niveau de £ donne un modéle A** de 'arithmétique
englobant N et dans lequel vivent des éléments infinis. Par construction
méme, les deux structures A et A* sont élémentairement équivalentes
(A= A(*), dans le sens qu'elles valident exactement les mémes énoncés de
L :c'est 1a le fameux principe de transfert qui joue un role fondamental
dans I'utilisation des modéles non standard. La figure 2 schématise les étapes
de cette construction, les fleéches pleines indiquant les changements de niveau
de langage.

(3) 2 (1) (8 7)

L ~& ——— Thorie (N) <& ——— N = A+

L _ p I _____ionﬁufiti__> N+

4) () ©
Figure 2

Le constat ayant permis 2 Robinson de donner des assises rigoureuses
au calcul infinitésimal est que la méme démarche, mais cette fois a partir du
corps R des réels, donne une structure ®* de nombres hyperréels comprenant
des infinis et conséquemment, par inverse multiplicatif, des infinitésimaux.
(L'appellation analyse non standard utilisée par Robinson pour dénommer
sa théorie indique d'ailleurs clairement son origine dans les modéles non
standard — pour certains (Deledicq, 1992), le sigle anglais « NSA » en est
venu a désigner la Nouvelle et Simple Analyse.) La structure ®* étant obte-
nue a partir d'un corps, on a donc une « belle » arithmétique des hyperréels.
A noter cependant qu'en tant que corps ordonné contenant proprement ®
comme sous-corps ordonné, les hyperréels forment nécessairement un corps
transgressant la propriété d'Archimeéde (Levitz, 1974) : cela ne contredit
aucunement le principe de transfert si I'on prend garde de traduire « Vxy
réels, In naturel tel que y < nx » par « Vxy hyperréels, An hypernaturel tel
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que y < nx », de sorte que le multiple nx peut étre vu comme résultant d'une
« somme infinie ».

La présence d'infinitésimaux nous permet de définir, outre I'égalité
habituelle, une relation d'« égalité a un infinitésimal prés » : deux hyperréels
a et b sont infiniment voisins (a = b) lorsque leur différence a — b est infini-
tésimale (et non forcément nulle). C'est cette relation qui fournit la solution
a 'aporie révélée par Berkeley, puisque 1'on peut maintenant conclure, pour
la dérivée de x%, que 2x + dx = 2x

S'il a semblé utile de rappeler la construction primitive de Robinson,
c'est qu'elle apporte une réponse limpide et éclatante au probleme de l'exis-
tence d'une structure dans laquelle cohabitent (en harmonie !) des nombres
finis, infiniment grands et infiniment petits. Qu'une telle structure puisse
exister était fortement contesté par exemple par un Cantor qui prétendait
pouvoir en démontrer I'impossibilité a I'aide de sa théorie du transfini
(Luxemburg, 1979, p. xxxi) ou un Russell qui concluait ses remarques sur
le calcul infinitésimal par les commentaires : « Hence infinitesimals as ex-
plaining continuity must be regarded as unnecessary, erroneous, and self-
contradictory » (Russell, 1903, p. 345).

De nombreuses approches, donnant lieu a une littérature abondante,
ont été proposées en vue de concrétiser la construction précédente, approches
qu'il est bien sir impossible de présenter dans le cadre de ce texte. Qu'il
suffise de mentionner l'utilisation des ultrapuissances et élargissements par
Robinson lui-méme (Robinson, 1974), les approches algébriques de Hatcher
(1982) ou Laugwitz (1986), ou encore l'utilisation de séries formelles par
Tall (1980). Plusieurs de ces approches sont évocatrices de la construction
des réels via les suites de Cauchy, ce qui les rend attrayantes pour quiconque
est habitué a ce formalisme (& ce sujet, on consultera avec profit les expo-
sitions faites, entre autres, dans Artmann, 1988 ; Ebbinghaus et al., 1991 ;
Henle et Kleinberg, 1979 ; Hoskins, 1990 ; ou Hurd et Loeb, 1985). Toute-
fois, si on a en vue des applications pédagogiques du calcul infinitésimal, il
est clair que I'effort consacré a construire rigoureusement les hyperréels
vient entraver la démarche d'apprentissage en analyse proprement dite —
de méme pour les réels d'ailleurs, dans un cadre classique. C'est dans cette
optique que des approches axiomatiques ont été élaborées.

AXIOMATISATION DU CALCUL INFINITESIMAL

Once one recovers from the shock of being told that infinitesimals and
other idealized elements were there all along in the sets with which we
are familiar, [...] one will find our approach very easy to use. (Nelson,
1977)

Une critique fréquente des opposants a un enseignement de l'analyse
hyperréelle est qu'un cours de logique est quasiment préalable. La réponse
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de Keisler a été de produire un manuel d'enseignement é1émentaire du calcul
(Keisler, 1986) dans lequel les propriétés mathématiques des nombres (réels
et) hyperréels sont cristallisées sous forme de quelques axiomes : ceux
donnant les propriétés algébriques et d'ordre usuelles des réels ; I'axiome
de la complétude des réels ; un axiome d'extension énongant l'existence d'un
sur-ensemble des réels contenant un infinitésimal et auquel toute fonction
réelle peut étre prolongée ; et enfin un axiome de transfert affirmant qu'une
propriété vraie de tous les réels 1'est également de tous les hyperréels. On
en tire toutes les notions requises pour le calcul infinitésimal, en particulier
la fonction st qui associe a tout hyperréel fini le réel constituant sa partie
standard (de sorte que, par exemple, st(2x + dx) = 2x).

Sil'axiomatisation de Keisler présente les hyperréels comme un prolon-
gement des réels, tout comme chez Robinson, il en va autrement de l'approche
de Nelson (1977) dans laquelle les « nouveaux » nombres sont en quelque
sorte déja la mais ne peuvent étre pergus qu'avec des « lunettes » spéciales.
Elaborée dans un contexte ensembliste, I'axiomatique de Nelson repose sur
I'adjonction d'un prédicat standard a la théorie classique des ensembles
(disons ZFC — i.e. Zermelo-Fraenkel avec choix) dont I'utilisation est codi-
fiée par trois axiomes dits d'idéalisation, de standardisation et de transfert
(d'ou le sigle IST désignant la « Internal Set Theory » de Nelson). La
robustesse théorique de cette approche tient dans le fait qu'IST est une
extension conservative de ZFC (Nelson, 1977), c'est-a-dire que tout ce que
IST démontre a propos des objets classiques de la théorie — ceux dont la
définition ne fait pas intervenir le nouveau prédicat — est déja un théoréme
de ZFC. (Ceci n'est pas sans rappeler l'intuition sous-jacente a 'équivalence
élémentaire.) IST est donc cohérente relativement a ZFC : si la contradiction
1 =0 pouvait y étre démontrée, elle serait aussi un théoréme de ZFC.
Robinson avait clairement envisagé la possibilité d'une approche 2 la Nelson :

However, from a formalist point of view we may look at our theory syntactically
and may consider that what we have done is to introduce new deductive
procedures rather than new mathematical entities. (Robinson, 1974, p. 282)

Le cadre restreint de ce travail ne permet pas une étude détaillée de
chacun des axiomes d'IST (que le lecteur pourra trouver dans des ouvrages
tels Deledicq et Diener (1989), Diener et Reeb (1989) et Robert (1985), ou
encore dans l'un des nombreux articles traitant du sujet, entre autres dans
Deledicq (1990), Diener et Diener (1989), Gilbert (1992), Robert (1984), et
Robert (1989)). Qu'il suffise d'en indiquer certaines conséquences. L'axiome
d'idéalisation (qui n’est pas sans rappeler un argument de compacité, en
ramenant la satisfaction d’une propriété a sa satisfaction dans les parties
finies de I’univers) entraine I'existence d'éléments « idéaux » au sein méme
des ensembles habituels ; en particulier, il existe dans les naturels des entiers
« illimités », c'est-a-dire majorant tout entier standard (au sens du prédicat
adjoint). C'est ce résultat qui sous-tend I'assertion célébre de Reeb (1979) :
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« Les entiers naifs ne remplissent pas N. » En d'autres termes, les nombres
jouant le rdle d'infiniment grands sont déja la, parmi les naturels, mais avant
Nelson on ne les « voyait » pas (de méme se trouvent déja dans R des « infi-
niment grands » et des « infiniment petits »). L'axiome de standardisation
permet d'associer a toute construction un ensemble standard regroupant tous
les objets standard résultant de la construction. On en déduit l'existence
d'un objet standard « au voisinage » de tout objet : on a ainsi la notion de
partie standard sur laquelle repose 1'étude des limites. Quant au transfert, il
affirme qu'une propriété classique est universellement vraie dés qu'elle est
vraie des objets standard. De fagon équivalente, si une propriété classique
peut étre satisfaite dans I’univers d’interprétation, alors ce fait peut €tre
« observé », en ce sens que la propriété doit étre vraie pour certaines valeurs
standard. Il résulte de cet axiome que les objets usuels (0, @, R, sinus, ...)
sont standard.

Il ne faut pas sous-estimer le « choc culturel » que constitue cette
présence d'infiniment grands et petits au sein des ensembles habituels. C'est
12 un changement majeur de perspective par rapport au point de vue d'un
Keisler, pour qui l'univers est modifié par I'ajout de ces éléments idéaux.
Chez Nelson, les éléments idéaux sont déja présents dans notre univers
numérique (ils sont donc tous finis !), mais on ne les distinguait pas aupa-
ravant des nombres standard — un peu, pour reprendre l'image de Deledicq
(1992), comme si les nombres avaient été créés en couleur mais que nous ne
les percevions qu'en noir et blanc. Un tel cadre permet 1'élaboration d'une
théorie de différenciation des ordres de grandeur qui n'avait pas vraiment
trouvé place jusqu'ici en mathématiques. A cet égard, il est préférable de
parler de nombre idéalement grand (i-grand) ou méme simplement trés
grand, plutdt qu'« infiniment grand » (Deledicq, 1992 ; Wallet, 1992). En
convenant d'appeler appréciable un nombre ni i-grand ni i-petit, on peut
mettre en place des régles opératoires (« régles de Leibniz », Deledicq, 1992)
pour l'arithmétique des ordres de grandeur — voir figure 3, ou I'on désigne
par limité un nombre qui n'est pas i-grand. (A remarquer que les appréciables
sont tous du méme ordre de grandeur, mais qu'il n'en est pas de méme des
i-petits ou des i-grands. Il est utile d'introduire une deuxi¢me généralisation

+ | ip |app| ig x | ip |app| ig + | ip |app| ig

ip | ip |app| ig ipliplip | ? ipl ?|ip|ip

app|app|lim | ig app| ip |app| ig app| ig |app| ip

igliglig| ? igl?1lig|ig iglig|ig|?
Figure 3
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de 1'égalité ou 1'on compare a et b en vérifiant si le rapport % est i-voisin
de 1: on retrouve ainsi les notions d'égalités arithmétique et géométrique
d'Euler — Laugwitz, 1986, p. 91.)

L'intérét d'un modele des changements d'ordre de grandeur peut étre
illustré par certaines analogies, comme 1'évolution quotidienne des revenus
engendrés par un placement de 1,00 $ a un taux de 8 % : chaque journée
correspond a un revenu de 0,00022 $, valeur « petite » a I'échelle de la
monnaie courante, de sorte que la valeur de 'avoir, en espéces sonnantes et
trébuchantes, reste inchangée jour aprés jour ; c'est en effectuant le produit
par le nombre « grand » 365 que I'on retrouve le revenu annuel (appréciable)
de 0,08 $. Ou encore si le passage du singe 2 Darwin a pu se faire par des
étapes correspondant chacune a une évolution « petite », c'est que le nombre
de générations intermédiaires est « grand » (mais bien sir fini). (A noter
que comme les réels ne résultent pas pour Nelson d'une extension de corps,
il n'est pas étonnant que ceux-ci satisfassent la propriété d'Archiméde :
I'énoncé « Vxy réels, In naturel tel que y < nx » est vérifié, pour un x i-petit,
en prenant un entier n i-grand approprié.)

APPLICATIONS PEDAGOGIQUES DU CALCUL INFINITESIMAL

But so great is the average person's fear of infinity that to this day
calculus all over the world is being taught as a study of limit processes
instead of what it really is: infinitesimal analysis. (Rucker, 1982, p. 87)

I n'est pas facile de faire un bilan exact de l'impact pédagogique de la
théorie moderne des infinitésimaux sur l'enseignement de base en analyse.
Les remarques suivantes pourront néanmoins donner une idée de l'activité
en ce domaine. Il convient sans doute de distinguer deux mouvements, le
premier étant plus prés d'une approche a la Keisler et 'autre, en nette
progression, se situant dans la lignée de Nelson.

La réhabilitation des infinitésimaux par Robinson a rapidement sus-
cité des expériences visant 2 mettre a profit leur potentiel pédagogique,
compte tenu tant de l'intuition forte qu'ils véhiculent que de la simplification
logique — diminution des quantificateurs — qui résulte habituellement de
la formulation dans un contexte non standard de notions telles que limite ou
continuité. Le traité de Keisler (1986) a été rédigé dans cette optique et a
€té utilisé régulierement dans divers contextes pédagogiques depuis pres de
vingt ans. L'expérience la plus célebre a cet égard est sans doute 1'étude
comparative de Sullivan (1976) établissant clairement que cette approche
constitue une solution intéressante et viable — tout en n'étant pas la solution-
miracle aux maux de l'enseignement. Un autre document fréquemment utilisé
dans l'enseignement est le texte succinct de Henle et Kleinberg (1979). On
trouvera dans Artigue et al. (1986) le rapport d'un cours fondé sur ce texte
ainsi qu'une analyse détaillée des réponses d'un examen qui améne les auteurs
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a conclure que la majorité des étudiants semblent avoir profité de l'ensei-
gnement. Des expériences pédagogiques sont également relatées dans
Wattenberg (1983) et Foley (1986), tandis que Figols (1990) utilise les hyper-
réels en vue d'un enseignement élémentaire. Tall (1981) compare la vision
infinitésimale avec d'autres approches pédagogiques, en particulier avec les
méthodes numérique et graphique sur ordinateur. Il convient enfin de sou-
ligner le cas assez exceptionnel de I'University of Teesside (Middlesbrough,
UK), ol I'enseignement de base du calcul, depuis prés de dix ans, se faita la
Keisler : I'objectif visé est d'éviter les embiiches conceptuelles de I'approche
traditionnelle tout en favorisant le développement de l'intuition. L'expérience
semble positive et les étudiants paraissent acquérir tout aussi bien, sinon
mieux, les habiletés calculatoires habituelles.

L'approche de Nelson a connu un impact considérable, et ce tout
particuli¢rement en France, sans doute sous l'influence de Reeb et de I'équipe
alsacienne d'analyse non standard. D'abord utilisée comme outil de déve-
loppement de I'analyse et des mathématiques appliquées, la théorie IST de
Nelson a vite été pergue comme fournissant un cadre conceptuel remarquable
3 des fins pédagogiques. Parmi la littérature trés abondante publiée récem-
ment sur le sujet, soulignons Antoine et al. (1992), Deledicq et Diener (1989),
Deledicq (1990), Deledicq (1992), Deledicq (non daté), Gilbert (1992a),
Lutz (1987) et Wallet (1992). L'article de Gilbert (1992a) cherche a répondre
i la question : « L'analyse non standard peut-elle faciliter I'apprentissage de
l'analyse ? » en examinant certaines difficultés célebres de I'analyse classique
dans le contexte de Nelson. Antoine et al. (1992) vise l'introduction de
concepts non standard au lycée, tandis que Deledicq (non dat€) est un cours
facultatif en DEUG. Ce dernier document présente d'ailleurs une « hypothése
didactique » fort intéressante a propos de la gradation que permet la
« Nouvelle et Simple Analyse » par l'introduction successive des trois
axiomes d'IST, depuis un calcul infinitésimal portant essentiellement sur
les ordres de grandeur jusqu'a l'analyse infinitésimale des limites et de la
continuité.

CONCLUSION

[...] non-standard analysis, in some version or other, will be the analysis
of the future. (Godel, 1974)

Selon Mac Lane (1986, p. 155), les mathématiques ne sauraient étre
réduites ni 2 un formalisme pur ni 2 une accumulation d'idées empiriques,
et consistent plutdt en « idées intuitives ou empiriques formalisables ». Les
infinitésimaux constituent un exemple éloquent d'un tel point de vue, leur
réhabilitation dans le cadre de I'analyse non standard mettant a la disposition
du mathématicien des outils évocateurs et puissants. Leur acceptation se
heurte cependant a certaines réticences — tout comme cela fut le cas, jadis,
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pour les nombres négatifs ou complexes — voire 2 des oppositions farou-
ches — on se rappellera la polémique provoquée par la critique virulente de
Bishop (1977). (On remarquera d'ailleurs la quasi-absence de I'analyse non
standard des derniers congrés internationaux des mathématiciens.)

Il est bien connu que les techniques de 1'analyse non standard se sont
avérées fructueuses dans leurs applications en recherche, en particulier dans
I'étude des bifurcations des systémes dynamiques (Diener, 1984; Diener et
Diener, 1989). Méme si le nouveau cadre ne permet pas de démontrer « plus »
que le cadre classique, car résultant d'une extension conservative, il provoque
souvent une importante simplification conceptuelle et factuelle. (On pourrait
reprendre ici, mutatis mutandis, les mots célébres de Hadamard : « La voie
la plus courte et la meilleure entre deux vérités du domaine réel passe souvent
par le domaine imaginaire » (Hadamard, 1959, p. 114)). Une telle simplifi-
cation se retrouve par exemple dans l'utilisation faite de la « cohabitation »
discret/continu dans 1'élaboration par Harthong et Reeb d'un modéle du calcul
sur ordinateur dans lequel le calcul en virgule fixe, 3 un ordre de grandeur
donné, revient a travailler sur une portion de la droite naturelle, mais « vue
de loin » (voir Diener et Diener, 1989).

Les renseignements que nous avons pu recueillir en préparant ce travail
font ressortir une certaine utilisation de I'approche infinitésimale dans l'en-
seignement, mais peut-étre dans une moindre mesure que d'aucuns le
prévoyaient il y a une quinzaine d'années (il y a lieu de retenir le jugement
en ce qui concerne l'impact éventuel du modéle de Nelson, source, mais
depuis peu seulement, d'une importante activité pédagogique). Comment
expliquer que le calcul infinitésimal n'ait pas été davantage I'occasion d'un
renouvellement pédagogique ? L'ordinateur y est peut-étre pour quelque
chose, lui qui depuis un certain temps déja monopolise une énergie consi-
dérable dans la problématique de l'enseignement quant a l'impact des
logiciels graphiques ou symboliques. Sans doute également I'inertie inhérente
au systeme éducatif est-elle si forte que tout espoir d'une répercussion rapide
devient illusoire. Mais certains des obstacles sont vraisemblablement
d'origine philosophique, de cette philosophie « implicite et quasi-spontanée
qui accompagne nos discours et notre enseignement » (Wallet, 1992).

Nous laissons le mot de la fin 2 Georges Reeb, dont I'influence a été
déterminante sur le développement récent de l'analyse non standard :

[...] notre maniére de parler aux éléves évoluera. Je me contenterai d'un
exemple : alors que dans un passé récent il était raisonnable d'affirmer : « La
méthode €,0 de Weierstrass est /a méthode qui permet de fonder I'analyse
classique », il est clair que dorénavant on se montrera plus circonspect, on
remplacera l'article défini la par le plus prudent article indéfini une. N'y aurait-
il que cette seule implication sur notre enseignement, elle n'en serait pas moins
trés importante. (Reeb, 1981, p. 259-260)
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NOTE

Ce texte est dédié, 2 I'occasion de son soixante-cinquiéme anniversaire
de naissance, au professeur Shuichi Takahashi, mon mentor, qui trés tot
s'est appliqué 2 faire connaitre l'analyse non standard.
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COMPUTER-BASED MICROWORLDS:
A RADICAL VISION OR A TROJAN MOUSE?!

Celia Hoyles
University of London, United Kingdom

In this paper I am going to talk about computer-based microworlds;
computational worlds where mathematical ideas are expressed and devel-
oped. I will address the following questions:

* What is the potential of computer-based microworlds for mathematics
learning?

* Why are mathematics educators interested in the design and devel-
opment of microworlds?

* Is there a mismatch between theory and practice, between aspiration
and implementation, and if so why?

From an analysis of these questions, I will attempt to draw out some
implications for the future in terms of teacher education, software and
curriculum development.

First, I will look back over more than a decade of research and
development of computer-based microworlds—mainly in the context of Logo
and mathematics since this is work in which I have played a small part.
What did we achieve? What were our successes and failures and how can
these be understood? What can we learn from these experiences to provide
insight that stretches beyond the Logo mathematics community and into
mathematics education more generally?

1 The idea of the computer as a Trojan horse entering the classroom by stealth is

taken from Olson (1988).
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THE VISION AND THE REALITY

When we started working in Logo mathematics in the early 1980s, we
held as our goal the evolution of a mathematical culture—a change in the
relationship between teachers, pupils, and mathematics. As Seymour Pap-
ert commented in the foreword to the book I have recently edited with Richard
Noss, “(We were interested in the) ways in which Logo and Logo research
bear on relocating the boundary between what is and what is not to be counted
as mathematics in the lives of children.” (Papert, 1992, p. 13, my empha-
sis.) What have we achieved in terms of evolution of culture? And, as we
develop more powerful and sophisticated softwares for mathematics, do the
boundaries shift?

It is useful first to clarify the terms I am using. What is a “microworld?”
In another paper (Hoyles, in press), I have tracked the subtle (or not so
subtle!) changes in the meaning of the word “microworld” from its genesis
within universities and research laboratories to its incorporation into school
practice. These changes in meaning make it difficult, perhaps impossible,
to characterize a microworld in ontological terms; nonetheless I will sketch
out what for me at least are its major features.

At the core of a microworld is a knowledge domain to be constructed
through interaction with software. Papert (1980, p. 125) suggested that a
microworld is “a ‘province of Mathland’ where certain kinds of mathemat-
ical thinking could hatch and grow with particular ease.” Therefore the
relationship of the student to the software is central, although the knowl-
edge must also be recognized as complex, interrelated, and growing: three
characteristics which are reflected in the software. This rules out software
which demands simply a limited set of self-contained and pre-defined al-
lowable actions, although exploration within microworlds is inevitably
constrained. Feurzeig (1987, p. 51) describes a microworld as “a clearly
delimited task domain or problem space whose elements are objects, and
operations on objects which create new objects and operations.” Yet there
is more to microworlds: there must be ease of access simultaneously with
deep challenge. As DiSessa (1987, p. 65) has suggested: “(in microworlds)
besides a density of observable phenomenon—potential theorems—it seems
that salient events ... happen to be correlated with good, investigatable and
solvable problems.”

It perhaps makes sense to view a microworld as a process rather than
an object. Microworld activity is characterized by active involvement of
students within motivated and motivating project work whose goals have
been negotiated with the teacher. The literature in Logo mathematics is re-
plete with examples of microworlds. To take just one example, microworld
activity was a cornerstone of the Logo mathematics project (Hoyles &
Sutherland, 1989). Throughout this research, the students’ work was
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characterized by student autonomy, collaborative effort, and involvement.
The feelings of the students are captured in the following interview extract:
“What I really like about Logo mathematics is you don’t have the teacher
telling you all the time. It needs lots of brain power. Our robot took us
weeks and weeks!”

Obviously, interaction with the computer is structured by the software
tools available, but it is open, insofar as the solution paths are not laid down.
Students themselves decide upon solution strategies and, as part of their
activity, they use mathematical ideas before the ideas are necessarily fully
discriminated or generalized. (See Hoyles, 1987, for a discussion of this
approach to learning mathematics.) Let me give an example of this phenom-
enon by briefly describing some work with a spreadsheet. The goal of the
activity was to construct the polygon numbers. (See Figure 1.)

posmon 1 ) 3 4
in seq.
triangle
numbers ® A

1 3 6 10

2 4 4 [ ]

s(‘]ll:rélltl;z . I:I »—I [ »——I ¢ o
n s

1 4 9 16
pentagon
numbers d Q

1 5 12 22
hexagon
numbers b {}

1 6 15 28

Generate the triangle numbers on a spreadsheet
Generate the other polygon numbers
Investigate different ways of generating the sequences

Figure 1. Polygon numbers.
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Every time we have offered this activity to groups of students, even
mathematics educators, we are struck by the flexibility and variety of ap-
proaches adopted. Influenced by prior mathematical knowledge, different
relationships are constructed by interaction with the software and different
goals emerge. Generalizations are made, but first in action, and frequently
the way they are made and the language in which they are communicated
appear ambiguous—unless they are interpreted within the micro-culture of
the spreadsheet. Gestures—pointing to the computer screen—are crucial
and in fact define the processes which have to be replicated. Thus, it is
often action and gesture which capture any generalization rather than an
articulated language of description. For example, two students described
their construction of the triangle numbers by stating, “It’s that one, add that
one, equals that one, that one add that one equals that one ... and so on”—
meaningless to read but completely clear when the words are accompanied
by pointing to specific cells.

This is an example of what Richard Noss and I have termed a situated
abstraction (Hoyles & Noss, 1992), the first step in constructing a mathe-
matical generalization. It is “situated” in that the knowledge is defined by
the actions within a context; but it is an “abstraction” in that the description
is not a routinized report of action but, exemplifies the students’ reflections
on their actions as they strive to communicate with each other and with the
computer.

Thus, one way to characterize microworlds is to think of them as
environments where students generate situated abstractions of a mathematical
nature—a spontaneous process which can be developed later within more
structured and formalized settings. In fact, it is easier to describe student
activity in microworlds by contrasting it with what it is not—not practising
routines, not guessing the teacher’s agenda, not working competitively.
Within microworlds students are “builders” of their own mathematics (See
for example, Harel & Papert, 1990; Harel & Papert, 1991)—in collaboration
with each other and with the teacher.

So, in summary, interactions in a microworld—guided by “good”
activities and “good” teachers>—can be characterized as follows:

* They are playful. There are rules and constraints guided by mathemat-
ical imperatives, but these stimulate activity rather than suppress it.

« They are motivated. Students are interested and develop a sense of
ownership over the ideas they construct together.

2 This is a deliberately cryptic way to summarize some crucial ideas; namely that
learning environments can only be characterized in relation to activities and
teachers. (For a discussion of this see Hoyles & Noss, 1987.)
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* There is a continuous dialectic between the formal and the informal.
The computer formalizes the informal and informalizes the formal.

* The mathematics is to some extent implicit and an incidental part of
the activity. It is not necessarily visible as an explicit goal for the
pupils.

So our radical vision in the early microworld movement was that
students, software, and knowledge would grow together interactively in the
pursuit of epistemologically rich goals. There would be change within the
practice of school mathematics; change in how the mathematics curriculum
was perceived and how it was transacted; change which would democratize
mathematics whilst improving mathematical understanding and classroom
practice.

But what of the practice? How has the computer revolution affected
schools, if at all? It is clear from a review of the available literature (mainly
in the United States and the United Kingdom) that the impact of computers
on school life does not match the vision. As Becker put it, “There were
‘dreams’ about computer-using students ... dreams of voice-communicatin g,
intelligent human tutors, dreams of realistic scientific simulations, dreams
of young adolescent problem solvers adept at general-purpose programming
languages—but alongside these dreams was the truth that computers played
a minimal role in real schools.” (Becker, 1982, p. 6) In the same vein, Becker
later argued, “As we enter the 1990s, it is important to understand how
much of that early limited reality still remains and to understand how much
of the idea of transforming teaching and learning through computers remains
plausible. We need to be aware of the ‘old habits’ and ‘conventional beliefs’
that are common among practising educators and the ‘institutional con-
straints’ that impede even the best of intentions to improve schooling through
technology.” (Becker, 1991, p. 6). In the United Kingdom the findings are
similar. In a survey conducted by the Department of Education and Science
(DES, 1991), computer use in mathematics classrooms was reported to be
limited and, where the computer was in evidence, it was simply an alternative
medium within a thoroughly conventional framework.

REFLECTIONS

So why is there this apparent mismatch between theory and practice,
between dreams and reality? What has happened to the radical dream? Why
has the Trojan horse turned into a Trojan mouse? The way to understand
this phenomenon is to recognize that most school activity exists in a culture
of its own where learning has to co-exist alongside other agendas: manage-
ment, accountability, selection, and the “curriculum.” As any innovation
moves into schools, I identify four processes by which the innovation is
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transformed—pedagogizing, compartmentalizing, incorporating, and neu-
tralizing—each of which stems from requirements of the school culture.

Pedagogizing

In the Logo community, the role of the teacher in the children’s
mathematical development has increasingly been emphasized. Despite
reports to the contrary, Papert himself held that teachers play an important
role in the learning enterprise and argued that teachers should be co-explorers
with students in their joint pursuit of mathematical goals (Papert, 1980). In
the Logo mathematics project mentioned earlier, although we set out to
intervene “lightly,” in the context of the students’ own work—to suggest
ideas to explore or to point to “interesting” mathematical extensions—on
analysis of our transcripts of student work, we were surprised by the
significant structuring role our “subtle” interventions had on student progress
and the direction of their work. In the areas we had emphasized, the students
made consistent and excellent progress, whilst in others, development was
haphazard.

In retrospect, the theories of Vygotsky provide a coherent framework
for interpreting these findings within the realm of psychology. Initially, we
had taken a Piagetian approach, expecting that students would construct
mathematical knowledge through interaction within our micro-worlds. We
hypothesized that they would build their ideas through interaction and
reflection on the results of their actions: a process facilitated by the feedback
provided by the computer. However, we came to appreciate how mathe-
matical knowledge emerged through social interaction, with the teacher and
other students offering “scaffolding” within a child’s zone of proximal
development (Vygotsky, 1978). This interpretation brings pedagogic inter-
vention to center stage, as mediating between the child and his or her
experience.

Thus as Logo moved into the school context, it came to be recognized
that the teacher must bring to attention the “interesting” mathematical is-
sues: to bridge the gap between what the pupils see and what the teachers
see; to make links between students’ constructive activity on the computer;
their expression these links orally and on paper; and to push towards gener-
alization so that the students learn to solve not just the problem in hand but
to seek out the general beyond this particularity.

Inevitably, in schools, other social and cultural issues come into play
which have to be dealt with by teachers, such as issues of access to and
dominance over the machines, particularly in relation to boys and girls. In
addition, once the teacher is acknowledged as an important actor in the learn-
ing process, the teacher’s intentions and beliefs must be considered,

176



HoyLEs

as these inevitably shape the nature, intention, and timing of teacher inter-
ventions. We have studied how teachers mediate in the context of a course
of in-service education concerned with the introduction of computers. We
set out to analyze how the course activities and the teacher’s goals and be-
liefs mutually constituted each other: how the teacher structured the computer
activities according to his or her aims, and simultaneously how the activi-
ties structured the teachers’ beliefs and practices.

We constructed caricatures of the course participants to provide a
synthesis of views, attitudes, and practices of a cluster of teacher case stud-
ies. The caricatures attempted to draw attention to teacher characteristics
and behaviors which we deemed crucial by exaggeration of some facets and
omission of others. Thus, they reflected our ideas about categories by which
to gauge mathematics teaching and teachers. They mirrored our beliefs as
well as reflected the teachers’ beliefs in so far as they resonated with any
individual viewpoint.

The five caricatures which emerged from our study were: Mary, the
frustrated idealist; Rowena, the confident investigator; Denis, the controlling
pragmatist; Fiona, the anxious traditionalist; and Bob, the curriculum
deliverer (Noss, Sutherland, & Hoyles, 1991; Noss & Hoyles, 1992). Each
illustrated very different ways of integrating computers into practice and
the different foci upon which they reflected during this process. Thus they
represent an attempt to capture the complexities inherent in pedagogizing
the computer innovation.

Compartmentalizing

In any review of the local histories of curriculum innovations, a re-
peating pattern can be discerned. When the innovation first enters the school,
it tends to do so as a topic which is added-on to the existing curriculum. For
example, in the United Kingdom we have seen “investigative mathemat-
ics” transformed into “investigations”—and then timetabled on a Friday
afternoon leaving the rest of the mathematics curriculum unchanged and
untouched by the new phenomenon! Why does this happen? I suggest two
reasons: in order to cope with the change by limiting the disruption caused
at its introduction, and to marginalize the innovation by keeping it insulat-
ed from mainstream work. These reasons have the same effects despite
stemming from very different reactions to the innovation: the first has the
ultimate aim of integrating the innovation into practice, the second of ex-
cluding it. One effect of the process of compartmentalizing as far as
computers are concerned is that computer work frequently becomes sepa-
rated from mathematics and other knowledge domains, appearing as a new
topic in its own right: for example, in courses of computer studies, informa-
tion awareness, information technology.
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The second reason for the process of compartmentalizing can be traced
to more psychological considerations. I have already touched upon the no-
tion of situated abstractions: the influence of the medium on mathematical
expression and the fragmented and situated nature of students’ mathemati-
cal understanding. In fact, as you will have noticed, we now talk about “Logo
mathematics” which reflects its existence as an entity in itself. I have noted
already that it has been consistently reported that pupils tend not to link
their computer work with their paper and pencil work—a criticism similar
to the oft-lamented absence of connection between science and mathemat-
ics, for example. This phenomenon has been described variously as fractured
knowledge, knowledge in pieces (Papert, 1980; DiSessa, 1988). Pupils com-
partmentalize their understandings and “situations co-produce knowledge
through activities” (Seely Brown et al., 1989). Thus mathematical abstrac-
tions remain inextricably linked to the context in which they are constructed.
Thus “psychological” compartmentalizing interwoven with “bureaucratic”
compartmentalizing raises real problems of communication and synthesis.
How can we bridge the discursive disjuncture between microworlds and
other school mathematics, or how can we expand school mathematics to
incorporate this new culture and to do this in real classrooms?

Incorporating

Another phase in the move of an innovation into school is a change in
the innovation itself in order to meet the requirements of the school culture
and the school curriculum: the phenomenon of didactic transposition, as put
forward by Chevallard (1985). Chevallard has suggested that any content to
be taught must be embedded in the school context to make it teachable; but
since the school context consists of lessons, “time” pressure, accountabili-
ty, and testing, knowledge is forced into linear packages. Management
considerations supersede the cognitive and affective goals of mathematical
learning and, by this process, the knowledge itself becomes essentially triv-
ialized.

A rather stark exemplification of didactical transposition is evident in
the treatment of Logo within the UK mathematics national curriculum. Under
the attainment target, Shape and Space, is the statement “recognize differ-
ent types of movement” illustrated by Turn to left or right on instruction
(PE, games, or Logo) and at another higher level, under the heading “spec-
ify location,” is the example Use Logo commands for distances and direction.
Similarly, within the algebra attainment target, appears Create shapes by
using DRAW and MOVE commands in BASIC in the appropriate graphics
mode or by using Logo commands. In all these examples, Logo is not even
specified as a language, let alone a philosophy or culture. It is now a set of
commands! In case this is interpreted merely as a Logo phenomenon, let me
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give you an example of the didactical transposition of spreadsheets as they
became incorporated into the same national curriculum. We find the fol-
lowing statement: Explore number patterns using computer facilities or
otherwise with the example Use the difference method to explore sequences
such as 25 10 17 26. Note how the process of software interaction is clearly
laid down: both the goal and the solution path of a well-defined and self-
contained mathematical “fragment” is completely specified. There is little
(if any) room for pupil decision-making—pupils building their own mathe-
matics. The underlying framework is one of behaviorism and mastery
learning, in contrast to the constructivism of the microworld designers.

Neutralizing

A process of transition more associated with computers than with gen-
eral characteristics of innovation is the shift from seeing the computer as a
means of exploration to using the computer simply as a means to a pre-
scribed end: just a tool. Often the intention behind this tool designation is
to alleviate anxiety among teachers by indicating that there is nothing very
special about the computer, that it is after all just like a modern pencil! But
is it? What becomes of the radical vision of transforming education through
microworlds if we have to pretend that “business is as usual”? More cru-
cially, the designation “just a tool” frequently conveys a veiled attack on
the student autonomy made available by programmable software. It focuses
attention on the utilitarian function of the computer—to produce an end—
and implies that computer tools are somehow value free, and can be “applied”
to a curriculum in ways that are insulated from the process and practice of
education. Microworlds take on input-output features where process is sub-
sumed under delivery and any revolutionary potential is neutralized and
suppressed.

THE FUTURE

So what of the future? What are the implications of this story and
what can we learn from this very evident transformation of a radical vision
into a Trojan mouse? Many developments in the United States try to “pre-
serve” the innovation from the political misuse of teachers by producing
curriculum packages, computer tools with accompanying material which
deliver the curriculum. The teacher has little or no role in the learning process
except to encourage and to manage. The software, described as educational
or instructional, is assumed to produce learning in ways that are safe. Both
curriculum and educational practice remain unchanged. But these metaphors
have a clear message, a top-down transmission model of learning that
attempts to bypass teachers and keep children on very well-defined tracks.
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We know that this inevitably leads to the separation of the bottom-up
spontaneous mathematizing of pupils from the top-down specifications of
the curriculum. Classrooms will continue to display all their familiar features,
such as: students avoiding mathematics wherever possible, using their
energies to pick up non-mathematical clues as to how to obtain correct
answers, becoming answer-oriented and product-oriented, competing rather
than collaborating, and expending the least effort in order to achieve optimal
results. Students’ performance gives little indication of their mathematical
competence, and in fact the most critical questions to address in trying to
interpret their productions are, “Whose agenda are the students following?”
and “What are the students’ goals?”

Thus the production of packages fails to problematize educational
practice and presents a picture in which the curriculum, knowledge, and
teacher-pupil relationships are givens. Additionally, it deliberately de-
professionalizes teachers and in so doing fails to recognize that all packages
are of necessity mediated by students and teachers. There is no such thing as
a teacher-proof curriculum!

So what direction would I like us to take? At the level of software and
curriculum design, we still need more expressive computational media tuned
for the development of mathematical knowledge, more carefully designed
and creative activities with rich avenues to explore with the software avail-
able, and more precise analysis of pedagogy and the way the computer
structures and is structured by the classroom culture. At the level of the
teacher, we need to provide opportunities for teachers to express their own
mathematical ideas with the software (to have fun mathematically too!), to
support their attendance at substantial courses (half a day is not enough and
can be counter-productive) which maintain a mathematical rather than a
technical focus, and to make available ample hardware (preferably with no
advertising plugs!) and easy access to technical and educational assistance.

An overriding aim should be to resist the pressure to push through
change in the short term, to go for technical fixes which have little to do
with developing mathematics teaching and learning. As Polin (1991)
suggested, “We need to instill a different vision of teacher development in
our impatient policy-makers and in our harried teachers, a vision that
acknowledges the many years of practice it takes to acquire and integrate a
new way of teaching.” (Polin, 1991, p. 7). It is important to recognize the
tendency of schools to adopt a minimalist approach to change but also to
understand that change is a process not an event. Let us not be diverted by
the demands of a fragmented curriculum and its associated assessments but
rather strive to retain our radical vision of a different culture for learning
mathematics.
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DIFFERENT WAYS OF KNOWING:
CONTRASTING STYLES OF ARGUMENT
IN INDIA AND THE WEST

George Gheverghese Joseph

University of Manchester, United Kingdom

Many of the commonly available books on history of mathematics
declare or imply that Indian mathematics, whatever its other achievements,
did not have any notion of proof. To illustrate this viewpoint, with two
examples, the first taken from one of the better known texts on the history
of mathematics, Kline (1972, p. 190) writes:

There is much good procedure and technical facility, but no evidence that
they (i.e., the Indians) considered proof at all. They had rules, but apparently
no logical scruples. Moreover, no general methods or new viewpoints were
arrived at in any area of mathematics. It is fairly certain that the Hindus (i.e.,
the Indians) did not appreciate the significance of their own contributions.
The few good ideas they had, such as separate symbols for the numbers, were
introduced casually with no realisation that they were valuable innovations.
They were not sensitive to mathematical values.

A more recent opinion is that of Lloyd (1990, p. 104) who writes:

It would appear that before, in, and after the Sulbasutra (the earliest known
evidence of mathematics from India), right down to the modern representatives
of that tradition, we are dealing with men who tolerate, on occasion, rough
and ready techniques. They are in fact interested in practical results and show
no direct concern with proof procedures as such at all.

These quotations raise a number of fundamental questions: What is
mathematics? how is it created? and how is its quality to be assessed? But a
more general question is: How do mathematicians produce information about
mathematical objects? Underlying all these questions is the issue of proof,
often perceived as a litmus test of whether we are “doing” real mathematics
or doing it well.
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THE CULTURAL CONTEXT OF PROOF:
THE CASE OF THE SULBASUTRAS

It is not often sufficiently recognized that, between different mathe-
matical traditions, there are certain basic differences in the cognitive
structures of mathematics—differences in their ontological conceptions re-
garding the existence and nature of mathematical objects and methodological
conceptions regarding the nature and ways of establishing mathematical
truths. The first quotation above represents a viewpoint that sees ways of
establishing mathematical truths (or what are more commonly known as
“proofs”) as being immutable and infallible. The second quotation is from a
text which, while acknowledging the legitimacy of “informal” proof proce-
dures for confirming or checking a result, requires that a formal proof
procedure should observe two crucial distinctions: (a) that between the “prac-
tice of proof (of whatever kind) and an explicit concept corresponding to
the practice, a concept that incorporates the conditions that need to be met
for a proof to be given” and (b) that between “exact procedures and approx-
imate ones” (Lloyd, 1990, pp. 74-75). On both these criteria, Lloyd concludes
that early Indian mathematics did not have “any explicit notion of what
proof is” (Lloyd, 1990, p.75).

Lloyd’s argument is interesting. In a comparison of the similarities
and differences between Greek and Chinese mathematics, he accepts that
both traditions “practised proofs and deploy concepts to describe their
procedures that are subject of explicit reflection and comment.” But he points
out three major differences between the two mathematical traditions. First,
the Chinese were only concerned with whether a certain formula or algorithm
produced a correct solution and showed little interest in the type of self-
conscious attempts at abstract justification of the procedure which constituted
the Greek notion of proof. Second, the Greek concern with first principles
led to “the classification of different types of indemonstrable primary
premises, axioms, postulates and definitions, and with making those used
explicit at the outset of a sequence of demonstrations.” (p. 121) There is no
analogue to this concern in ancient China. The final and the most important
difference between the two mathematical traditions relates to their two basic
preoccupations: the Greek demand for rigorous demonstration compared to
the Chinese emphasis on “practical applicability” which led to exploration
of analogies and common structures in procedures for solution of groups of
problems. Lloyd’s argument is not that the ancient Chinese geometry did
not have a general procedure for “proof”—this is not in any case a valid
claim, given the widespread use of the “out-in complementarity principle”
(or what we would call “dissection-and-reassembly principle”) in ancient
Chinese mathematics—but that the Chinese did not share to the same degree
the Greek enthusiasm for foundational questions or the concern with ultimate
justification.!
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Lloyd, as his quotation above implies, denies even this basic accom-
plishment on the part of the Indians. He bases his case on an examination of
the earliest known geometry in India, Vedic geometry, for which the basic
sources are the Sulbasutras, conservatively dated as recorded between 800
and 500 BC, though they contain knowledge from earlier times. The Sul-
basutras are instructions for the construction of sacrificial altars (vedi) and
the location of sacred fires (agni) which had to conform to clearly laid-
down instructions about their shapes and areas if they were to be effective
instruments of sacrifice. There were two main types of ritual, one for wor-
ship at home and the other for communal worship. Square and circular altars
were sufficient for household rituals, while more elaborate altars whose
shapes were combinations of rectangles, triangles, and trapeziums were re-
quired for public worship. Some of the most elaborate of the public altars
were shaped like a falcon just about to take flight (Vakrapraksa-syena), as
shown in Figure 1a. It was believed that offering a sacrifice on such an altar
would enable the soul of the supplicant to be conveyed by a falcon straight
to heaven.
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Figure 1a. The first layer of a Vakrapaksa-syena Altar: the wings are each made
from 60 bricks of type a, and the body, head and tail from 50 type b,
6 type c, and 24 type d bricks. Each subsequent layer was laid out using
different patterns of bricks with the total number of bricks equalling 200.

1 For further details of the use of the “out-in complementarity” principle in Chi-

nese mathematics, see Joseph (1992, pp. 180-183).
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Most sacrificial altars were constructed with five layers, each of 200
bricks, which reached to the height of the knee. For special occasions ten,
fifteen, up to a maximum of ninety-five layers of bricks were prescribed for
use in the construction of the falcon-shaped altar. The top layer of the basic
altar (Figure 1b) had an area of 7.5 square purushas.? A “purusha” was
defined as the height of a man with his arms stretched above him, say 2.5
metres, which would give the altar an areal measure of approximately 47
square metres.

Figure 1b. The basic Altar.

Figure 1c. A Prototype of the Altar.

For the second layer from the top, the prescription was that one square
purusha should be added, so that the total area would be 8.5 square purushas.
Similarly, each successive layer area should be increased by 1 square
purusha, until with the 94th successive increase of 1 square purusha, the
area of the base of this huge construction would be 101.5 square purushas
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(See Figure 1d). There is the implication that the higher the level at which
the sacrifice was performed, the more effective the sacrifice.

——

Figure 1d. Constructing the Altar.

It is clear that, in the construction of larger altars, if the same shape as
the basic shape is required, there are two “hidden” geometrical problems:
(a) that of finding a square equal in area to two given squares and (b) the
conversion of a rectangle into a square of equal area or vice versa. These
constructions are achieved in the Sulbasutras using the Pythagorean theo-
rem.

In the Katyayana Sulbasutra (named after one of the authors) appears
the following proposition which is more or less replicated in the other two
major Sulbasutras (those of Apastamba and Baudhayana):

The rope (stretched along the length) of the diagonal of a rectangle makes an
(area) which the vertical and horizontal sides make together. (Katyayana
Sulbasutra, 2.11)

Using this theorem, the Sulbasutras show how to construct both a
square equal to the sum of two given squares and a square equal to the
difference of two given squares. Further constructions involve the trans-
formation of a rectangle (square) to a square (rectangle) of equal area. A

2 Apart from minor variations, the body of the first layer falcon-shaped altar was
4 square purushas square metres, the wings and tail were one square purusha
each plus the wing increased by % of a square purusha each and the tail by %
of a square purusha so that the image would more closely approximate the shape
of a falcon (See Figures 1b and 1c).

Thus the total area of the top layer of Vakrapaksa-syena altar is

4 +(2 x1.2) +1.1 = 7.5 square purushas.
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discussion of these constructions is found in Joseph (1992, pp. 230-232).
We will consider only one of these constructions.

A remarkable achievement of Vedic geometry was the discovery of a
procedure for evaluating square roots to a high degree of approximation.
The problem may have originally arisen from an attempt to construct a square
altar twice the area of a given square altar.

The problem is one of constructing a square twice the area of a given
square (A) of side 1 unit. It is clear that for the larger square (C) to have
twice the area of square A, it should have side +/2 units. Also, we are given
a third square (B) of side 1 which needs to be dissected and reassembled so
that by fitting cut-up sections of square (B) around square (A), it is possible
to make up a square close to the size of square (C). Figure 2 shows what
needs to be done. The instructions given by Apastamba (1.6) and Katyayana
(2.13) in their Sulbasutras may be translated thus:

Increase the measure by its third and this third by its own fourth less the
thirty-fourth part of that fourth. This is the value with a special quantity in

excess.
Square C
Square A Square B B
A
Figure 2a. To draw square C = square A + square B.
G F
4 516 7 R
1 3 |8
D S R
c 9 3
1 3
10 1] 2 =
2 - 7
11 >
11
A B E P Q

Figure 2b. Application of “Out-In Complementarity Principle.”
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If we take 1 unit as the dimension of the side of a square, the above
formula gives the approximate length of its diagonal as follows:

V2 =3+ 57~ gwa g = 114142156

The Sulbasutras contain no clue as to the manner in which this accurate
approximation was arrived at. A number of theories or possible explanations
have been proposed. Of these, the most plausible one is that of Datta (1932),
which is discussed in Joseph (1992, pp. 235-236).

THE NATURE OF PROOF: A DIGRESSION

Consider the word “proof” in the sense that Lakatos (1976, p. 9) uses
it to mean a “thought experiment which suggests a decomposition of the
original conjecture into subconjectures or lemmas, thus embedding it in a
possibly quite distinct body of knowledge.”

In this broad sense any “proof” has psychological, social and logical
features (Resnick, 1992, pp. 15-17). The psychological task is to convince
the readers of its conclusions. The notation and the way in which the
argument is formulated, organized, and presented determines whether the
proof succeeds at this task. Yet success in convincing an audience does not
necessarily mean that the proof is free of error. Proofs make certain claims
about mathematical objects.> Understanding such claims requires training
and the more “advanced” the mathematics the longer the training required.
Nowhere is this training more important than in the comprehension of the
logical framework in which the proof is embedded. Therefore, it is important
to distinguish between the psychological and the logical powers of proof. A
logically impeccable proof could appear obscure and unconvincing because
the audience has not acquired through training a satisfactory understanding
of the mathematical objects of which the claims are being made in the first
place.

It is the third feature of a mathematical proof that is often ignored.
Proofs are social and cultural artifacts. They evolve in a particular social
and cultural context. And this is important since we might tend to forget

The nature of mathematical objects determines how we make contact with them.
If mathematical objects are based on the Euclidean ideas of atomistic and ob-
ject-oriented view of space (points, lines, planes and solids) this will be in
complete contrast to a Navajo idea of space as neither subdivided nor objec-
tified and where everything is in motion (Bishop, 1990, p. 51). The crucial point
is that ideas of proof are culturally created and they must be understood within
that culture, resisting the easy temptation to make crude comparisons across
cultures and oppositional ways of deciding between ideas which the quotation
from Kline at the beginning clearly typifies.
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that part of finding out how a proof works includes finding out how well its
intended audience (the author included) is prepared to follow it. This is
further complicated by the fact that proofs are context-bound—not only in
relation to a proof’s language and notation but also its reasoning and data
(or the uses to which a mathematical result is put).

THE INDIAN PROOF (OR UPAPATTD)?*

For a period going back about two thousand years, a great deal of
attention in Indian mathematics was paid to providing what was often re-
ferred to as upapatti (which may be roughly translated as a “convincing”
demonstration) for every mathematical result. In fact some of these upapat-
tis were noted by European scholars of Indian mathematics up to the first
half of the nineteenth century. For example, in one of the early English
translations (1817) of parts of Brahma Sputa Siddhanta of Brahmagupta
(c. 650 AD) and of Lilavati and Bijaganita of Bhaskaracharya (c. 1150 AD),
Colebrook gives in the form of footnotes a number of upapattis from com-
mentators and calls them demonstrations. Similarly, Whish (1835), who
brought to the attention of a wider public work in Kerala on infinite series
for circular and trigonometric functions, showed sample upapattis from a
commentary entitled Yuktibhasa (1600) which related to the Pythagorean
theorem. It would indeed be interesting to find out how the currently popu-
lar view, that Indian mathematics lacks the very notion of “proof,” has come
about during the last one hundred and fifty years.

In this context it is important to realize that the rather scanty discus-
sion of the methodology of Indian mathematics contained in the text on the
history of Indian mathematics concentrates on a few original texts, notwith-
standing the fact that traditionally the commentaries seem to have played at
least as great a role in the exposition of the subject as the original text itself.
It is no wonder that mathematicians of the calibre of Bhaskaracharya
(c. 1150 AD) and Nilakantha (a 15th century Kerala mathematician/astron-
omer) wrote not only major original treatises but also erudite commentaries
on either their own works or on important works of an earlier period. It is in
such commentaries that one finds detailed upapattis for results and proc-
esses discussed in the original texts as well as more general discussion of
the methodological and philosophical issues concerning Indian astronomy
and mathematics.

As an illustration let us consider the commentaries of Ganesha Daivajna
(c. 1545 AD) on the texts Lilavati and Bijaganita, both written by Bhaskara-
charya.’ Both texts were highly influential in the development of Indian

4 This section owes a heavy debt to Srinivas (1987) whose work deserves more
attention.
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mathematics. According to Ganesha, ganita (used both as a generic word to
describe the subject of mathematics as well as in a specialized sense to
describe calculation) is mainly of two types: vykata ganita and avyakta
ganita. Vyaktaganita (also called patiganita or calculations with the board)
is that branch of ganita which employs clearly laid out procedures or
algorithms well known for general use. This is in contrast to avyakta ganiti
(also called bijaganita) which is distinguished from the first type by including
procedures that use indeterminate or unknown quantities in the process of
solution. The unknown quantities were referred to by terms such as yavat
tavat (i.e., “as much as”) and different colors (varna) denoted by abbrevi-
ations such as ka (for kalaka or black), ni (for nilaka or blue), etc., just as in
modern algebra unknowns are denoted by symbols x, y, z, etc.

T Remove

1l<y3<13

Figure 3a. Evaluation of /3 (combining three squares).

T £i Remove

2<\/§<2%

Figure 3b. Evaluation of /5 (combining five squares).

The two commentaries referred to are Buddhivilasini on Lilavati and Siromani-
prakasa on Siddhantasiromani, edited by Apte (1937-41). Ganesha was the son
of Keseva Daivajna, a distinguished astronomer. Taught by his father, his com-
mentary on Lilavati is one of the best commentaries on this famous text of
Bhaskaracharya.
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Figure 3c. Combining two cubes.

Many of the upapattis relate to the second type of ganita—bijaganita.
It would be misleading to name the two types—patiganita and bijaganita—
as arithmetic and algebra respectively. Patiganita subsumes not only
arithmetic and geometry, but also topics included under algebra such as the
solution of equations, provided one does not have to make recourse to
indeterminate quantities for carrying through the process of solution as in
the “method of false position” first used by the Egyptians about four thousand
years ago.

A specific illustration of the use of upapattis would be useful. In a
chapter on solution of quadratic equation from Bijaganita, Bhaskaracharya
poses the following problem:

Say what is the hypotenuse of a plane figure, in which the side and upright are
equal to fifteen and twenty? And show the upapatti of the received mode of
computation.

Later he adds:

The demonstration follows. It is two fold in each case: one geometric (kshe-
tragata) and the other algebraic (avyaktaritya) ... The algebraic demonstration
must be exhibited to those who do not comprehend the geometric one.

Ganesha provides two upapattis which are elaborations of the ones
outlined by Bhaskaracharya. These are given verbatim below, the only
change being that we continue to use the Pythagorean triple (15, 20, 25)
given in the original example rather than Ganesha’s (3, 4, 5).

The upapatti for the avyakta method

Take the hypotenuse as the base and denote it as “ya” in the figure. Let the
“bhuja” and “koti” (the two sides) be 15, 20 respectively. Let the perpendicular
to the hypotenuse from the opposite vertex be drawn. This divides the triangle
into two triangles which are similar to the original. Now use the rule of
proportion. When “ya” is the hypotenuse the “bhuja” is 15, then when this
“bhuja” 15 is the hypotenuse, the “bhuja” which is now the segment of the
hypotenuse to the side of the (original) “bhuja” will be 15, . Again when “ya”
is the hypotenuse, the “koti” is 20, then when the “koti” 20 is the hypotenuse,
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the “koti” which is now the segment of hypotenuse to the side of the (original)
“koti” will be 22-. Adding the two segments of “ya”, the hypotenuse, and
equating the sum to (the hypotenuse) “ya” gives “ya” = 25.

Modern notation (See Figure 4a)

Since CDB, CBA, CDA are similar

2

a_d -as
So c—a=d c
and b_e_,_ b
c b c
2,22
Therefore, c=a__2i=>cz=az+bz

Given b=20,a =15

ya=c=+20%+15% =25

ya=c

Figure 4a

The upapatti for the kshetragata method

Take four triangles identical to one another and let different “bhujas”
rest on different “kotis” to form the square as shown. The interior square
has for its side the difference of “bhuja” and “koti”. The area of each triangle
is half the product of “bhuja” and “koti” and four times this added to the
area of the interior square gives the area of the total figure.

This is nothing but the sum of the squares of “bhuja” and “koti”. The
square root of that is the side of the (big) square which is nothing but the
hypotenuse.
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Modern notation (See Figure 4b)

c
b a
Figure 4b
Let ya = ¢, bhuja = a and koti = b
c2 =(b-a)® +2ab
=a? +b?

(The geometrical representation above bears an uncanny resemblance to that
given in the earliest extant Chinese text on astronomy and mathematics, the
Chou Pei Suan Ching, dated around the early part of the first millennium BC.)

What seems to be all too apparent from this example is that the notion
of upapatti is significantly different from the notion of proof as understood
in the Greek or even in the modern traditions in mathematics.

The upapattis of Indian mathematics are presented in a precise
language, displaying all the steps of the argument and indicating the general
principles which are employed. In this sense they are no different from the
“proofs” found in modern mathematics. But what is peculiar to the upapattis
is that while presenting the argument in an “informal” manner (which is
common in mathematical discourse anyway), they make no reference
whatsoever to any fixed set of axioms or link the given argument to “formal
deductions” performable with the aid of such axioms.

Most mathematical discourse in the Greek as well as in the modern
tradition is carried out with clear reference to some formal deductive system,
though the discourse itself might be in an “informal” mode, similar to that
of Indian mathematics. More importantly, the ideal view of mathematics in
both the Greek and modern traditions is that of a formal deductive system.
Their view is that “real mathematics” is (and ought to be presented) as formal
derivations from formally stated axioms. This ideal view of mathematics is
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intimately linked with yet another major philosophical presupposition of
western tradition: that mathematics constitutes a body of infallible or absolute
truths. It is this quest for securing absolute certainty to mathematical
knowledge which has motivated most of the foundational and philosophical
investigations into mathematics and has also shaped the entire course of
mathematics in the western tradition right from the Greeks to contemporary
times.

What the upapattis of Indian mathematics reveal is that the Indian
epistemological position on the nature and validation of mathematical
knowledge is very different from that in the Western tradition. This is brought
out, for instance, by the general agreement among the Indian mathematicians
as to what a upapatti is supposed to achieve. Ganesha declares in his preface
to the commentary on Bhaskaracharya’s Lilavati that:

Whatever is discussed in the vyakta or avyakta branches of mathematics,
without upapatti it will not be nirbhranta (i.e., free from misunderstanding). It
will not acquire any standing in an assembly of scholar mathematicians. The
upappati is directly perceivable, like looking in a hand mirror. It is, therefore,
to elevate the intellect (buddhi vriddhi) that I proceed to enunciate the upapattis.

As regards the modes of argument which are allowed in the upapattis,
one distinctive feature appears to be that Indian mathematics permitted the
use of the method of indirect proof (reductio ad absurdum) but only to show
the non-existence of certain entities. The method of indirect proof was called
tarka by the Indian logicians. Indian mathematicians subscribed to the
general methodological dictum of most schools of Indian philosophy: that
the tarka was not an independent pramana and could therefore not be used
to prove the existence of an entity whose existence cannot be otherwise
proved.

It should be emphasized that this does not mean that Indian mathematics
totally abandoned the method of indirect proof. For example, consider the
upapatti of the result that a negative number has no square root given by
another commentator Krishna Daivajna (c. AD 1600) (edited by Dvivede,
1920).

A negative number is not a square. Hence how can we evaluate its square
root? It may be argued that “why cannot a negative number be a square? Surely
it is not a royal command” ... Agreed. Let it be stated by you who claim that a
negative number is a square as to whose square it is; surely not of a positive
number, for the square of a positive number is always positive. Not also a
negative number because then also the square will be positive by the same
rule. This being the case, we cannot see how the square of a number becomes
negative.

In not accepting the method of indirect proof as a valid means for
establishing the existence of an entity (whose existence is not even in prin-
ciple establishable via direct means of proof), the Indian mathematicians
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took what is referred to today as the constructivist approach to the issue of
mathematical existence. But the Indian philosopher-logician did more than
merely disallow certain existence proofs. The general Indian philosophical
position is in fact one of completely eliminating from logical discourse all
reference to unlocatable entities whose existence is not even in principle
accessible to direct means of verification. This appears to be the position
adopted by Indian mathematicians. And, for this reason, many an “exist-
ence theorem” (where all that has been proved is the non-existence of a
hypothetical entity incompatible with the accepted set of postulates) of Greek
or modern western mathematics would not be considered to have any mean-
ing in Indian mathematics.
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IN THE GLOBAL VILLAGE:
THE WEDGE AND THE FILTER
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Writing from an international perspective is likely to include over-
generalizations and biases inadvertently made or held by the author. Inclusive
and meaningful statements about international aspects of education run the
risk of over-generalizing if they emphasize meaningfulness at the expense
of inclusiveness, and the risk of being vacuous if they do the opposite.
Moreover, any author’s perspective of international affairs is biased by the
author’s spatial-temporal context including culture, society, and history.
As the author of this paper, my perspective is that of a mathematics educator
who belongs to a developing country in a very old culture. Having this in
mind, I move to describe the contours of the terrain to be covered in this
paper.

The 90s promise to be the decade of transition to the information age.
Scientists, economists, and educators predict deep changes in society,
eéonomy, and education. Countries vary in their response to the challenge
of coming to grips with the demands and consequences of the information
age. The following four examples taken from the United States of America,
India, Jordan, and the world Conference on Education for All are illustrative
of the different kinds of responses.

In the United States of America, a number of forward-looking books
and reports in the 80s focused on the theme of America 2000 and the transi-
tion to the twenty-first century. Everybody counts (National Research
Council, 1989) was one such report which focused specifically on math-
ematics education. Everybody counts describes vividly the various forces
that impinge on mathematics education in the United States and the mobil-
ization of human resources needed to bring about a transition to the twenty-
first century. It also outlines national policies, strategies, and support
structures for renewal of mathematics education. One underlying theme is
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to make American mathematics education the best in the world in order to
sustain the nation’s leadership in a global economy.

Thousands of miles away, the National Institute of Educational Plan-
ning and Administration in India prepared a document to spell out the Indian
perspective on the subject of Education for All by 2000 (UNESCO, 1990).
The report deals with a critical analysis of the present educational system in
India, new approaches for securing higher levels of participation and reten-
tion in schools, particularly of the main disadvantaged sections of society
(women, minorities, excluded castes, ... ), curriculum, decentralization, and
last but not least increasing financial provisions for education from 4 to 6%
of the GNP. Nowhere to be seen is a preoccupation with the information age
and its effect on education.

Closer to home, Jordan proposed and implemented a reform plan whose
main thrust was to improve the quality of education by up-dating and up-
grading the educational system. The reform plan (Ministry of Education
and Instruction, 1987) called for a change in the educational ladder by
extending compulsory basic education by two years (from 6-14 years to
6-16 years), followed by a two-year secondary school with different tracks.
An overhauling of curricula, teacher training programs, school adminis-
tration and school buildings were key points in the plan. Jordan, a developing
country, allocated relatively large resources to this plan. Science and
technology, although stressed, do not reflect an apparent sensitization to
the demands of the information age.

An international perspective is illustrated by the World Declaration
on Education for All (Inter-Agency Commission, 1990). In article 1 of that
Declaration, the World Conference on Education for All which convened in
Jomtien, Thailand, specified the basic learning needs in the emerging glo-
bal economic, social, and cultural environments of the 1990s. Basically,
these learning needs comprise essential learning tools (such as literacy, oral
expression, numeracy, and problem solving) for everybody to live and work;
to participate fully in development to improve the quality of life; to make
informed decisions; and to continue to learn. The satisfaction of these needs
is to recognize the collective cultural, linguistic, and spiritual heritage of
the community, and to promote the values of cooperation, justice, and toler-
ance in an interdependent world.

The preceding illustrative examples are too few to warrant any
inference but may support the following specific observations:

1. Industrialized countries have set as a priority the development of
their capabilities to make the transition to the information age. They
are contemplating or implementing educational plans to enable them
to educate their citizens for the future. One major driving force for
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those countries is to secure a competitive edge in the global
economy.

2. Developing countries are primarily concerned with provisions of
resources to upgrade their education or to cope with quantitative
growth. In both cases, it is not the demands of the information age
that guide their policies, but rather the compelling problems of the
present and the accumulation of the failures of the past.

3. The international perspective proposes educational goals which aim
at the future but are rooted in the cultural heritage of the commu-
nity concerned. These goals are higher in standard and more
forward-looking than those of developing countries, but less than
those of industrialized countries. The message is for international
cooperation rather than competition.

MATHEMATICAL LITERACY FOR THE INFORMATION AGE

More than any school subject, mathematics is at the forefront of the
transition to the information age. In most industrial countries the use of
computer technology in all economic sectors and the availability of high-
speed communications have dramatically transformed the workplace, the
social context, and the home environment. Moreover, continued introduc-
tion of innovations in computer and communications technology will
continually change learning objectives, making them moving targets.
Because mathematical methods, skills, concepts, and attitudes are essential
for this technological environment, a new mathematical literacy is called
for: a mathematical literacy for the information age. Henceforth, this
information age mathematical literacy will be denoted by IA mathematical
literacy.

The descriptions of the basic components of IA mathematical literacy
in the literature turn out to be essentially the same. It is convenient to sort
such components into three categories: abilities, attitudes, and contexts.

Abilities

Three such abilities are often mentioned as essential components of
IA mathematical literacy: higher-order reasoning, communication, and prob-
lem solving (Romberg, 1988; NCTM, 1989; NRC, 1989). Higher-order
reasoning in mathematics consists of non-algorithmic and complex skills
which involve multiple criteria, multiple solutions, judgment, interpreta-
tion, uncertainty, self-regulation, imposing meaning, and mental effort
(Resnick, 1987). Communication refers to the skills of reading, writing,

discussing and translating using the language of mathematics. Problem
solving encompasses a group of skills for utilizing higher-order reasoning
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skills and communication skills to understand and resolve non-routine tasks
in authentic problem situations.

Attitudes

A number of components of IA mathematical literacy have been iden-
tified in the affective domain, including valuing mathematics, confidence
in using mathematics, and cooperation while learning and/or utilizing math-
ematics (NCTM, 1989). Valuing mathematics is seen as a deep-rooted
conviction which is indispensable, not only in the school environment but
more so at home, at work, in private decisions, and in the social context at
large. Confidence in mathematics refers to an attitude of being empowered
by mathematics to do things which are not possible without the possession
of that power. Cooperation is viewed as the means of imparting the belief
that learning and/or using mathematics are not isolated activities, and the
attitude that different perspectives enrich the learning of mathematics.

Contexts

IA mathematical literacy requires optimal contexts for its develop-
ment. The physical context requires the utilization of a high-technology
environment for learning, applying, or assessing authentic mathematical
tasks. The social context makes it imperative that IA mathematical literacy
be achieved by all, irrespective of social or ethnic divisions. IA mathemat-
ical literacy for all is assumed to be necessary for economic survival and
social harmony. The temporal context refers to a learning environment which
provides the student with the power to learn for life. The changing demands
of technology and communication require the power to continually learn
and adapt to the new conditions.

HISTORICAL PERSPECTIVE

More than at any time before, disparities in the 1990s in mathematics
education between industrialized and developing countries are not only of
degree but also of kind. In the first half of the twentieth century formal
education was almost nonexistent in most of the now-developing countries.
In the few countries where formal education existed, the colonial powers
and the countries under their patronage did share the same kind of mathe-
matics education—that of the colonial powers. The formal education systems
in these countries were modelled after those of the colonial powers and so
were the curricula, textbooks, teaching methods, and even the language of
instruction. Mathematics curricula could be transplanted across the bound-
aries of countries, cultures, and traditions because of the deep-rooted belief,
at that time, that mathematical concepts and skills are universally meaning-
ful and applicable. The basic difference between the colonial powers and
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developing countries was a matter of the degree of accessibility of formal
education. In colonial countries, a minimum level of formal schooling (in-
cluding arithmetic as one of the three R’s) was almost universally achieved.
In the colonies, formal education was limited to the few who were privi-
leged to be admitted to foreign schools in order to prepare them as local
counterparts for public service and the professions.

The modern mathematics movement which appeared in Western coun-
tries in the 60s triggered similar reforms in the newly independent developing
countries. The changes in mathematics education that took place in the de-
veloping countries had a number of characteristics. First, the reform was
introduced in secondary schools and for college-bound students: i.e., for a
very small proportion of the student population. Second, the reform lagged
behind similar efforts in Western countries by more than a decade, and most
often as the thrust of that reform was going downhill in the West. Third, the
new curricular materials were produced by adopting and/or adapting curric-
ular materials developed in Western countries and dominated by Western
mathematics educators, or local mathematics educators educated and trained
in the West. Fourth, the reform was basically limited to the reorganization,
addition, or deletion of mathematical topics. So similar were the reform
efforts in developing and industrial countries that Howard Fehr (1965),
writing on mathematics education around the world, did not feel the need to
refer to any of the developing countries.

In the 70s and 80s, the repeated swings in the Western countries that
ranged from “ back-to-basics” to emphasizing individual and societal-based
objectives, did not resonate in the developing countries. The latter continued
to diffuse the excesses of modern mathematics, but always maintaining a
content-based orientation.

Perhaps for the first time in this century, the 90s are witnessing a
divorce in mathematics education between the industrialized and the devel-
oping countries. IA mathematical literacy is radically different from that
which is prevalent in most developing countries. The differences encom-
pass targeted abilities and attitudes as well as the physical, social, and
temporal contexts of the learning environment. Moreover, IA mathematical
literacy is a result of a paradigm shift from the industrial age to the infor-
mation age. Thus the reform movement of the 90s in mathematics education
is expected to be a system-wide transformation, unlike previous reform ef-
forts which focused on one or a few components of a very complex social,
economic, and cultural system. The reform movement of the 90s in the in-
dustrialized countries promises to be a synchronized movement aimed at
transforming mathematics education as a whole while providing for chang-
es in policies, strategies, and support structures in the larger social, economic,
and cultural contexts.
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Mathematics education is thus poised to act as a wedge sustaining and
reinforcing the division among countries along social, economic, and cultural
lines. In the global village, the growing gap is developing into some sort of
separate development (apartheid) in mathematics education.

CONSTRAINTS AND BARRIERS

Bridging the gap between IA mathematical literacy and traditional
math-ematical literacy in the developing countries does not seem to be easily
attainable in the near future because of economic, social, and cultural
constraints and barriers.

Resource constraints

Within their competing priorities, developing countries are unlikely
to be able to afford the material and human resources needed to implement
the kind of reform in mathematics education being contemplated or imple-
mented in the industrialized countries. One prominent feature of that reform
in the industrialized countries is that it is a system-wide transformation.
This entails radical changes in the orientation of the school curriculum and
the re-allocation of resources to quality improvement. The development of
such authentic skills as higher-order reasoning, communication, and prob-
lem solving requires radical changes in the tools, methods, and learning
environment of mathematics instruction. Thus resources have to be invest-
ed in curriculum development, teacher education and re-education, and the
implementation of educational technology. Most developing countries can-
not afford to allocate already scarce resources to a system-wide reform on
this scale at a time when they have to cope with more basic and urgent
needs.

The problems of the developing countries are very different from those
of industrialized countries. Table 1 presents macro-level comparative data
on some education indicators. Three problems stand out in developing coun-
tries but not in the industrialized countries. First, participation in education
as expressed in gross enrollment ratios, particularly in the second level of
education (12-18 age-group), is a pressing problem in developing countries
(a non-participation rate of more than 50% in the second level of education
is found in developing countries compared to less than 7% in industrialized
countries). Second, the participation of females in education in developing
countries is uniformly much lower than males, whereas such differences do
not exist in industrialized countries. Third, the adult (15 years or more) lit-
eracy rate in developing countries is close to 65%, with a gender difference
favoring males. This compares to a literacy level of 97% in industrialized
countries with no gender differences. Fourth, to cap such differences, public
expenditure on education is almost eight times greater in industrialized
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countries than in developing countries in billions of dollars and 140% in
percentage of GNP.

It is obvious that the gap is bound to increase as industrialized countries
increase their investment in education while developing countries struggle
with such perennial problems as working to increase participation rates in
education, particularly for females, and to increase their human capital by
decreasing adult literacy.

Table 1. Education Indicators in Developing and Industrialized Countries.

Developing countries | Industrialized countries

Male Female Male Female
Gross enrollment ratio*
First level education 105.5 90.4 102.0 101.1
Second level education 50.3 37.5 93.5 93.8
Third level education 10.1 6.5 37.0 36.5
Adult literacy (percentage) 74.9 55.5 97.4 96.1
Public expenditure on
education
US $ (billion) 125.8* 897.9+
percentage of GNP 4.1* 5.8*

Source : UNESCO World Education Report, 1991
+ indicates that the figure is for 1988, other figures are for 1990

* gross enrollment ratio = total enrollment in level regardless of age + population of
the age group officially corresponding to that level.

In communications and media, developing countries lag far behind
the industrialized countries. Table 2 presents comparative data on commu-
nications and media indicators. In all the media, ranging from book
production to television, the media indicators for the industrialized countries
are more than those in the developing countries. Needless to say this
difference is increasing, particularly in respect of the backbone of the
information age: the computer.
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Table 2. Communications and Media Indicators in Developing and Indus-
trialized Countries.

Developing | Industrialized
countries countries

Book production
Titles per million inhabitants 57 507
Daily newspapers
Circulation per thousand inhabitants 43 337
Printing and writing paper
Consumption (kg) per inhabitant 1.5 41.4
Radio receivers
Number per thousand inhabitants 173 1008
Television receivers
Number per thousand inhabitants 44 485

Source : UNESCO World Education Report, 1991.

Social barriers

In developing countries, the main social barriers in the way of achieving
IA mathematical literacy are the contexts of mathematics instruction and
learning. The physical context of the classroom is far from being the high-
tech environment that is required for IA mathematical literacy. Even if such
an environment could be afforded it would be radically different from the
one that applied mathematics in the larger social context, thus reducing the
authenticity of classroom instruction.

Mathematics education for all is not easily attainable in developing
countries. This is because the priority in such countries is to provide for
universal access to and participation in schooling. Moreover, the “human
capital” in these communities (with more than 40% adult illiteracy on the
average) is lower than the critical threshold needed to graft and sustain a
major quality-improvement intervention of this magnitude.

Again, life-long education and the development of the power to learn
do not match social beliefs, expectations, and rewards. In developing coun-
tries, education is still conceived as a means of upward social mobility.
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However, success in education is measured by upward mobility on the edu-
cational ladder culminating in official certification. Thus the ultimate goal
is not to “develop the power to learn” but to move upward on the educational
ladder. Mathematics, because of its perceived hierarchical nature, reinforces
the “upward mobility” objective at the expense of developing the power to
learn (Jurdak, 1992).

Cultural barriers

The values and beliefs about mathematics and its teaching in devel-
oping countries are the main cultural barriers in the way of achieving IA
mathematical literacy. The implied conception of mathematics in IA math-
ematical literacy is that of a mode of thinking, skills, and concepts valued
for their power in solving and communicating authentic problems. In
developing countries, the prevailing conception of mathematics is that of
an external body of knowledge which is valued for its utility in upward
mobility on the educational ladder.

IA mathematical literacy conceives of teaching mathematics as a
cooperative activity in which students develop new knowledge through ac-
tive construction and interaction in the social context of the classroom. In
developing countries, the teaching of mathematics is conceived as a process
of transmitting predetermined concepts and skills to the learner whose ulti-
mate responsibility is to acquire mathematical knowledge and to demonstrate
the possession of such knowledge in contrived testing situations.

In addition, the value-systems in different countries may conflict with
the values and beliefs embedded in IA mathematical literacy. Values about
authority and those who possess it (Hofstede, 1986), social expectations of
normative behaviors, and ideological beliefs as cultural carriers (Jurdak,
1989) contribute significantly to the social climate of mathematics instruc-
tion. Cultural dissonance is a resilient barrier in the way of achieving IA
mathematical literacy.

THE RESPONSES

The challenge of bridging the gap between industrialized and devel-
oping countries in the nature and level of mathematical literacy elicited
three archetypal modes of responses: the neutral mode, the indigenous mode,
and the transfer of technology mode.

The neutral response mode

The response of most developing countries to the challenge has been
the neutral mode. This is the case because of an unawareness of the existing
gap on the part of developing countries, the unaffordability of the demands of
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IA mathematical literacy, or an unwillingness to introduce radical changes.
Such countries continue to conceive of mathematics education and any
change therein in terms of the assumptions and constraints of the existing
framework. No special effort is made to take into consideration the impact
of communications and computer technology on the society, economy, and
education.

The neutral mode may be judicious in the short term but risky in the
long run. It may be wise to wait for the claims and promises of IA mathe-
matical literacy to bear fruit, especially since the field of mathematics
education has plenty of unfulfilled promises. However, if the claims of 1A
mathematical literacy become a reality, then the countries that adopt the
neutral response mode will find themselves out of phase with industrialized
countries and unprepared to participate effectively in the economy of the
global village.

The indigenous response mode

The indigenous response mode advances the premise that mathemat-
ics education should look inward in order to achieve authenticity in terms
of the meanings of the indigenous cultural and social contexts. Ethnomath-
ematics is perhaps the best-articulated response in this regard (D’ Ambrosio,
1985). Although a number of projects involving ethnomathematics have been
implemented, their impact is localized.

The indigenous mode has the advantage of optimizing meaningful
learning of mathematics in the local context but may run the risk of isolat-
ing communities and countries. The emphasis on the indigenous context in
mathematics teaching is more likely to produce higher motivation and more
authentic learning of mathematics in the local context. However, the de-
emphasis on modern demands and modes of thinking, including their
interaction with non-indigenous technology, is likely to increase the isola-
tion of mathematics education from the international mainstream. As in
nature, the balance between ecology and technology in mathematics is a
delicate one.

The technology transfer response mode

Many developing countries have responded to the challenge of bridging
the gap by acquiring the educational technology available in the schools of
industrialized nations. The majority of these countries have high per capita
income because of their natural resources, but otherwise have low level
developmental indicators. These countries can afford to buy computers and
audio-visual materials, can produce high-quality instructional materials, can
build school facilities, and can even import foreign teachers.
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The main advantage of the technology transfer approach is that it tends
to maintain a technological linkage between developing and industrialized
countries. On the other hand, it is often the case that the technology remains
at a shallow level of adaptation because of incompatibility with the indig-
enous ideological and social values inherent in such communities (Jurdak,
1988). The technology transfer is likely to affect the “skill” component of
IA mathematical literacy, but is unlikely to change the “value” and “context”
components.

The challenge

Until recently, mathematics education has provided a common ground
where the international community in mathematics education could meet,
talk the same language, ask similar questions, and share different answers.
The 1990s seem to be witnessing a growing gap between developing and
industrialized countries, thus threatening the common ground, the common
language, and the shared concerns of mathematics education.

The three types of responses discussed earlier do not seem to be
conducive to the restoration of mathematics education as a common ground
of shared concerns with multiple perspectives. I believe that there is a need
for a concerted international effort to halt the divergence in mathematics
education between developing and industrialized countries, especially the
division that is taking place along economic and cultural lines.

Perhaps the need is for a vision similar to the one which motivated the
World Conference on Education for All. Three ingredients are essential for
such a vision. First, the focus of this vision should be mathematics for all
within the framework of basic education for all. Mathematics education for
all should cover not only some nations or regions but the international
community at large, and not only some advantaged sections of the society
but the whole society. Second, the international community in mathematics
education should formulate guidelines for sustainable international devel-
opment in mathematics education in the areas of goals and objectives,
curriculum, professional preparation of teachers of mathematics, and as-
sessment. These guidelines should be realistic enough to be attainable by
developing countries and ambitious enough to be a basis for industrialized
countries to build on. Third, there should be an international support system
in mathematics education to enhance the capacity of developing countries
to attain these guidelines and also to promote the understanding and
utilization of diverse cultural values and practices.
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BONUSES OF UNDERSTANDING
MATHEMATICAL UNDERSTANDING

Thomas E. Kieren

University of Alberta, Canada

A class of 8-year olds has been developing a sense of the nature of
fractions (particularly those whose denominators are powers of two) by
folding and shading parts of sheets of writing paper taken as units. Now the
teacher stands before the class holding a much larger sheet of paper which
he has pre-folded and which is shaded as follows.

xxxxxxxxx

He asks the children what they can say about it. Kara replies immedi-
ately and brightly, “It’s five fourths.” After getting other responses from
the class the teacher returns to Kara and asks, “Why did you say five fourths?”
Looking thoughtful, Kara replies “Well, a half of a half is a fourth. So, five
fourths!”

Would we say that Kara is exhibiting mathematical understanding here?
If so, what are the characteristics of the way in which we view understand-
ing which allows us to say this? It is the purpose of this essay to describe
one way of understanding mathematical understanding, as well as briefly
attending to others, and to illustrate the bonuses of such an understanding
when one considers children doing mathematics.
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It is challenging to try to describe and discuss mathematical under-
standing. Wittgenstein (1956, p. 298) has put it this way: “Understanding a
mathematical proposition—that is a very vague concept.” He continues by
saying that a person can prove a proposition and justify each step in their
reasoning clearly—that is, the person can generate a legitimate sophisti-
cated-looking mathematical product—and yet this is not sufficient evidence
that the person is acting with understanding. Acting with understanding, it
seems, involves being able to see the significance and consequences of the
proposition, to see alternatives to it and alternative approaches in produc-
ing it and to be able to situate it or interweave it with one’s more informal
intuitive knowledge of that area of mathematics (Wittgenstein, 1956;
Morascvik, 1979; Bohm & Peat, 1987). If one were to situate such under-
standing in Ernest’s (1991) picture of the social construction of mathematics,
it seems that understanding would lie in the realm of subjective knowledge.
It would appear that Wittgenstein is alluding to a kind of tension between a
clear public mathematical product and the more subjective activity which
would have to be considered if one were to judge whether the person who
“produced” the mathematics acted with understanding.

If mathematical understanding is an aspect of personal and what ap-
pears to be “subjective” mathematics, is it worth studying? Does it not suffice
for a teacher or researcher (or fellow mathematician) to simply recognize
understanding when it is observed? Bateson (1979, 1987) has associated
knowing something, say a piece of mathematics, with the ability to act ap-
propriately or live in a situation which calls for the knowledge. But he says
that acting with understanding, the capability to reflect on and organize
one’s knowing, carries with it a bonus. If one equates knowing with doing
or living, then perhaps the bonus of understanding is in raising the quality
of that life.

In what follows I will attempt to argue for the bonus of understand-
ing mathematical understanding by presenting one such understanding,
a theory for the growth of mathematical understanding which Susan Pirie of
Oxford University and I have been developing over the past few years. In
addition, a situation drawn from studies of 12-year olds building knowl-
edge of fractions will be analyzed using constructs from our model. The
purpose of such analyses will be to highlight the bonuses which accrue from
our understanding of mathematical understanding.

In developing our theory we are following (and in part developing) an
enactivist view of cognition which holds that a person is autopoietic, bring-
ing forth their world in the sphere of their behavioral possibilities (Maturana
& Varela, 1987; Varela, Thompson, & Rosch, 1991). Understanding in such
a non-representationist activity is seen when a person, in conjunction with
their environment, which often includes other human actors, uses their
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knowledge structure to organize their own knowledge (von Glasersfeld,
1987). Such understanding is seen as “a series of ongoing meaning (making)
events in which a person’s world stands forth” (Johnson, 1987, p. 175). In
such a view one’s understanding is seen to grow out of one’s knowing expe-
riences (and to organize them) and complementarily one’s understanding
configures one’s knowing actions.

BONUSES OF UNDERSTANDING IN THE LITERATURE

Of course, it should not be thought that our understanding of mathe-
matical understanding is the only way to gain the bonuses of understanding.
Over the past 20 years there has been a continuing dialogue in mathematics
education which is attempting to make clearer the “vague concept” of
mathematical understanding. Skemp (1976, 1987) distinguished between
and elaborated the ideas of instrumental understanding (knowing how
without knowing why) and relational understanding (knowing how and being
able to elaborate why in terms of one’s other mathematical knowledge).
Skemp himself felt an immediate bonus of such an understanding of under-
standing—it enabled him to see that mathematical understanding was not a
monolithic entity but to observe that there were possibly many kinds of
understanding.

A bonus of Skemp’s work for mathematics education has been the
continuing generation of ideas on mathematical understanding—including
this essay. Herscovics and Bergeron (1983, 1988, 1989, 1992) extended the
number of kinds of understanding which a person might have (e.g. concrete,
symbolic, logical, formal). But rather than see such types of understanding
as isolated acquisitions, they instead organized a two-tiered structure of
types of understanding distinguishing understanding of preliminary physical
concepts for any fundamental mathematical concept from that of the
emerging mathematical concept. Within tiers they distinguished intuition,
procedures, abstractions, and formalizations as indicators of a person having
acquired particular understandings with respect to a mathematical concept.
One of the bonuses which flowed from such an understanding was the
capability of making distinctions between different kinds of physical
understanding of a concept, say addition of natural numbers or integers.
A second bonus was that such a model suggests that teachers can fruitfully
engage in epistemological analyses of mathematics concepts in a way that
will help them perceive and structurally situate different types of under-
standings of the concepts which their students might acquire.

Miller, Malone, and Kandl (1992), using ideas from Ryle (1949),
understood mathematical understanding as a three-dimensional space with
“knowing that” ranging from discrete to integrated knowing, “knowing how”
ranging from simple to complex, and “knowing why” ranging from intuitive
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to rigorous. A person’s understanding of a piece of mathematics (such as
Kara’s at the beginning of this essay) would be situated in this three-
dimensional space. (Kara had a somewhat integrated, rather simple and
intuitive—and physical procedural, to add a concept from Herscovics and
Bergeron—understanding of fractions.) One bonus of such an understanding
is that a teacher could think of student understanding of a concept both in
terms of current positions and goal positions in such an understanding space.
As illustrated in their study with high school teachers and students, Miller,
Malone, and Kandl’s model provided teachers and students with a language
for talking about understanding, thus revealing for teachers and students
understanding which occurred in their classrooms.

Rather than viewing understanding in terms of types or acquisitions,
Sierpinska (1990) saw understanding in terms of a sequence of action events
where understanding changed due to facing epistemological obstacles. She
writes, “But the moment we discover something is wrong with (our) knowl-
edge (i.e. we become aware of an “epistemological obstacle”) we understand
something (emphasis added) and we start knowing in a new way.” Some
bonuses which accrue to such an understanding of mathematical understand-
ing are that the latter is seen as occurring in events rather than as a type of
acquisition, that depth of understanding of a topic can be observed in terms
of the number of epistemological obstacles faced, and like Herscovics and
Bergeron it prompts an epistemological analysis of mathematics on the part
of teachers.

A MODEL FOR THE GROWTH OF
MATHEMATICAL UNDERSTANDING

In reacting to understandings of mathematical understanding which
defined it in terms of types or linear combinations of types of understanding,
Pirie (1988) attempted to observe understanding as it occurred in children
and found it to be a dynamic non-linear process. She and I combined that
thinking with a dynamic model of personal knowledge of mathematics
(Kieren, 1988) into stimuli for a five-year continuing project of building
and using the model for the growth of mathematical understanding illustrated
below (Figure 1).

We observed the growth of a student’s understanding of a mathemat-
ical topic within an environment of possibilities (provided in part by teachers
and other students) as playing itself out within a framework of eight kinds
of acts of understanding. It is beyond the scope of this paper to give many
details of these levels or modes of understanding, but we have done so in
other work (Pirie & Kieren 1989, 1990, 1992; Kieren & Pirie, 1992; Kieren,
1990; Kieren, Mason, & Pirie, 1992). The observer makes assumptions about
what a student brings to the current observation task. We call such
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Observing

Formalizing

Primitive
Knowing

Figure 1. Model for the growth of mathematical understanding.

assumed capabilities Primitive Knowing and it forms the core of understand-
ing of a new topic. In the first example studied below it was assumed that
Tanya and her 12-year-old classmates could divide various units equally
and knew at least some fraction language. The three next inner rings: Image
Making, Image Having, and Property Noticing are three successively more
sophisticated informal, local context dependent ways of understanding. The
next three rings—Formalizing, Observing, and Structuring—are modes of
understanding in which a person knows and understands mathematics in
ways which are less context dependent and more abstract. Details of some
of these six modes of understanding will arise in the discussion of examples
illustrating the bonuses of having and using such a model.

Let me briefly discuss the outer ring: Inventizing. We have coined a
new word here because we do not wish to say that students or mathematicians
are not inventive in the other informal or formal understanding activities.
By “inventizing” we mean that a person is capable, once they have a full
formal structural command of a mathematical topic, of putting such knowl-
edge “in a box” and developing, without giving up the previously understood
knowledge, a completely new way of lookong at and building from phenom-
ena developed in the previous structure. A contemporary example of this is
work in fractal or chaos theory where previously structured understandings
of pathological functions have given rise in some mathematicians to full
and totally new understandings of mathematics.
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There are several features and consequences of this model and related
theory which allow it to be useful in observing change and growth in a
person’s mathematical understanding. Notice the asymmetric nested rings.
This suggests that the understanding activity (if not disjoint and detached)
at an outer more sophisticated level always enfolds and embeds and has
access to less sophisticated more context-dependent related inner level
understandings.! This aspect of the model (and the findings in the example
below) is in accord with Varela, Thompson, and Rosch (1991) who suggest,

If we wish to recover common sense, then we must invert the representationist
attitude by treating context dependent know-how not as a residual artifact that
can be progressively eliminated by the discovery of more sophisticated rules
but as, in fact, the very essence of creative cognition.

Our theory balances for a person an emphasis on what Ernest (1991)
calls the formal “front” of mathematics with the informal “back”, and in
fact gives a central position to the latter.

Another critical feature of the model is indicated by the heavy rings
which we call “Don’t Need Boundaries.” When a person has an image, they
can talk about and act on the mathematics without doing the explicit activity
which brought it forth. Similarly when persons are applying a method or are
formalizing they no longer need to reference context-dependent images or
local properties. When persons are setting mathematical propositions in a
structure, they do not need to think of procedures for doing formal processes
(such giving up of processes might be related to Sfard’s (1991) notion of
reification). So these Don’t Need Boundaries illustrate the powerful freeing
of mathematical understanding from the constraints of less formal and less
logically sophisticated actions. But persons acting beyond such a boundary
may act as if they were blind to the history of informal, intuitive, and context-
dependent activities which were necessary in generating the outer level
mathematical understanding for those persons.

The most critical feature of our model is the notion of “folding back.”
To illustrate this feature, let’s return to the illustration of Kara’s work that
we started this paper with. Kara had been engaged in folding units, small
sheets of paper, into halves, fourths, eighths, sixteenths. From this activity
she had generated an image of fractions as amounts coming from folding, or
principally related to folding. Now she was faced with a new situation. Here
was a fraction which did not come from her action but was simply a very
different unit with fractional parts indicated on it. She was, in some sense,

1 This aspect of our model allows us to reflect on the question of “what is math-
ematics” and give a language to those, such as Mandelbrot, who are attempting
to show the value of “informal” mathematical activity in building a new field,
vision, and understanding in mathematics.
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stuck. Our evidence suggests that she just applied her image of fractions
from folding to justify her answer of five fourths. She knew the five was
right from counting the shaded parts; she observed the top part of the display
as “half of a half”, generating and justifying her sense of “fourths.” Although
the teacher did not say anything further about Kara’s work, that evening
Kara went home to fold “giants” of her own and by the next day came back
with a knowledge of fractions as amounts, or at least relative amounts, which
were independent of the folding activity. They were amounts that you could
put together, add up, etc. So here we have a case of a person possessing an
image being provoked to fold back to further image making to extend her
image.

Inventizing

Observing

Formalizing

Primitive
Knowing

Figure 2. Folding back in Kara’s understanding of fractions.

Our theory prompts us to see mathematical understanding, as changing
in this way, almost on a continuing basis. That is, a person is more or less
continually folding back, building up a larger, if less formal, idea that will
support the new situation in which they find themselves. This is, of course,
related to Sierpinka’s notion of epistemological obstacle and to overcoming
one’s epistemological obstacles. But for us, folding back provides a
mechanism by which a person can weave the path of understanding. Using
a weaving metaphor for a moment, one might think of the eight modes of
levels as the observational “warp” in which a teacher or a researcher can
observe a child’s mathematical understanding activity growing through this
process of folding back and moving out to more sophisticated understanding.
Figure 2 shows Kara’s understanding of fractions as it changed over a period
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of several days (Kieren, Mason, & Pirie, 1992). Other research which we
have conducted suggests that analysis of a person’s understanding over
shorter or longer periods of time would reveal the same kind of dynamically
woven pathway.

BONUSES OF THIS UNDERSTANDING
OF MATHEMATICAL UNDERSTANDING

The bonuses of understanding mathematical understanding arise in
several ways. Such understanding changes the way in which an observer
sees students doing mathematics. Thus one kind of bonus is a change in the
actual thinking of the understanding observer. This brings about a second
kind of bonus—thinking otherwise about school mathematics. Rather than
simply adhering to convention in considering students’ mathematics, a per-
son with an understanding of understanding is empowered to move beyond
convention. A third kind of bonus is entwined with the two above. A person
who understands mathematical understanding, particularly one who uses
our model and theory gains a new and different platform and a new lan-
guage for observing mathematical understanding as it is acted out by students
in classrooms.

A VIGNETTE OF PERSONAL UNDERSTANDING

Tanya is a 12 year old, who would agree with her teacher’s assessment
of her as “OK” in mathematics, in a typical grade seven mathematics class
in a large western Canadian city. In her previous schooling she has studied
the meaning of fractions but has not seriously considered operations on
fractions. This is evidenced by her performance on a pre-test on addition of
fractions (Figure 3a). Tanya makes and enunciates the “classic” error with
respect to addition and when there are more than two addends she claims
not to know what to do.

But in Figure 3b it is clear that Tanya’s addition knowledge is radically
improved after several days of instruction. This observation was repeated
for 20 of 22 of her classmates who, like her, did not know how to add
fractions; three classmates showed pre-instruction addition knowledge.
A positively changed performance, such as Tanya’s, might be considered
sufficient knowledge for the observer of Tanya’s understanding. It is a bonus
of our theory that one can “think otherwise” about Tanya’s understand-
ing. As will be seen below, we can explicitly profile Tanya’s understanding
as it occurred and not reduce such understanding to pre-test/post-test
differences.
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Tanya’s Addition knowledge
a. Prior to instruction:
a) Three other fractions which show the same amount as % .
6 4 &
7 & 13

1,1_d
b 2+ %
c) 2,5 _ 7 T not sure if it's vight but 7 think

3°8 1 it's top + top divided by bottam t bottom.
d %+ 3t % 7 don't know how ta do this one yet.

b. Post-Instruction:

1.1, 1_ 83
a) 4t3+t5 = a

3 4 4

VN K]

5.2 _ 3]
b) g8+t 3= 7

s /6

25 "oy

1,7 ,5_4
9 8g*tatiz= a4

2 7 10

y 25 Iy
d) ‘/‘g‘ Jrfq + !Z_?)— 7% is about 3 because

hooh_ 4 & i

764}_?‘?)‘1‘/‘2 is about | and

:ll% is about | qnd-/%- is about /,

So aproxamately 3

Figure 3. Tanya’s pre- and post-instructional addition of fractions performance.

Tanya’s class was one of several involved in a study of the growth of
mathematical understanding. To allow an observer to “see” such growth the
students worked in a number of settings which provided them space to build
their own ideas, working both individually and in groups. While all students
were in the same settings, each child responded according to his or her own
particular structure of understanding. No instruction on any standard
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algorithms for operations on fractions was provided. Operational processes,
such as those shown in Tanya’s work, arose individually in working in the
settings in the classroom.

Two central activities used were (Figures 4a and 4b below).

a)
1 ll—__—] 1
1 2 4 8 |
b) 3 %D L0 %o

Figure 4. Action settings for fractions.

The first setting, partially illustrated in Figure 4a, engaged the children
in folding many different unit fractions and seeing fractions as multiplicative
in nature with particular fractions arising out of successive fraction folding
actions — one twenty-fourth comes from a half of a twelfth or from a third
of an eighth, for example. Such activity was accompanied by significant
amounts of drawing, discussion justifying their results, and by complex
metaphorical records of such folding behavior as exemplified by

1 1 1
2 3 3
OH— @ —®—®
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Following the folding, the children worked with what came to be called
the “pizza fraction kit” (See Figure 4b above) with fractions shown by pieces
cut from 81 x 11 paper. (One serendipitous consequence of this is that “ver-
tical thirds” and “horizontal fourths” have almost the same width, and
twelfths are very nearly square.) It was hoped that students would, in using
this kit, come to see fractions as additively combinable quantities.

Let us now pursue the bonus of our understanding using the above
theory and model of mathematical understanding by analyzing pieces of
Tanya’s work taken from several days of instruction and from an interview
several weeks later. During the intervening time she had no instruction on
addition of fractions. With other students working in groups of three, Tanya
attempted to make combinations of fraction pieces which “made” other
fractions. Here is a typical example of Tanya’s work (Figure 5).

Tanya finds various combinations from
the Pizza Fraction Kit which additively
“cover” other fractions.

2,1 ,2_2
8 71276 T3
Action Record

Figure 5. Tanya’s image making actions.

We call this kind of activity of Tanya’s “Image Making” because she
is taking elements of her primitive knowing (use of fraction language) and
using them toward a new end, physically combining fractions and describing
them. Tanya’s activity illustrates another feature of our theory. Under-
standing at any level in our theory consists of two complementary activities,
an appropriate mathematical action and the expression of that action. The
latter consists in the recording, reflecting on, describing the nature of, or
justifying the action. Here we see Tanya’s action (notice the eighths and
twelfths exactly fitting on the third) and part of Tanya’s expression vis-a-
vis the action. She also drew her covering on the board and described how
it worked both to her partners and the class at large. Following a day of such
activity Tanya was observed as having an image of addition of fractions.
This was manifested in her writing:

Fractions are equal if they cover the same amount.

She appeared to have an image of addition which could be summarized
as follows:

“Adding” means finding known pieces on which the addends can fit.
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Of course she did not say this, but it is visible in her response to the
following task:

Find combinations of two or three or more fractions which make 1.
Tanya gave the following written response:

1,.1,.6 _

3tet12 7!

When asked by the teacher to show why this worked, Tanya did an
interesting re-write:

2 4
12 12

|l
O\|=

She split the six twelfths into two parts, thus enabling her to show
three pieces each of which fits on one third (with three thirds making one).

Tanya’s image making activity as characterized and exemplified above
seems to be idiosyncratic and very context-bound. But it seems to be a rather
clear illustration of student understanding action based on her own cognizing
structure, yet co-emerging with her (instructional) environment.

It should not be thought that such context-based images cannot grow.
Several days later Tanya was observed noticing a property, based on this
peculiar image, as she did the following task:

Here are pizza orders from three tables. How much is needed to fill all three

orders?

1,2 2,5 1.1
D 7+3 19 3*% 1) >+6

Tanya responded,
1 11 22 51
33 because 57 33 5 6

1
1 13 1

We would infer that Tanya was noticing an image-based property:
“Look for fractions you can combine to known fraction pieces.” Thus, like
DiSessa’s (1987) phenomenological primitives (P-Prims) in science, Tanya
can build from and generalize her image making here into property noticing.

But her initial image-making actions had their limitations, as seen in
Tanya’s work in the following:

+ 5+

Q=

1,1
274
Tanya: I don’t know how.

Teacher: Why?
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Tanya: I can’t get them to fit.

This situation and the follow-up activity suggested by the teacher
proved to be “invocative in nature” (Kieren & Pirie, 1991, 1992). That is, in
the face of this interaction and the suggestion that Tanya, and other students,
try making fraction piece combinations and cover them with one kind of
fraction (sixths, eighths, sixteenths or twelfths for example), Tanya folded
back to renewed image making activity.

After this activity Tanya showed revised image making. Faced with
the task

1.3.1
2+v4*3

Tanya responded, “I can make all these fractions using eighths.”

Using our model we would infer that her image making is now illus-
trative of an understanding which could be characterized by the statement:

To add, find pieces (from one’s kit or one’s imagination) which fit on the
fractions you are adding.

Notice, both in the example and the characterization, that Tanya’s
image making has undergone a subtle but significant transformation based
on her new image making.

Her subsequent adding activity can be observed to have new property
noticing as well.

1 2
2 '3
x12 x8
2 16/ - 28
24 24 = 24

Notice two things. Tanya was using her image—finding twenty-
fourths— to fit. But she now combines this with her knowledge (in her
primitive knowing) of equivalence and notices a new image-based property.
As could be seen in Tanya’s post-instruction adding, she could use this
property to work on a wide variety of fraction piece combinations. But notice
that such addition was still based on the analysis of each given fraction
piece and hence was seen to be context and image dependent in nature.

Several weeks after the conclusion of instruction on fractions Tanya
was interviewed about addition of fractions.
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Formalizing:

T: What do you think about adding now?
Tanya: Jts easy. You just make fractions that work for them all,
Say you had —%-,-%nnd —‘Z— Well sixths woutd go for %M\d%

so you'd have to make forty seconds.
T: Why is that?

Tanya:  Well T just know that farty secon ds will fit becouse

sixths times sevenths make forty seconds.

T So.
Tanya: L0, 3
ya: 3 + 7 + 3
_h4 085
=ttt T7t
_2& a4 35 ike that.
_'13\+ ‘1;*4& and like tha

Here we see Tanya starting to apply a method or acting in a formaliz-
ing way. Notice her choice of fractions to add. She deliberately chooses
sevenths. Since she had not worked with sevenths previously and it is not
an easy fraction to visually construct, it is suggested that Tanya now thinks
of herself as having a method which works for all fractions (even something
like sevenths). Further, notice that Tanya is not developing a common de-
nominator on a piece-wise or fraction-by-fraction basis as was the case when
she relied on her image of addition as finding pieces which fit (although
some of that informal language lingers). Now she has a method which com-
bines denominators of the fractions to be added, Tanya no longer needs her
image to additively combine fractions. But, finally, notice that her formal-
izing method does reflect her previous folding experience: she says that
“forty-seconds” comes from «sixths” and “sevenths.” Her method reflects
and contains elements from the pathway of growth in her understanding.

To this point the model and theory for the growth of mathematical
understanding has been used part by part to analyze a number of different
mathematical actions of Tanya. But the model can be used to illustrate the
pathway of the growth of mathematical understanding for Tanya.
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Observing

Formalizing

Figure 6. The pathway of Tanya’s growth of understanding of addition of fractions.

There is a general outward vector in Tanya’s pathway but it is not
monotonic. It involves a point, X, where she was provoked to fold back
to more image making, leading to changed image having behavior (I,
signalling that addition now meant find a kind of piece to fit on addends as
opposed to pieces(s) on which addends fit). The dashed line joint P, to F,
indicates that we do not know the nature of the pathway joining these
indicated actions. We could speculate that the teacher’s general question
about addition provoked Tanya to think about fractions in a more sophis-
ticated way, independent of her images. The question mark at the end of the
pathway indicates that the theory suggests that Tanya could now be invoked
to fold back to embedded less formal understanding activities or she could
be provoked into observing a general theorem about addition, or she may
now simply continue to understand addition of fractions using a formalized
general method. But we do know that the pathways of Tanya’s understandings
will continue to be observed as a back and forth weaving within the modes
of the model.

THE BONUSES OF THE UNDERSTANDING
OF MATHEMATICAL UNDERSTANDING

What are the bonuses of thinking using our model for the growth of
mathematical understanding? First, it allows us to think about growth in
understanding as it is happening and not as simply a pre-test/post-test
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difference. Although the model can be used to portray the growth of
understanding of a concept over time, it is also useful in capturing the “fast
dynamics” of understanding in mathematical action as it is happening: the
transition following Tanya’s image having (I,) for example. Tanya’s case is
paradigmatic in showing that the growth of mathematical understanding is
non-monotonic, involving movement out to more sophisticated understand-
ing and folding back to less sophisticated understanding activity. This
pathway really illustrates that observed understanding is a co-emerging
concept: it grows jointly out of the action of the student and the observation
and interaction of the teacher or researcher. Similarly, the model and theory
provide the bonus of a way of viewing Tanya’s constructive processes as
she brings forth her mathematical world coupled with her environment. There
is no such thing as “the” understanding of mathematics or addition of
fractions. But there is Tanya, or any other student, engaging in her under-
standing of mathematics and the observer’s understanding of Tanya through
the use of the model and its related constructs.

CONCLUDING REMARKS

If teaching in a way that enhances mathematical understanding in
students is valuable, then it is important that mathematical understanding
be made less vague. This paper has attempted to show that the bonus of any
understanding of mathematical understanding is, in fact, to sharpen the
teacher’s or researcher’s view of the understanding of students. More
particularly, it was the purpose of this paper to show how Susan Pirie’s and
my developing theory for the growth of mathematical understanding provides
a rich and active conceptual structure which helps its user to see and talk
about mathematical understanding as it is happening.

NOTE

The research upon which this paper is based is supported in part by
Social Sciences and Humanities Council Grant number 410 90078.

The author also wishes to acknowledge the intellectual support and
collaboration of Dr. Susan Pirie, of Oxford University, in many of the ideas
discussed here.
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CURRICULUM CHANGE:
AN AMERICAN-DUTCH PERSPECTIVE

Jan de Lange

Utrecht University, The Netherlands

To value the changes in curricula, one is often presented with one or
two examples to give an impression of the real change at the practitioners
level, not from the perspective of the theorist or the researcher. Those same
practitioners—the teachers—often object that they cannot value a change
in content and philosophy by looking at only one isolated example. It is for
this reason that we would like to present a series of student worksheets,
intended for 12-13-year-old students, that cover three lessons.

The subject is geometry, but with connections to other strands. The
examples are taken from a unit designed for the “Connected Mathematics”
project, a cooperative project between the University of Wisconsin and the
Freudenthal Institute in the Netherlands.

Example: Worksheets from the Unit “Figuring all the Angles 2.” (de
Lange et al., 1992)

Ship Ahoy

Photo 1 Photo 2
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Photo 3 Photo 4

You are swimming in a canal and a ship is approaching you. It gets
closer and closer. In the first picture the captain of the ship cannot see you
because you are too far away. In the last picture the captain cannot see you
either.

1. Explain why.

Of course it depends on the shape of the ship how close you can get in
front of it and still be seen:

You cannot see here

2. Draw vision lines for the captain for each of the following ships.
(the captain is at *)

Container ship
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Ferr);

3. Measure in each of the cases the angle between the horizon and
vision line. What does a small angle mean?

Activity
Bring a small boat to school (plastic or wood).

Compare all the boats. Predict which one will have the biggest.and
which one the smallest blind spot.

We will use your boat to make visible the blind spot of the captain;
that is the part of the water he cannot see. We use:

* a boat;
* a piece of pin-board;
¢ some pieces of thread;
* pins.

Step 1

Put your boat on the pin-board:

Photo 1

4. Make an estimate of the area that the captain cannot see.
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Step 2

Construct a vision line straight forward, as in Photo 2.

Step 3

Construct other vision lines. You may get something similar to Photo 3.

Photo 2 Photo 3

Step 4

Next we compute the ratio between the area of the blind spot and the
area of the boat (forward of the bridge). The next pictures show you how
this could be done:

Photo 4

Photo 5

5. Compute these areas and ratios for your boat, and compare them
with your estimates in problem 4.
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CHANGING GOALS

Mathematics education is changing fast. There were major changes in
the eighties in the Netherlands, Denmark, and Australia for example, and
right now, in the early nineties, in other countries.

The goals for mathematics education have changed as well. In the
Netherlands the goals for the majority of children very much resemble the
set of goals stated by the British Committee of Inquiry into the Teaching of
Mathematics in Schools in 1982 (Cockroft, 1982). They are as follows:

1. to become an intelligent citizen (mathematical literacy),
2. to prepare for the workplace and for future education,
3. to understand mathematics as a discipline.

Nine goals were prepared by the Commission on Standards for School
Mathematics of the National Council of Teachers of Mathematics (NCTM)
in its 1989 report, Curriculum and evaluation standards for school mathe-
matics. There are four societal goals and five goals for students.

Mathematical literacy is articulated in the NCTM standards by five
general goals for students:

1. Learning to value mathematics. Understanding its evolution and
its role in society and the sciences.

2. Becoming confident of one’s own ability. Coming to trust one’s
own mathematical thinking and having the ability to make sense of
situations and solve problems.

3. Becoming a mathematical problem solver. This is essential to
becoming a productive citizen and requires experience in solving
a variety of extended and non-routine problems.

4. Learning to communicate mathematically. Learning the signs,
symbols, and terms of mathematics.

5. Learning to reason mathematically. Making conjectures, gathering
evidence, and building mathematical arguments.

These goals reflect a shift away from the traditional practice, subsuming
traditional skills under more general goals for problem solving, com-
munication, and critical attitude.

NEW THEORIES: REALISTIC MATHEMATICS EDUCATION

At the same time the goals of mathematics education are changing,
there is the evolution of new theories for the learning and teaching of
mathematics.

233



ICME-7 SeLEcTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

At the Freudenthal Institute the “theory for realistic mathematics
education” evolved after twenty years of developmental research. This theory
appears to be related to the constructivist approach. (See Freudenthal, 1983,
1991; Treffers, 1987; de Lange, 1987; Gravemeijer et al, 1990; Streefland,
1991.) However, the realistic mathematics theory is a theory of learning
and instruction in mathematics only, while the social constructivist theory
is a theory of learning in general.

The characteristics of the realistic mathematics education theory are
as follows.

Conceptual mathematization: from concrete to abstract

In Freudenthal’s view the learner is entitled to recapitulate the learning
process of mankind (Freudenthal, 1973). This means that instruction should
not start with the formal system, a final product, nor with embodiments, nor
with structural games. The phenomena by which the concepts appear in
reality should be the source of concept formation. Others call this process
“extracting the appropriate concept from a concrete situation” (Ahlfors et
al., 1962) or “conceptual mathematization” (de Lange, 1987).

To put this a little more precisely, the real-world situation or problem
is first explored intuitively, for the purpose of mathematizing it. This means
organizing and structuring the problem, trying to identify the mathematical
aspects of the problem, and discovering regularities and relations. The ini-
tial exploration with a strong intuitive component should lead to the
development, discovery, or (re)invention of mathematical concepts.

After a formalization and abstraction of the concepts, they are used by
applying them to new problems. This leads to a reinforcement of the concepts
and to a readjustment of the perceived real world. In this way the learning
process has an iterative character. The contexts serve a twofold purpose: as
a source for concept development and as an area of application.

Free productions

Students should be asked to “produce” more concrete things. Treffers,
(1987) stresses the fact that by making “free productions” the student is
forced to reflect on the path taken in the individual learning process and, at
the same time, to anticipate its continuation. The form of free productions—
to write an essay, to do an experiment, to collect data, to draw conclusions,
to design exercises that can be used in a test, or to design a test for other
students in the classroom—can be an essential part of assessment.
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Interactive learning

Interaction between students and between students and teachers is
essential. Balacheff (1985) expresses the point clearly.

Working in pairs is not only a source of explanation but also a source
of confrontation with others. This adds greatly to the dynamics of the activity.
Contradictions coming from the partner, due to the fact that they are
explained, are more likely to be perceived than contradictions confronting
the solitary learner, derived only from the facts. They are also harder to
refute than in a conflict resulting from the individual and temporary
hesitations between two opposing points of view that the solitary learner
experiences when confronted with a problem.

Integrated learning strands

Mathematics is integrated with the real world(s). Second, the integra-
tion of mathematical strands is essential. One of the reasons is that applying
mathematics is very difficult if mathematics is taught “vertically”, that is if
its various subjects are taught separately, neglecting the cross-connections
stated by Klamkin (1968) . In applications one usually needs more than al-
gebra alone or geometry alone. Integration on yet a third level is implied
when students compare different models and integrate them.

Authentic assessment

Galbraith (1991) concluded there is a need to confront inherent con-
tradictions that exist when constructivism drives curriculum design and
knowledge construction, but positivistic remnants of the conventional par-
adigm drive the assessment process. In the Netherlands a similar separation
is seen in the reaction of many teachers and researchers, such as “I like the
way you have embedded your math education in a rich context, but I will
wait for the national standardized test to see if it has been successful.”

The assessment procedures should do justice to the goals of the
curriculum and to the students—context independent generalized testing is
unjust when for instruction the context includes the real world of mathematics
itself, at least in the realistic mathematics education approach. An essential
question is: “Does assessment reflect the theory of instruction and learning?”

LEVELS OF UNDERSTANDING

Most instruction in mathematics education focused on learning to name
concepts and objects, and to follow specific procedures. The result, as Bodin
(1991) points out, is that a student can solve a given equation without being
capable of expressing the steps made or of justifying the results, and without
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knowing which type of problem it is connected to or without being able to
use it as a tool in another situation.

The current emphasis for all students must shift to reasoning skills,
communication, and a critical attitude. While these “higher order” thinking
skills are difficult to describe, Resnick (1987) listed some of their features
that are in stark contrast to current mathematics criteria. De Lange (1987)
described experiences with “higher order” thinking mathematics and their
assessment, stressing the process versus product character of the new
curriculum. During the experiments in the Netherlands (1981-1992) it
became clear that the mathematics thinking was non-algorithmic, had
multiple solutions, involved uncertainty, and a need for interpretation.

The issue needs to be addressed at the different levels necessary to
represent both instruction and assessment. Three arbitrary levels reflect the
decade-long experience of experimentation and implementation with the
new mathematics curriculum in the Netherlands (de Lange, 1992).

The lower level refers to objects, definitions, technical tools, and simple
algorithms.

The middle level deals with connections (between objects, concepts,
strands), the integration of different concepts, and simple problem solving.

The higher level deals with higher order thinking skills, developing a
critical attitude, reflection, mathematical reasoning—probably including the
concept of proof—and generalization.

These three levels of mathematical understanding can help us to see if
we really meet our educational goals. The boat example is a concretization
of these principles and ideas. The boat example is also a product of an
interesting international project, whereby the Dutch Freudenthal Institute
develops materials with the perceived American culture in mind. The
American collaborators at Madison, Wisconsin then “americanize” the
materials which are tried out at pilot schools with both Dutch and American
observers. Our conclusions are based on experiences from this project and a
smaller project that can be considered as a pilot. (See de Lange et al., 1993.)

To understand and appreciate the project some differences in the
educational contexts in the Netherlands and the United States will be
described.
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DIFFERENCES BETWEEN THE UNITED STATES
AND THE NETHERLANDS

At the school level

One major structural difference between the countries is that the United
States has sixteen thousand school districts, with each school district
responsible for its own schools. The Netherlands can be regarded as having
one school district making many things easier to accomplish.

There is also a difference in the perceived status of the teacher. Com-
plaints about teachers are not uncommon in the Netherlands or the United
States, or presumably in many other countries. But close observation in the
United States and the Netherlands makes clear that there are considerable
differences in the status of the teachers and their mathematical backgrounds.

The Dutch teacher can still be regarded as an expert: the teacher has a
lot of freedom, knows mathematics, makes excursions into the unknown, is
interested in innovations, and is very willing to criticize them. The Ameri-
can teacher seems to be in a less favorable situation: the impression exists
that she is not always considered to be an expert. There are numerous other
experts: the superintendent, the school board, the standardized test, and last,
but not least, the parents. The pressure of these experts on the teacher seems
at times unreasonable and unfair.

Another significant difference is the fact that the Netherlands has a
system of tracking students: depending on the choice of the school the stu-
dents are placed in the lower, middle, or higher track at the ageof 12,13, or
14, though the students still have the opportunity to change tracks during
their school career. The decision regarding student placement is taken by
the parents and the Head of the school. The United States officially has no
tracking, but many schools appear to have some kind of tracking in effect.

The final difference, that in our view has a major effect on the level of
(mathematics) education, is the very large role of extra curricular activities
at schools in the United States and the almost complete lack of these activities
in the Netherlands. For an observer from the Netherlands it is very strange
to see that mathematics lessons are cancelled because the high school band
or the track-and-field team has to practice, not to mention the cheerleaders.

The teaching and teachers

The background and history of context use is almost non-existent in
the United States. When implementing a new “problem oriented context
rich” curriculum one is immediately aware of this fact. It is often not clear
why a certain context is used, whether or not it is appropriate, what the role
of the context is. Discussion is hampered by the fact that there is little history
in the use of contexts for many American teachers.
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For the Dutch developers it was surprising that even the criteria for
the use of contexts differ in the United States and the Netherlands. The
cultural differences were larger in reality than anticipated, not that it was
ever assumed that the Dutch materials could just be “translated” into Eng-
lish. Both the American and Dutch staff were very well aware that a “cultural
adaptation” should be carried out by the Americans. Earlier experiences
with “Dutch” materials in other countries had convinced us of this not very
surprising fact.

Other differences between the countries are that in Dutch classrooms
there seems to be a lot more interaction and group work—interaction between
teachers and students, and between students. This does not necessarily mean
that Dutch classrooms excel in group work. All kinds of teaching occur in
the Netherlands: frontal teaching, group work, whole class discussion and
also individual work. The United States classroom tends to be more
organized, the lessons have a clear structure, and everybody knows his or
her role.

Many American teachers have to be chameleons: part of the year they
teach what they want, what they think is useful, in the way they like. At
other times they start to teach to the tests: once they know when a standard-
ized test will take place, they teach to the test. In the Dutch system, teaching
to the test is also not uncommon, but the tests do reflect the intended curric-
ulum to a degree. And the discussion now focuses on ways to improve the
examinations in order to better represent the actual teaching-learning proc-
ess.

The textbooks used in most American classrooms are very structured
and have “closed” questions, with only one correct answer, no need for
explanation of strategy, no “real” real-world problems, but “dressed-up”
problems where the role of the context is nothing more than cosmetic. On
the other hand the Dutch textbooks quite often look less structured, contain
a lot of text, have many problems where context plays an essential role, and
require students to reflect on the answer.

Parents

A very significant difference involves the role of the parents in Dutch
and American schools. In the Netherlands parental involvement in education
is very low. Many heads of schools and teachers alike complain about how
hard it is to interest parents in their children’s progress at school. Even
“parents’ evenings”, where parents may discuss with individual teachers
matters relating to their child, are barely surviving. Parents do not seem to
be interested in any global issue such as curriculum change, structural
changes in the educational system, or authentic assessment. They take for
granted being informed by a letter from the principal.
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One is tempted to interpret this situation in a positive way by arguing
that parents consider the school and the teachers to be the experts. In the
United States the impression exists that the real experts are the parents,
putting pressure on the teachers and the system. This parental involvement
can be frustrating for teachers, especially for those teachers who try to im-
plement certain innovations in their teaching and learning practice.

These differences between the educational cultures in the field of
mathematics education seem to be quite large and certainly affect the process
of developmental research as implemented in the American Middle School
project. But equally interesting is the fact that some very fundamental
questions and problems which were confronted in the past decade in the
Netherlands turned up in the United States. In implementing our Realistic
Mathematics Education materials and philosophy, we had to face a number
of problems and for some we have some reasonable answers. Others form a
very concrete starting point for future developmental research.

PROBLEMS AND QUESTIONS IN
THE UNITED STATES AND THE NETHERLANDS

Some of the problems encountered with the introduction and imple-
mentation of new curricula based on the “realistic” philosophy are

* the “loss” of teaching,

* the “loss” of basic skills and routines,

* the “loss” of structure,

* the “loss” of clarity of goals,

* the complexity of “authentic” assessment.

Each of these points will be discussed in some detail.

Teaching

Teaching is often interpreted as an activity mainly carried out by the
teacher: he or she introduces the subject, gives one or two examples, may
ask a question or two, and invites the students who have been passive lis-
teners to become active by starting to complete exercises from the book. It
is not unusual that most of the time this “activity” is carried out in an indi-
vidual way.

The lesson will be ended in a well organized way, the “closure”, and
the next lesson will be conducted in a similar scenario.

Realistic-mathematics education makes teaching more complex. The
teacher is not supposed to teach anymore. And learning the art of “unteach-
ing” has been proven to be very difficult and very personal.
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Referring once more to the boat problems, it will be clear that one
cannot “teach” these pages in the traditional way. This does not mean that
we have a fixed scenario readily available for the teacher who is eager to
learn. The classroom in combination with the teacher will determine in which
way an optimal result, consisting of interaction, individual work, group work,
classroom discussion, student presentation, teacher presentation, and other
activities, can be obtained.

The teacher’s role is that of organization and facilitation—a process
that cannot be described in detail for “the” teacher. The teacher needs to
make personal adaptation. To make things more difficult the teacher faces
even more obstacles. Regularly teachers and students will be confronted
with problems that have different “correct” answers or one correct answer
and different strategies.

Different strategies often involve more than one level of mathemati-
cal thinking, forcing the teacher into a discussion about the values of the
strategies. To add even more to this already long list of points that need
to be addressed one has only to think about assessment. Teachers find it
difficult, if not impossible, to design their own tests. This means that the
designers should be the persons and institutions responsible for the design
of the students and teacher materials. They should not only design a “bal-
anced” package of assessment materials that covers all the content, goals,
and levels, but should also provide advice on grading the tasks.

Basic skills

Discussion about the role of basic skills is related to the implementation
of realistic mathematics curricula, but it is ongoing in many countries in its
own right. For many teachers this discussion has not been part of their daily
practice, basic skills are a matter of fact, and form the kernel of mathematics
education. Both in the Netherlands and the United States the discussion
only slowly entered the ranks of the practitioners, the teachers.

In the Netherlands a group was formed during the seventies to battle
against the innovations that are now called Realistic Mathematics Educa-
tion. For a short period, it had considerable success in pointing out that
basic skills were threatened. A report in the Netherlands seems to indicate
that at the primary school level the “new” students perform equally well on
basic skills as the students in the old curriculum, and that they outperform
the old curriculum students on the field of problem solving.

When the new curricula for upper secondary were introduced, many
once widely accepted basic skills were minimized. But as the new standard-
ized examinations were trying to operationalize the new programs, one
cannot say how poorly prepared the new students are at this moment
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compared with the students from ten years ago. Both the goals of mathe-
matics education and the examinations have changed.

The attentive teacher notices that in the occasional situation where the
students need a basic skill, they often lack it. Of course at one moment in
their career they had mastered this skill, but with little need to use it, this
outcome was predictable.

We are still in the process of learning, as will forever be the case, and
a real solution is not at hand. It seems necessary to analyze the implemented
curricula, the “real” world problems that we think are relevant, and the skills
that are necessary to solve them. In the United States the Curriculum and
evaluation standards (NCTM, 1989) make clear that decreased attention
should be given to rote practice, rote memorization of rules, written practice,
long division, (paper and pencil) fraction computation, developing skills
out of context, memorizing rules and algorithms, and manipulating formulas.
This is not a cure for the problems and it will take a lot of practice, exper-
iments, developmental research, discussion, and a clear picture and vision
of how to integrate technology (graphic calculator) into the teaching and
learning process.

Structure

The boat example makes clear that the structure underlying the exer-
cises is not easily recognizable as a traditional mathematical structure. The
structure is a didactical one and can have different forms depending on the
subject. In general the students will explore a problem in an intuitive way—
in some way that relates to their or the real world.

Quite often the context or situation may obscure the mathematical con-
cept. If we want students to understand the concept of vision lines and related
subjects (blind area, hidden corners) and use that same idea for introduction
of the tangent (much later) we could have chosen the traditional format: just
tell the students what a vision line is, give an example, and have them
complete many similar exercises. This is definitely easier for the teacher,
but the students will be on the loser’s side.

Another matter of concern, especially when teachers are confronted
with the new curricula for the first time is the fact that the units seem to lack
a beginning and an end. The first page does not require the teacher to ex-
plain the next topic—the students just have to start working. It is not an
introduction for the next subject—“today we are going to a new subject: the
linear equations ... etc.” Leaving these tasks to the students makes the situ-
ation less structured.
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The final point we would like to mention here is the fact that math-
ematics is increasingly taught as a unity, and not as separate strands. In the
United States this is a major problem. Algebra 1, Algebra 2, and Geometry,
to name a few courses, do not seem very promising in the light of integrating
learning strands. But it gives the courses more structure. Just having courses
in mathematics indicates clearly the desired integration but the structure,
especially the mathematical structure, will be less clear and less visible.

Clarity of goals

In the traditional program the goals were more or less clear. Solving a
linear equation was a simple goal that could be reached by working with
numerous linear equations. And as many students noticed: “You just do the
last ones and then you will know whether or not he or she has reached the
goal.” But most of the goals of the traditional programs are now classified
as “lower” goals—rote skills, simple rules and algorithms, definitions.

However, in the new programs, we have different goals which we
classified as “middle” and “higher” goals. At the middle level, connections
are made between the different tools of the lower level. Concepts are inte-
grated; although it may not be clear in which strand we are operating, and
simple problems have to be solved without unique strategies. This means
that, for both the teacher and the students, the intended goals are not always
immediately clear.

A final word on the loss of clarity of the goals. Apart from the differ-
ent levels that tend to obscure the goals, we also have to face the fact that
real problems, in the more complex sense, obscure mathematical goals also.
It may be even worse. We may not know the goals precisely because the
problem is so real and therefore so open ended that the goals can only be
reconstructed afterwards.

Assessment

One of the main obstacles in implementing the new curricula will be
the availability of appropriate assessment tools. As was mentioned earlier,
while teachers in the Netherlands like the context approach, they want ev-
idence of success from national tests before adopting it. Popper (1968) and
Phillips (1987) have argued that a theory can only be tested in terms of its
own tenets. This means that constructivist or realistic mathematics education
teaching and learning can only be evaluated by assessment procedures de-
rived from the same principles.

On the other hand, not only have the new notions about learning influ-
enced the ideas about “authentic” assessment. The new goals will also have
their effect. The new goals emphasize reasoning skills, communication, and
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the development of a critical attitude. Together, these are popularly called
“higher order” thinking skills. These thinking skills were seldom or not at
all present in traditional assessment and education. The change towards a
“thinking” curriculum forces us to focus on “thinking” assessment as well.
(Lesh & Lamon, 1992; Romberg, 1992; Kulm, 1990.)

The goals of assessment, or better, the goals and principles of assess-
ment have changed too, which adds to the problem of matching assessment
to the teaching and learning process. It is interesting to see that the publica-
tion that came out of the National Summit on Mathematics Assessment (For
good measure, MSEB, 1991) states that their goals and principles are based
on commonly held beliefs about assessment. It is not only interesting but
somewhat surprising to see that the first principle is “the primary purpose
in assessment is to improve learning and teaching”.

Surprising because if we compare this statement with the actual school
practice there seems to be hardly any relation with this first “commonly
held belief”. The principle itself is not new at all. Gronlund (1968) stated it
clearly and we borrowed his ideas to formulate our principles:

The first and main purpose of testing is to improve learning and teaching.

Methods of assessment should be such that they enable the student to demon-
strate what they know rather than what they don’t know.

Assessment should operationalize all goals of mathematics education.

The quality of mathematics assessment is not in the first place determined by
its accessibility to objective scoring.

The assessment tools should be practical. (de Lange, 1987)

An interesting (teacher designed) item that reflects these principles is
the following:

* Here you see a crossroads in Geldrop, The Netherlands, near the
Great Church.

A\
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In order to let the traffic flow as smoothly as possible, the traffic
lights have been regulated so as to avoid rush-hour traffic jams. A
count showed the following number of vehicles had to pass the cross-
roads during rush hour (per hour):
M 0 40 200 30
N 30 0 8 50
E 210 60 0 60
C 30 40 80 0

M N E C

A : from

The matrices G;, G,, G3 and G, show which directions have a green

light and for how long. % means that traffic can flow through a

green light for a period of % minute.

M N E C M N E C
M /(0 % % 0 M/O0O 0 0 0
1 1
G'N O 0O 0 0 G'N 0 O 5 3
""g % 0 0 % Bl 0 0 0 0
1 1
Clo o o0 o c{3 3 0 0
M N E C M N E C
1
o .Nlo 0o 0o 0 6.V |2 0 0 0
“Elo % 0 0 ““glo o o0 o
1
C{o o o0 o c{o o 5 0

» How many cars come from the direction of Eindhoven during that
one hour? And how many travel toward the City center?

« How much time is needed to have all lights turn green exactly once?

* Determine G = G, + G, + G; + G, and thereafter T = 30G. What do
the elements of T signify?

* Ten cars per minute can pass through the green light. Show in a
matrix the maximum number of cars that can pass in each direction
in one hour.
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Compare this matrix to matrix A. Are the traffic lights regulated
accurately? If not, can you make another matrix G in which traffic
can pass more smoothly?

This item is interesting from different points of view:

1.

5.

The mathematics is unusual: matrices at grade 9.

. The format is a restricted, timed, written test; but still very open.

2
3.
4

Interpretation and the understanding of the question is essential.

. One could make it suitable for even more open purposes by just

asking the last question, and finding out how differently the students
will handle the problem.

The item can be transformed easily to a “project” like assessment.

The item looks rather straightforward and easy to design. However,
practice and research shows clearly that designing problems like this is
extremely difficult and time consuming.

The following example shows some other matters of concern:

Katie bought 40 cents worth of nuts. June bought 8 oz. of nuts. Which
girl bought more nuts?

a. June.

b. They each bought the same amount of nuts.
c. Katie bought twice as much.

d. Katie bought 5 0oz. more of nuts.

€. You cannot tell which girl bought more nuts.

This is interesting from different aspects. In the first place, it is
encouraging that an American State Board of Education has the courage to
try an item like this one, which is at least unusual. It is a breakthrough to
provide insufficient information, certainly for grade 6. But of course there
are some questions to be asked too.

In the first place what does the fact that 61% of students have answered
(e) correctly tell the teacher? Or, more precisely, What are we measuring
here and how certain are we that the proper answer reflects the proper
reasoning? The idea behind the item is certainly appealing, but the multiple
choice format destroys it—at least in our perception.
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Imagine that the item would have been as follows:

* Each of the following four answers is correct under certain assump-
tions. Describe the necessary assumptions in each of the four cases.

Katie bought 40 cents of nuts. June bought 8 oz. of nuts. Which girl
bought more nuts?

a. June

b. They each bought the same amount of nuts.
c. Katie bought twice as much.

d. Katie bought 5 oz. more of nuts.

Now we have a completely different item. The children have to reason,
to think, to write down their reasoning. With just a slight alteration, we
have created a test item that operationalizes some higher order thinking
skills as well as communication.

Another problem still to be faced is the matter of objective scoring. A
hypothesis that seems easy to defend is:

The gains we make by obtaining a more or less complete measure of overall
knowledge and capabilities by using a balanced package of assessment will
by far outweigh the disadvantage that we have by “losing” a completely
objective score. Intersubjective scoring and proper scoring instructions give
enough guarantees for a fair measure: fair to the student and fair to the
curriculum.

Much more information is needed—pilot studies, and research. But in
the first place development of new assessment tools and guidelines for their
use and scoring.

CURRICULUM CHANGE

To value the process of curriculum change, its complexity, specifics,
and generalities, it is enlightening to compare this process in different
countries and contexts. The literature is almost exclusively devoted to local
situations, mostly on a small scale, and quite often even on a laboratory
scale. Often generalizations based on these studies hardly seem to take the
different contexts into account. If mathematics education as a science is to
be taken seriously, we should consider these factors more than is done
currently, especially at an international forum such as ICME.
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Current trends in teacher education cannot be separated from current
visions of student learning. As Brown, Cooney, and Jones (1990, p. 650)
state, “It makes little sense to interpret either students’ goals or teachers’
goals in isolation one from the other.” Hence, we will begin by exploring
today’s vision for mathematics students and its implications for teaching
and teacher education.

VISION OF STUDENT LEARNING OF MATHEMATICS

What society needs from mathematics education for students is
changing dramatically. In order to address these changing needs, the National
Council of Teachers of Mathematics (1989) created the Curriculum and
evaluation standards for school mathematics (CESSM). This vision of re-
form promotes several inter-related components, including: (1) students
actively “doing mathematics”, (2) mathematics as thinking and sense-
making, (3) powerful, but changing, mathematical content, and (4) a belief
that all students can learn and appreciate mathematics. The implications of
this vision of mathematics and mathematics learning for teacher education
and professional development are major. We need to begin at ground level
and build teacher education programs that can educate and support teachers
in changing their minds and their practices to support more powerful
mathematics and mathematical thinking for students.

A framework for examining teaching

There are many persistent obstacles to making changes in the teaching
and learning of mathematics. In order to examine pre-service teacher edu-
cation programs and professional development programs for experienced
teachers for the likelihood that they can help make teachers change, we
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need to build a framework of what teachers need to know and be able to do.
Teaching is a very complex endeavor, not reducible to recipes or algorithms.
Good teaching may look very different in different classrooms. In order to
get beyond the surface features, one has to examine aspects of the teachers’
decision making, judgments about the classroom, and about the students’
learning.

The writers of the Professional Standards for Teaching Mathematics
(PSTM) identified four aspects of teaching that were judged to be so central
to good teaching that they could be used to craft a framework, in the form of
a set of standards, for what teachers need to know and be able to do. These
four aspects of decision making are: choosing worthwhile mathematical
tasks, orchestrating classroom discourse, creating an environment for
learning, and analyzing teaching and learning. (NCTM, 1991).

Worthwhile mathematical tasks

There is no other decision that a teacher makes that has a greater impact
on students’ opportunity to learn and on their perceptions about what
mathematics is than the selection or creation of the tasks with which the
teacher engages the students in studying mathematics. Here the teacher is
the architect, the designer of the curriculum.

To make selections or craft tasks that give students these deeper, more
relevant opportunities, the teacher must be guided by the mathematical
content of the task. Problems should not be chosen merely because they are
“fun,” or because they use a manipulative that is available in the classroom.
There must be the potential for students to engage in sound and significant
mathematics as a part of accomplishing the task.

A second consideration for a teacher in selecting or crafting tasks is
that he or she teaches particular students. What the students already know
and can do, what their mathematical needs are, and the level of challenge
they seem ready to accept, are all fundamental issues for a teacher. For
teachers to be effective at making such judgments they need to know the
best results that we have from research and practice about students of the
age in question, as well as to have particular insights into their own students’
mathematical progress and ways of making sense of mathematics.

We must build responses to the following questions in our teacher
education programs:

What knowledge does a teacher need in order to be able to judge what her
students know, to be able to recognize the difficulties that they are experienc-
ing, to anticipate what will be difficult, to anticipate what will be more apt to
push students forward in their thinking and their knowledge and skill in doing
mathematics?
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Classroom discourse

The PSTM describes discourse as “ the ways of representing, thinking,
talking, agreeing, and disagreeing” (1991, p. 36) as a group of students and
a teacher strive to make sense of mathematics. Discourse includes the ways
that ideas are represented, exchanged, and modified into more powerful and
useful ideas. Teachers have a critical role to play in establishing the norms
of discourse in the classroom and orchestrating discourse on a daily basis.
It is through the interactions in the classroom that students learn what
mathematical activities are acceptable, which ones need to be explained or
justified, and which explanations or justifications are acceptable.

The implications of new forms of discourse in the classroom are very
great for teacher education. Many teachers and intending teachers have never
experienced learning mathematics in situations where what is valued is the
quality of the thinking, the quality of the explanation or argument, and the
quality of the decisions made based on the evidence. Additionally, many
teachers and intending teachers have little experience using tools—intel-
lectual as well as physical tools such as calculators and computers—as ways
of modeling, exploring, or representing ideas.

As teacher educators the question we must ask ourselves is, “How do
teachers learn to conduct discourse in such powerful ways?”

Classroom environment

What students learn is fundamentally connected to how they learn it.
The environment in which students learn affects their view of what mathe-
matics is, how one learns it, and perhaps of more importance, their view of
themselves as learners of mathematics. Environment means more than the
physical surroundings. It includes the messages that students are given about
what is expected of them. What is their work to be? What counts in the
classroom? Is it speed? Neatness? Being quiet? Completing tasks? Or is it
taking responsibility for listening to and helping others? Asking questions
of themselves and of their classmates? Seeking evidence? Being curious?
Working independently? Sharing ideas and strategies?

Environment encompasses considerations of tasks and discourse and
the emotional climate of the classroom. Is the environment of the classroom
conducive to taking intellectual risks? Does every student feel valued? Do
all the students feel that their ideas will be respected even if these turn out
to be incorrect? Does every student expect to make conjectures or argue
points or question others as they build their mathematical understanding?
These questions raise further questions about our teacher education pro-
grams:
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How can teacher education programs and professional development programs
help teachers develop learning environments in which students feel empowered
to make sense of mathematics and in which they feel confident in themselves
as learners of mathematics?

Even if teachers, both pre- and in-service, have experienced such an
environment for learning mathematics, it is unlikely that such experience is
explicit about the decisions that a teacher makes and the ways that a teacher
works to build such an environment. The teacher as analyzer, as researcher,
is visible to the students only through tests and other means of evaluation.
Perhaps this final aspect of decision making is the most elusive of all since
here there is little outward evidence of the teacher’s analysis.

Analysis

How well is the system that the teacher has created working? Are the
tasks engaging the students? Are they effective in helping students learn
mathematics? Do they stimulate the richness of discussion that students
need to develop mathematical power? Is the classroom discourse fostering
learner independence? Curiosity? Mathematical thinking? Confidence?
Disposition to do mathematics? Is the classroom environment encouraging
the kind of engagement that reaches every student and supports everyone’s
mathematical development? These are the kinds of questions that reflective
teachers regularly ask themselves. The PSTM refers to these aspects of teach-
er reflection as “analysis”.

Analysis also includes the regular assessment of student progress for
the purpose of making instructional decisions. Assessing student perform-
ance on skill-level items is not sufficient. The teacher needs to examine all
aspects of the mathematical development of students, including how the
tasks, discourse, and environment are working to build mathematical power
for all students.

In the same way that we argue for an environment for students in which
they can explore mathematics we have to consider that preservice teachers
do not learn pedagogical reasoning by being told. The environments that we
build in which to educate teachers must help preservice teachers construct
their own professional knowledge. Teaching is a creative act in much the
same way that problem solving is a creative act. It may help to know some
heuristics for attacking problems, but a list of heuristics will never make us
problem solvers. It may help preservice teachers to have some heuristics
with which to consider teaching situations and problems, but such a set of
“how to’s” will not make anyone into a professional teacher capable of
making the kinds of decisions that are envisioned in the PSTM and the
CESSM.
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How is a teacher to learn how to make such decisions and to engage in such
analysis? What experiences in pre-service programs or professional develop-
ment activities with experienced teachers are effective at developing such
professionalism in teachers?

We now turn to an examination of the kinds of knowledge that we
must consider in our professional development programs for teachers if we
are to develop answers to the questions raised on what teachers need to
know and be able to do and where they will learn it.

WHAT DO TEACHERS NEED TO KNOW AND BELIEVE?

Teachers need knowledge of at least three kinds to have a chance to be
effective in choosing worthwhile tasks, orchestrating discourse, creating an
environment for learning, and analyzing their teaching and student learning:
knowledge of mathematics, knowledge of students, and knowledge of the
pedagogy of mathematics. These domains of knowledge can be represented
in a Venn diagram as shown:

Pedagogy of
Mathematics

However, the Venn diagram makes clear one of the problems. Teach-
ers work in the intersection of these domains of knowledge. It is the interplay
of the various considerations that leads to defensible pedagogical reasoning
on the part of teachers. Yet in teacher education programs we typically en-
gage students in each of these domains of knowledge in isolation from each
other. The integration of that knowledge in ways that helps teachers reason
about their classrooms and their students is often left to the students’ teach-
ing experiences. The evidence suggests that this is not an effective means
of helping teachers see the connections among the various domains of knowl-
edge that they possess (Feiman-Nemser, 1983).

253



ICME-7 SELECTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

In the next sections of this paper we examine issues and promising
research in areas of teacher learning that reflect the three areas or domains
of knowledge diagrammed above.

Knowledge and beliefs about mathematics

The new vision for student learning has great implications for the
knowledge of mathematics needed by teachers. Encouraging students to ex-
plore mathematics sometimes leads to unexpected mathematical questions
and situations, and teachers need mathematical knowledge in order to guide
students in their explorations.

McDiarmid, Ball, and Anderson (1989, pp. 13-14) emphasize the im-
portance of teachers’ mathematical knowledge. After reviewing current
research in this area they conclude:

Recent research highlights the critical influence of teachers’ subject matter
understanding on their pedagogical orientations and decisions ... Teachers’
capacity to pose questions, select tasks, evaluate their pupils’ understanding,
and make curricular choices all depend on how they themselves understand
the subject matter.

Lampert (1988, pp. 163-164) argues that teachers need to know where
the mathematics teaching and learning process is headed, “not in the linear
sense of one topic following another, but in the global sense of a network of
big ideas and the relationships among those ideas and between ideas, and
facts, and procedures.” A study by Steinberg, Haymore, and Marks (1985)
supports her assertions. They found that well-developed mathematical knowl-
edge correlated with having a more conceptual teaching approach, while a
low level of mathematical knowledge correlated with a more rule-based
approach. Additionally, Even (1993) found that teachers with limited con-
ceptions of functions taught in a way that emphasized rules without
understanding.

McDiarmid et al. (1989, p. 7) also state, “Beyond representing the
substance of a subject, teachers also represent its nature.” In order for teach-
ers to help students obtain more authentic and productive notions about
mathematics, teachers themselves need to believe that mathematics is more
than just memorizing rules. Yet American teachers tend to give inconsistent
messages about the goals of mathematics: i.e., neatness, correct answers,
rules and procedures (Stigler & Perry, 1988).

Perhaps these mixed messages are indicative of current questions be-
ing raised about the goals of mathematics education and the relationship
between the discipline of mathematics and mathematics education. Should
reasoning, thinking, and problem solving be the primary focus of mathe-
matics education? Or should mathematical concepts, definitions, and
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theorems be given primary emphasis? To what extent should the classroom
community’s norms be similar to the norms in the community of mathema-
ticians regarding issues such as evidence and proof?

Despite questions such as these being raised about the relationship
between the discipline of mathematics and school mathematics, there does
seem to be a great deal of agreement about the importance of teachers’
mathematical knowledge. Instead of avoiding these issues with teachers, it
might help teachers reconsider their rule-based notions of mathematics to
realize that mathematics and mathematics education are both developing
fields in which there are unanswered questions and debate.

It seems clear that it is not just the quantity of mathematics that is at
issue. Teachers need to learn mathematics in deeper, more connected ways.
In order to develop this depth of mathematical understanding and be able to
use their mathematical knowledge effectively in classroom, the current way
in which mathematics is taught to teachers must be changed. Not only do
mathematics teacher educators need to model good teaching, they must also
give explicit attention to the relationship between teachers’ mathematical
knowledge and teachers’ knowledge of mathematical pedagogy and students.

Knowledge and beliefs about the pedagogy of mathematics

The PSTM takes the stand that what students learn is fundamentally
connected to how they learn it. “Consequently, the goal of developing stu-
dents’ mathematical power requires careful attention to pedagogy as well
as curriculum.” (NCTM, 1991, p. 21). Couple this stand with Thom’s (1972)
suggestion that mathematical pedagogy reflects one’s philosophy of math-
ematics, and Hersh’s (1986, p. 13) statement, “One’s conception of what
mathematics is affects one’s conception of how it should be presented,” and
this sends a powerful message about what is important in our teacher educa-
tion programs. What philosophy of mathematics do our students see in our
programs? Is it coherent? Does it pervade all aspects of the education of
teachers from the content classes in mathematics to how we work with stu-
dents in the fields? Do we consciously try to make explicit matters having
to do with what mathematics is? Do we engage students in activities that
cause them to reflect consciously on their deep-seated beliefs about mathe-
matics and what it means to know and to teach mathematics?

In recent years research on teachers’ beliefs and the interaction between
beliefs and practice have received increasing attention. Thompson (1984)
investigated high school teachers’ beliefs and their classroom teaching and
found evidence that teachers’ beliefs, views, and preferences about math-
ematics influence what they do in the classroom. Others who have studied
teacher beliefs and the impact on teaching and learning are listed in the
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references for this paper. (Shaw, 1989; Cooney, 1985; Brown, 1985;
Dougherty, 1990; Peterson, Fennema, Carpenter, & Loef, 1989; Schram,
Wilcox, Lappan, & Lanier, 1989; Nespor, 1987; Ernest, 1988.) We know
from research that the deeply held beliefs of preservice teachers about what
can and should happen in school, about what is possible and what is desirable,
and about the nature of understanding (Stigler & Perry, 1988) are particular-
ly difficult barriers to change. But we cannot improve teaching unless we
confront what teachers bring to teaching and, more specifically, to teacher
education.

In 1988 a group at Michigan State University began a study of pre-
service teachers as a part of the National Center for Research in Teacher
Education. The study was based on an intervention designed to help us bet-
ter understand what it takes to help pre-service teachers confront their beliefs
about what mathematics is, what it means to know mathematics, and what it
means to teach mathematics. We designed three courses in mathematics,
two methods courses, one before and one after student teaching, and semi-
nars during student teaching. We have written about our work in several
papers listed among the references (Schram, Wilcox, Lappan, & Lanier,
1988, 1989; Schram & Wilcox, 1988; Wilcox, Schram, Lappan, & Lanier,
1991; Wilcox, Lanier, Schram, & Lappan, 1992; Schram, 1992; Lappan &
Even, 1989). Here we summarize what we think we know as a result of this
ongoing study.

The 24 pre-service teachers entered the first mathematics course with
a traditional view of mathematics as a well-ordered sequence of rules and
procedures mostly focusing on number and number operations. They did
not expect mathematics to make sense, but they did expect themselves to be
able to remember or the teacher to give a rule after which the solution would
be swiftly found. They perceived the role of the teacher to be explaining
how to do the problems and telling the students when they were correct. We
had a year with these students in which to create a new vision of what math-
ematics learning and teaching—from the perspective of the mathematics
classroom—could be. We were able to change in very powerful ways how
the students perceived themselves as learners of mathematics. By the end of
the intervention, the students valued the kind of environment we had creat-
ed and the goals of problem solving and deep understanding that had driven
our work. However, they valued this as an environment for themselves as
learners, but nearly half of the students still held to their more traditional
beliefs about what mathematics was important for elementary children and
how one should teach that mathematics to children.

We have continued to follow a subset of these students through their
first three years of teaching (Wilcox et al., 1992). Our analysis of the data
suggests that the choices the teachers make in their teaching of mathematics

256



LAPPAN AND THEULE-LUBIENSKI

are influenced by the interaction of their views about knowledge and
pedagogy, with the degree to which they perceived the context of the school
in which they teach—with its policies and established curriculum—as a
constraint. We have observed the complexities that new teachers face in at-
tempting to create environments for learning mathematics in which children
engage in personal and group sense-making. We have observed the isolation
new teachers feel. We have concluded that disciplinary knowledge and a
disposition to engage in mathematical inquiry or sense-making can be devel-
oped in an intervention such as ours. However, this is not enough to overcome
the deeply-held beliefs about how young children should learn mathematics
and what is important for them to know. Additional work must be done to
create environments in which these deeply held beliefs are challenged, ex-
amined, and reconstructed. This cannot, in our opinion, be done solely in
the preservice phase of teacher education. In fact, some professional devel-
opment programs are based on the tenet that teachers need to change their
teaching and see that a new approach “works” in their own classrooms before
their beliefs change. (Owen, Johnson, Clarke, Lovitt, & Morony, 1988;
Lockwood, 1991) Hence, working models of support systems for novice
teachers need to be built.

We turn to the third area of knowledge needed by teachers.

Knowledge and beliefs about students

Most teacher education and professional development programs try to
help teachers learn about children. However, it is where this knowledge of
children and mathematics meet that is of critical importance to us as math-
ematics educators. The site for this meeting in many teacher education
programs is in the student teaching experience. Yet many of us have expe-
rienced the disappointment of students returning from student teaching
experiences angry at the university faculty because the world of school was
not what their teacher education program espoused. The hard work of mov-
ing pre-service teachers to reconsider their beliefs and expectations about
mathematics teaching and learning can be undone in a flash by a student
teaching or beginning job experience in a school whose culture promotes
order in the classroom, teaching as telling, and standardized test results as
the measure of teacher success.

A group at Michigan State (Lappan, Fitzgerald, Phillips, Winter,
Lanier, Madsen-Nason, Even, Lee, Smith, & Weinberg, 1988) has studied
teacher change at the middle grade level in a number of projects. One aspect
of teacher change that we have taken very seriously is the challenge of
creating environments in which teachers’ “knowledge” or beliefs about
students as learners of mathematics can be challenged. One effective means
of challenging teachers beliefs and expectations—and hence, their knowledge
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about students—has been intensive summer experiences which have a
classroom teaching component and long-term follow-up support.

The teacher participants were observers in classrooms taught by the
staff. Each of them picked a particular child to study for two weeks. The
teachers were to focus on the cognitive development of their child. What
sense were they making of the mathematics? Each day we had a debriefing
session at which the teachers talked about their child. It was quite difficult
in the beginning for teachers to focus on cognition instead of behavior. They
were quick to write students off as not very competent in mathematics.
However, as the two weeks passed, all the children provided their “teacher
observers” with surprises. Given a chance to listen to children making and
defending conjectures about the problem situations being studied, the teach-
ers began to look for more clues as to what the students were thinking.

While this intervention was with experienced teachers, it raises ques-
tions about how our teacher education programs, including field experiences,
might be constructed. It also underscores the need for the creation of very
powerful images of children in the act of making sense of mathematics in
order to help teachers learn about students.

SUMMARY

One of our greatest challenges in educating professional teachers is
taking seriously the integration of the domains of knowledge on which teach-
ers base their practice. This requires fundamental changes in the ways in
which we interact across disciplines within the university and among schools,
universities, and the community. Such interactions are difficult. The partic-
ipants in each of these areas (departments of mathematics, teacher education,
educational psychology, schools, communities, business, and industry) do
not speak the same language nor value the same activities. However, we are
all bound by the same moral imperative—to do the best we can for the chil-
dren in our communities.

We have a clearer picture of the issues in both pre- and in-service
work with teachers. We can be guided by the framework from the PSTM on
crucial aspects of teacher decision making;:

« selecting worthwhile tasks,
« orchestrating classroom discourse,
« creating environments for learning, and

* analyzing teaching and learning.

258



LApPAN AND THEULE-LUBIENSKI

We have discussed three domains of knowledge that must be consid-
ered in the professional development of teachers: knowledge of content,
knowledge of pedagogy, and knowledge of students. We have identified
teachers’ and pre-service teachers’ deeply-held beliefs about each of these
domains of knowledge as part of what needs to be addressed. We have iden-
tified time and long-term support, as critical aspects of change. Current
work is giving us promising direction. The challenge is ours. If we want
mathematical power for all students, we must find ways to restructure our
university programs and to help restructure schools so that teaching becomes
the profession to which we are all dedicated.
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WHAT IS DISCRETE MATHEMATICS
AND HOW SHOULD WE TEACH IT?

Jacobus H. van Lint

University of Technology, The Netherlands

In the past 25 years the role of discrete mathematics has become
increasingly important. The number of fields in which discrete mathematics
is applied in some way also keeps increasing. It has been argued that, for
some areas, where mathematical knowledge is necessary, one should replace
the standard calculus course with a course in discrete mathematics. Although
I feel that everybody should know some calculus, it is certainly true that
knowledge of techniques from discrete mathematics is often just as useful.

A number of years ago this idea of replacing calculus with parts of
mathematics that were more relevant to the rest of the program was pushed
strongly by computer science departments in the United States. This led to
a stream of books on “Discrete Mathematics for Computer Scientists”, most
of which gave the impression that discrete mathematics is the union of all
subjects in mathematics that are useful for computer scientists but not part
of calculus. One finds logic and set theory as part of the hodgepodge of
subjects in these books. My opinion is that this is not discrete mathematics
at all. Of course logic, set theory, etc., are very useful for students of com-
puter science but a course in these subjects should be given some other
name.

What is discrete mathematics? It is that part of mathematics that deals
with discrete structures. Usually the objects that are studied are finite; but
of course I also include infinite graphs and the integers and other locally
finite structures. Essentially the subject includes combinatorial theory, ele-
mentary number theory, finite groups, finite geometries, finite fields, and
some newer areas such as coding theory.

It is my impression that many courses that deserve the name discrete
mathematics are taught in ways that leave students completely baffled. They
have the impression that problems in discrete mathematics are solved by
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ingenious tricks and that any new problem they will encounter requires them
to invent the appropriate new trick. Compare this to a calculus course where
one teaches methods such as differentiation, integration, solving linear dif-
ferential equations, etc., and subsequently applies these¢ methods in several
different situations. A course in discrete mathematics should be similar!
One should treat objects that appear in many places, sometimes disguised;
methods of representation should be used in several different situations;
ideas that reappear regularly in practice should also reappear regularly in
the course; tools that play an important role in discrete mathematics should
become part of the students’ skills. To give an idea I mention several exam-
ples of each of these topics (not a complete list).

1. Objects: graphs, lattices, geometries, designs, codes, coverings,
partitions, systems of sets, matroids.

2. Representations: addressing schemes, coding, (0,1)-matrices,
(0,1)-sequences, graphs, diagrams, pictures, subsets of lattices.

3. Ideas: counting techniques, probabilistic techniques, (non-) exist-
ence methods, construction techniques, unification (association
schemes, matroids), optimization methods, max-flow, search tech-
niques, symmetry.

4. Tools: algebra (matrix theory, finite groups, finite fields, group
rings), elementary number theory, permutation groups, geometry,
analysis (power series, Lagrange inversion).

The course should be structured as a multipartite graph with subsets
of (1) to (4) as independent sets and as many edges as possible. Here an
edge from say “graph” to “(0,1 )-matrices” means that this representation is
used to describe graphs but-also to derive properties of graphs or to prove
theorems about them.

The following situation can and should occur: it has didactic value.
One wishes to prove a certain theorem about, say, designs, and decides to
use (0,1)-matrices as representation. The rows of the (0,1)-matrix can also
be interpreted as words in a code. This leads to a formulation of the theorem
that is to be proved, in another terminology. This other theorem may have
already occurred in the course or it could be much easier to see how to
prove it. One can also prove a “new” theorem about some combinatorial
object and in retrospect observe that if this object had been represented in
the appropriate way, one would have realized that the theorem had actually
occurred earlier in some other form.

If the instructor decides to take the tool “algebra”as a central item in
the course, then the ideas used—for example: eigenvalues of matrices—
should be applied for many different purposes, such as nonexistence theorems
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for strongly regular graphs, properties of block designs, theorems in finite
geometry. Similarly, the idea of using several small combinatorial objects
to construct one large object should reappear (Latin squares, Hadamard
matrices, block designs, etc.).

A course taught in Eindhoven for several years started with a chapter
on finite fields. A number of objects from combinatorics (Latin squares,
Hadamard matrices, finite geometries, block designs, error-correcting codes)
in each of which finite fields were heavily used to construct those objects.

A number of ideas that I used will be treated below as examples. First,
however, I mention a principle that was suggested by A. Revuz at the meeting
on “How to teach mathematics so as to be useful” held in Utrecht in 1967.
I have used it ever since with much success. Discrete mathematics is
particularly suited for this principle. The idea is to let the students work on
problems (usually in groups of two or three), solutions to be handed in as
homework, and to teach the standard techniques and theorems necessary to
solve the problems a few weeks later. Usually one sees several students in
class recognize how useful a theorem is long before the proof is finished:
“If I had known that idea two weeks ago, then ...”

THE USE OF REPRESENTATIONS

If possible, use representations of combinatorial objects not only as
representations but in such a way that the chosen representation makes it
easier to prove the theorem in question.

Example 1

A puzzle known as Instant Insanity, involving stacking up multicolor-
ed cubes in some way (treated in many books on graphs), is extremely
difficult, as the name suggests. It becomes practically trivial when the cubes
are represented by graphs that reflect the color-structure.

Example 2

A well known way of representing a partition is a so-called Ferrers
diagram. Such a diagram actually is a representation of two partitions. This
makes it possible to prove theorems of the type, “The number of partitions
of an integer with property I equals the number of partitions with property
IT”, by just looking at the diagrams.

Example 3

Binary rooted trees can be represented by (0,1)-sequences with as many
0’s as 1’s, for which each truncated sequence has more 0’s than 1’s. These
sequences are not difficult to count, whereas counting the trees directly
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looks very complicated. The problem of counting the number of dissections
of an n-gon into triangles looks quite different. Usually one first discovers
that this problem leads to the same answer as the previous one before real-
izing that it can be represented by the same kind of (0,1)-sequences.

Example 4

The reverse situation is also useful as an example. For instance, a
problem on (0,1)-matrices can look like a difficult abstract problem.
Interpreting the matrix as a representation of some combinatorial object
translates the question into other terminology and can make it much easier.

COUNTING TECHNIQUES

This topic includes double counting, the principle of inclusion and
exclusion, Mobius inversion, the use of quadratic forms, one-to-one map-
pings, generating functions, Polyé theory and probabilistic methods. Again
a few (favorite) examples.

Example 5

This is one of the problems that students try to solve with no tools. Let
the edges of a complete graph on six vertices be colored red and blue in
some way. Prove that there is a triangle with all three edges of the same
color (a monochromatic triangle). Nearly all students give the same proof.
From any vertex there must be three edges with the same color, say red. The
three edges between the other endpoints of the red edges are either all blue
or one of them is red and in both cases we have a monochromatic triangle.
So far, so good. The second question is to show that there are actually at
least two monochromatic triangles. This yields three possible solutions: the
empty one, complete nonsense, or a several page case analysis that is actu-
ally correct. Then comes double counting in class! Every non-monochromatic
triangle has two vertices where a red and a blue edge meet; call this a red-
blue V. Clearly every vertex yields at most six of these red-blue V’s. So,
this second way of counting (or estimating) the number of non-monochro-
matic triangles shows that there are at most 18 of them. As K¢ contains 20
triangles, we are done in a few lines.

Example 6

After the usual examples of inclusion-exclusion it is useful to point out the
reverse procedure. Try to prove the formula

k [k . nlifk=n,
> (_1)1Li)(k_l)n={0ifk>n.

i=0
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This can be done using analysis but it is not trivial. The term (-1 in
the sum suggests that maybe something was counted using inclusion and
exclusion. What? This takes some thinking. The answer is the number of
surjections from an n-set to a k-set and the formula becomes a triviality.

Example 7

The following quadratic form method occurs in very many different
situations. Let @, denote the number of combinatorial objects of a certain
kind that have exactly i whatevers. Often one can easily count pairs of
whatevers. Since Ya, counts the number of objects in question, Yia; counts
the number of whatevers, and finally 2(5) a; counts pairs of whatevers, one
can calculate expressions of the form 3,(i — m)(i —m — 1)a,, where the choice
of m is unrestricted. The fact that this quadratic form is non-negative yields
an inequality. It is surprising how often this idea is used in combinatorics
without it being pointed out that it is a general method.

(NON-)EXISTENCE AND CONSTRUCTIONS

Methods to be treated here include counting (probabilistic methods),
the method of descent or minimal counterexample, algorithms and search
techniques, induction and recursion, product techniques, substitution, alge-
braic methods, contraction, introducing extra structure. Here are a few
examples.

Example 8

The construction of a Latin square of order mn from one of order m
and one of order 7 is very similar to the construction of a Hadamard matrix
of order mn from one of order m and one of order n. Both constructions
should occur. Later one can use similar product methods in the construction
of block designs. Even the idea of the product of graphs is analogous.

Example 9

A well known proof technique in number theory can be extended to
several parts of discrete mathematics, such as graph theory. To prove a
theorem on finite configurations one assumes that it is not true, or that a
counterexample exists. In that case there exists a minimal counterexample,
where minimal refers to the number of components that justify the word
“finite.” One has to think of a way of reducing this number (delete a vertex
or replace the integer n by n — 1) in such a way that the reduced object is
still a counterexample. This yields a contradiction and thus the theorem is
proved. Again, the point of this talk is that if one decides to show an example
of the method, one should show several rather different examples.
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Example 10

The idea of substitution occurs in many constructions. Examples are
replacing a vertex of a graph by some graph, points of a configuration by
n-gons (e.g. in Joyal theory), and the following. In a block design with blocks
of different sizes (every pair of points is in A blocks) let there be a block B
with seven points. We delete B and replace it by the seven triples (lines) of
the Fano-plane (a (7,3,1)—design). The (Zzl= 21pairs that were covered by B
are now covered by the seven lines of the plane. This method is used to
replace the difficult restriction of constant blocksize by freedom in that
respect in the first round of a construction, followed by substitutions of the
type mentioned above to achieve a prescribed constant blocksize.

Example 11

Assume that a combinatorial object is defined by combinatorial re-
strictions only. It may be difficult to construct even one example of such an
object. One can freely introduce extra structure, such as symmetry, an auto-
morphism group, and so on, in order to force the construction in a certain
direction. If the extra requirements are not already prohibitive, one may
have an easy construction of a first example of the theory. Again, this isa
principle that should be illustrated by examples.

APPLICATIONS

Discrete mathematics as a course should be full of examples of
applications in a wide area of subjects. Students should not only learn a
number of applications but should recognize situations where a certain part
of discrete mathematics is the natural tool to use. One should move from
computer science, to social sciences, to electrical engineering to design of
experiments, etc. Examples may be elementary, obvious, everyday, but it is
essential to have several others that ensure that the students enjoy the course.
They should be surprising, challenging, ingenious (like Instant Insanity),
recent (such as satellite communication or the compact disc). Again, two of
my favorite examples.

Example 12

Suppose one has a standard non-erasable binary memory such as pa-
per tape (or a compact disc). Assume that one wishes to store one of the
integers 1 to 7 in this memory on four consecutive occasions. The usual
procedure is to reserve twelve bits for this purpose, where the four consec-
utive triples each take care of one storage of a binary 3-tuple. The world
supply shortage has now reached the stage where we cannot afford this and
have to achieve the same with a memory of only seven bits! (The reader
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should try to prove as an exercise that it is not possible to solve the storage
problem with a memory of six bits.) The solution is provided by the Fano
plane, a finite geometry with seven points and seven lines, three points to a
line and three lines through a point, any two points on a unique line. Number
the points 1 to 7 and on the first storage let a 1 in position i indicate a
storage of the integer i This is still easy. The next step is not difficult ei-
ther. If the memory contains a 1 in position i and one wishes to store the
integer j as new information, find the unique line through i and j and if & is
its third point, put a 1 in position k. The reading device for this binary mem-
ory is told that if it sees two 1’s, then it should interpret these as “the third
point of the corresponding line”. Two more usages of this memory to go
and we leave it as an exercise to decide how to do it (Hint: a change of
memory with two 1’s results in four 1’s; a subsequent change leads to either
five or six 1’s).

Example 13

During the treatment of Hadamard matrices one has given the product
construction and therefore the trivial Hadamard matrix of order two (rows
++, respectively +—) makes it possible to construct such matrices of order
2". As an exercise the students have shown that this leads to a matrix H of
order 32 with the property that there are six columns in the array consisting
of H and —H such that the corresponding 64 rows in this array are all different
in these six columns (Note that 26 = 64). As application one treats the
transmission to earth of pictures of Mars by the Mariner satellite. A picture
is divided into very little squares (pixels) and for each square the degree of
blackness is measured in a scale of 0 to 63 (expressed in binary). In this way
the picture results in a long sequence of 0’s and 1’s to be transmitted to
earth. The transmitted sequence is corrupted by noise and the effect is that
the receiver sometimes interprets a 0 as a 1 and vice versa. In practice there
was so much noise that pictures would have been completely useless.
Suppose we are willing to take roughly five times as long to transmit a
picture. We could repeat each bit five times; if no more than two out of five
are received incorrectly, the receiver makes the right choice. This would be
a substantial improvement but what was done in practice in 1969 was very
much better. An integer, say 43, in binary 101011 was changed to the
corresponding sequence of +’s and —’s (i. e. + — + — ++) and transmitted as
the corresponding row of 32 +’s and —’s of the array of H and —H. This also
takes five times as long (roughly). The reader should convince himself or
herself that as many as seven of the transmitted symbols may be received
incorrectly and nevertheless the receiver will still have the correct row as
the most likely one. The result is known: the pictures were of great quality.
A true and recent example!
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NOTES

The ideas presented in this talk were used as guiding principle in the
book A course in combinatorics by J.H. van Lint and R.M. Wilson, Cam-
bridge University Press, 1992.

The talk by A. Revuz in Utrecht appeared as “Les piéges de ’ensei-
gnement mathématique”, Educational Studies in Mathematics, 1 (1968),
31-36.
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INTUITION AND LOGIC IN MATHEMATICS

Michael Otte

Universitdt Bielefeld, Germany

PART ONE

I'am going to begin with what might appear to be a rather provocative
thesis: Mathematics is the embodiment of intuitive thinking.

In intuition other than in discursive knowledge something is immedi-
ately present. In discursive knowledge it is only represented. A comparison
with painting will help to illustrate the difference. In daily life a picture
functions as a representation of something. In art it is different. There the
pictures, although they might be representations too, do not primarily func-
tion as illustrations or guides, but have a value of their own. They constitute,
like theories, realities of their own kind.

In his well-known article, Applied mathematics is bad mathematics,
Paul Halmos (1981) has used the following comparison to describe the
difference, as he sees it, between pure and applied mathematics.

A portrait by Picasso is regarded as beautiful by some, and a police photograph
of a wanted criminal can be useful, but the chances are that the Picasso is not
a good likeness and the police photograph is not very inspiring to look at. Is it
completely unfair to say that the portrait is a bad copy of nature and the
photograph is bad art?

This gives a first impression regarding the background of the idea of
the difference between intuition and discursive knowledge, which has been
of great importance throughout modernity.

The strength of the intuitive is to be seen in its emphasis on acquaint-
ance with an object, since a content has to be given from whence we can
advance to knowledge. As Kant said: “In the absence of intuition all our
knowledge is without objects, and therefore remains entirely empty.” (A 62).
The weakness of intuitive insight results from the lack of communicability.
In intuition a certain spontaneity and immediacy can be observed in the
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transition from not understanding to knowledge. Intuitive knowledge is
characterized by an unawareness. I do not know how I came to this knowl-
edge. Whenever something is said of an intuition a discursive process of
cognition and language must already be occurring. “Intuitions without
concepts are blind,” as Kant said. For Kant intuitions were given through
our sensibility, which is material, and passive, and lacking in internal
continuity.

Discursive processes, however, do not provide an object which really
exists for us. They are rather metacognitions concerned with our dealing
with objects rather than with the objects themselves. So it appears as if
cognition has to proceed simultaneously on different levels and that we have
to coordinate these levels within our concrete and mental activity.

Up to the middle of the 19th century mathematics was for the most
part divided according to whether it was supposed to deal with real meanings
and therefore was to be based on axioms, like geometry or mechanics, or
whether it was formal knowledge that had accordingly to rely on definitions,
like arithmetic. These differences gradually disappeared when it was realized
that the application of algebra to geometry may also be based on the
algebraization of geometrical constructions rather than on the quantification
of objects by means of real-valued functions. The dominant focus of concern
shifted away from the “interface problems” between knowledge and the
external world and moved towards the problem of the internal dynamics of
knowledge and cognition. Mathematics for Kant was synthetic just because
it concerned not the analysis of concepts but the fact that they apply to the
world. Kant believed that the only role of concepts is that which enables us
to get in contact with some objects as a guide for activity on these objects.
Operations can be guided by thought, whereas objects can only be described
and cannot be influenced in this way. We are not in command of the world,
as Wittgenstein used to say. So after it was realized that our conceptu-
alizations are not directed at the world per se, but toward the world as it is
present to the system of our activities, people began to stop discussing
knowledge altogether. It is (cognitive) activity that matters. The regularities
we call mathematical knowledge appear in the relevance of patterns of
activities in time. Pure mathematics was turned into an art and applied
mathematics became considered “bad mathematics”.

Nevertheless: Mathematics is the incarnation of intuitive knowledge.
Let me give a first argument for this claim. To understand a mathematical
theorem means the same as watching the sun rise. This implies that if I have
understood a mathematical theorem I have at the same time understood that
it is true. Within intuition, knowledge of a fact and knowledge of its truth
coincide. This situation applies to proving as well. With a proof we have
simultaneously to present a proof that our proof is correct. If we attempt
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this we are clearly faced with an infinite regress. The way out is to insist on
a purely formal criterion for logical correctness. In one way or another the
form of the knowledge becomes subject to intuition. But only the form. If
we insist that mathematics has to do with real knowledge, or if we believe,
as René Thom has so aptly stated it at the Second International Congress on
Mathematical Education, “The real problem of mathematical education is
not that of rigor, but the development of meaning, of the existence of math-
ematical objects” (Thom, 1973, p. 202), then mathematics has to be intuitive
knowledge. Existing or being is not a real predicate, as Kant said (B 626).

Intuition, other than plain seeing, is directed at the reality or the essence
of something rather than at its mere appearance, and intuition therefore
always implies generalization. In intuition I perceive the general as if it
were a particular object. By the distinction between essence and appearance,
a difference between the actual observation of a thing and its capacities,
tendencies, and possible developments is conceptualized. From this it follows
that space is essential to intuition and that the processes of experience are
transformed into the structures of geometrical vision.

Intuitive knowledge is not discursive knowledge. Our intuitions as
such are like a conglomerate of Leibnizian Monads, each of which represents
the world from its own particular perspective. Theory as grasped by intuition
represents a perspective, a way of seeing that is as such—i.e., in its claim to
access reality—incommensurable with other perspectives. And, what is more
important, this perspective introduces new ways of interrogating reality,
new types of objects and new types of evidence of sentences, and so forth.

Now the essential features of an act of imaginative creation may be
summarized by stating that they consist in the seeingof an AasaB: A = B,
or “all A are B”, or “A represents all B”, etc. Important however is the fact
that there might be nothing in “A” and “B” per se, no objective suggestion,
no similarity in appearance, or whatever it is that establishes the relation,
and nothing in the world that will, a priori, guarantee the success of such an
act of creative imagination. On such grounds pure mathematics has, since
Cantor, been called a free creation of the human mind; but of a mind that
has to have the ability to perceive in a mathematical way, to see completely
clearly that A is essentially B. The claim to have such an ability constitutes
mathematical authority. This authority is based on the assumption of
mathematical genius. Nowhere in science is the cult of genius so strong as
in pure mathematics.

What distinguishes the genius from the ordinary person is the style of
reasoning, a style that becomes a standard of mathematical objectivity.
Mathematics is governed by paradigms in Thomas Kuhn’s sense. It may
even, being intuitive knowledge, become a belief system. Any system,
Stolzenberg writes, that is informed by a desire for a world-view that can be
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maintained and that one will want to maintain will be called a belief system.
“A belief system may be like a genuinely scientific system in every other
respect, but it has this one distinguishing feature: All acts of observation,
judgment, etc., are performed solely from the particular standpoint of the
system itself.” (Stolzenberg, 1978).

The most dangerous belief of a mathematical system consists in the
conviction that every question must have a determinate answer. If a person
does not see the answer in a particular case, nor where an answer may be
searched for, he or she is in all probability lacking in the ability to perceive
the matter in a mathematical way. This may become a drawback when one
is confronted with the claim that there exists an absolute and authentic
relationship to any mathematical object as well as a determinate answer to
any arbitrarily chosen question about it.

Creativity, however, might demand that the whole framework of a prob-
lem be questioned. And even creativity is a rather narrow aspect of human
life. From the point of view of our social and individual life, it might even
be appropriate to question that there exists a definite answer to a very par-
ticular problem. Charles Peirce challenged even with respect to theoretical
thought what he called the “fundamental axiom of logic”: that “Every
intelligible question whatever is susceptible in its own nature of receiving a
definitive and satisfactory answer, if it be sufficiently investigated by
observation and reasoning.” (Kloesel, 1986, p. 545f). Unremitting creative
technical virtuosity might have to give way to human conditions like dignity,
kindness, self-esteem, philosophical reflection, tradition, love, or wonder.

Mathematics is the incarnation of intuitive knowledge. This idea is
naturally very attractive. However it is connected with a dilemma. Although
the conviction that results from the intuitive character of our mathematical
insights may indeed be very strong, it is also very fragile. We are always
confronted with the uncertainty whether what seems to be so evident is not
based on the error of a false choice of perspective. And when a great authority
appears who claims exactly this, then our relationship to the truth in question
that was based on intuition is destroyed irrevocably. This can further be il-
lustrated by the following Gedankenexperiment.

Suppose I have found a proof for some mathematical theorem, which
after having checked out the argument of the proof step-by-step, is now
intuitively completely clear to me.

Suppose that a great authority announces that there is something wrong with
the argument. In that case my experience upon checking over the argument
may be quite different from what it was before this announcement was made.
Just as before, I find that the argument appears to be correct; only this time I
do not accept it as being correct. And there we have the difference between
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the two situations; in the first there is an act of acceptance as such ,while in
the second there is instead an act of questioning something that appears to be
correct. (Stolzenberg, 1978)

An act of acceptance as such is present if the perception of the
respective reality appears to the perceiver automatically to coincide with
reality itself. It is this type of belief that we call an intuition. As mathematical
cognitions are essentially intuitive I think, contrary to Stolzenberg, that the
kind of “overconfidence” (Fischbein) exhibited in an act of acceptance as
such cannot be evaded by mathematical cognition.

This whole argument may appear utterly strange to those who believe
that science investigates ideas without regard for their origin. It is however
very clear that knowledge demands elements that are transcendental with
respect to the particular experience and that in many cases the social context
provides these elements. Certain people are to be trusted on certain issues
and the newcomer must accept whatever agreements they reach on those
issues.

The message of Stolzenberg’s thought experiment is somewhat para-
doxical because there seems to be a completely clear vision that is all of a
sudden destroyed. If nobody could expect from another individual any in-
sight into the matter, the statement of the “great authority” would not disturb
us at all. What the thought experiment has told us can also be expressed in
plain psychological language:

The need for relying on apparently certain, credible representations and

interpretations is, in our opinion, the main factor which explains the general

tendency of people to be overconfident in their judgments. The need for
certitude leads to this type of apparently very well -structured, self-consistent
and apparently self-evident cognitions called intuitions. But overconfidence

is an obstacle to self-control and consequently it may block the way to a
significant improvement of the quality of reasoning. (Fischbein, 1987)

Everybody has to believe in him or herself beyond the limits of a real-
istic evaluation of the situation. Being realistic would cause us very often to
give up before we had really tried hard. But on the other hand, as Fischbein
shows, the necessity of being overconfident is self-contradictory.

Teachers in practice try to avoid the paradoxical features of the situa-
tion by taking refuge in pedagogical formalism. School mathematics becomes
an exercise in formal logic and correct phrasing and spelling. If we don’t
accept intuition as a cognitive basis, all our knowledge disintegrates or de-
composes into linguistic or logical formalism on the one side and empirical
guesswork on the other. We know from a number of empirical studies that
teachers on the one hand endorse the value of geometry and on the other
hand tend to dismiss it from their classes when pressed for time.
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A historical example of the dilemma that we have described is provid-
ed by the philosophy of Descartes. Descartes thought proof irrelevant to
truth, basing that instead on the self-evidence of intuitive insight. Leibniz
on the contrary thought that truth is constituted by proof. The Cartesian
independence of truth from logical proof is illustrated by Descartes’ unor-
thodox views on the necessary truths of algebra and geometry. Even eternal
truths are dependent on the will of God, according to Descartes.

We owe to Leibniz the clear statement that if not-p entails a contradiction
then p is necessary and indeed necessarily necessary. Descartes grants that it
is unintelligible how p can entail a contradiction and still be true. But this
unintelligibility shows the weakness of our minds. (Hacking, 1984)

There can be no doubt that God is the great authority here, and God’s
intuition is obviously of such a kind that ours must be inferior.

Like Descartes, Kant also believed that mathematics is based on
intuitive truths. Nonetheless, Kantian intuition is different from Cartesian
intuition. It did not strive to grasp the reality of a thing directly but adjusted
itself to the conditions for constructing a mathematical truth. Our insight
into mathematics arises, says Kant, because we construct mathematical truths
according to conditions that we cannot escape and that are completely
manifest to our intuition. The weakness of Cartesianism is to be seen in the
lack of any transcendental reference that would transform a particular mental
event into true knowledge. Leibniz attempted to make the real substance
underlying such an event the criterion of truth by claiming that formal proof
will inevitably and objectively lead to the real substance. Proofs that
constitute substantial truths become however an infinite task able to be
accomplished by God’s infinite mind only. With respect to “infinite proofs”,
Kant’s argument that “being is not a predicate” does not apply.

How is it possible to combine transcendentalism with the finite and
limited perspective of humans on reality? Such was Kant’s problem and he
took space and time to be those transcendental forms within which we have
to realize mathematical knowledge. Only that which can be developed by
means of our own constructions in space and time can lead to new mathe-
matical insight.

PART TWO

Charles Peirce (1839-1914) ascribes to Kant the merit of having been
the first in history to give the distinction between intuition and logic its
proper weight. Kant saw, according to Peirce, far more clearly than any
predecessor had done the whole philosophical import of this distinction.

This was what emancipated him from Leibnizianism and at the same
time turned him against sensationalism. It was also what enabled him to see
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that no general description of existence is possible, which is perhaps the
most valuable proposition that the Critique of pure reason contains. But he
drew too hard a line between the operations of observation and of ratiocina-
tion. (Peirce, 1.35).

Not only is a general description of existence impossible because
“being is evidently not a real predicate” (Kant Critique B 626), but quite a
number of predicates cannot be linked to a concept without employing the
concept as a rule of construction within the intuition of space and time. For
instance the idea of a triangle does not analytically contain the fact that the
sum of its angles amounts to two right angles. The philosopher would try,
Kant writes, to analyze the concept of triangle, but

He may analyze the conception of a right line, of an angle, or of the number
three as long as he pleases, but he will not discover any properties not con-
tained in these conceptions. But, if this question is proposed to a geometrician,
he at once begins by constructing a triangle. He knows that two right angles
are equal to the sum of all the contiguous angles which proceed from one
point in a straight line; and he goes on to produce one side of his triangle, thus
forming two adjacent angles which are together equal to two right angles. He
then divides the exterior of these angles, by drawing a line parallel with the
opposite side of the triangle, and immediately perceives that he has thus got
an exterior adjacent angle which is equal to the interior. Proceeding in this
way, through a chain of inferences, and always on the ground of intuition, he
arrives at a clear and universally valid solution of the question. (A 716/B 744)

We must intuit an object that we wish to know; hence the unknowability
of the thing in itself, which is determined by the fact that we can have no
immediate knowledge of it because it does not belong to space and time.

That our mathematical knowledge, although based on intuition, may
nonetheless be a priori (that is, general), is due to the fact that it is just a
concrete instantiation of the general forms that constrain all our activity.

Let us, in order to think of a particular example, reflect on the idea of
a “general triangle”. The problematic associated with such an idea was ex-
pressed by Locke when he remarked that on the one hand the general idea of
a triangle is imperfect, “for it must be neither oblique nor rectangle, neither
equilateral nor scalene, but all and none of these at once.” On the other hand
we have need for such general ideas “for the convenience of communica-
tion and enlargement of knowledge.” (Locke, Essay concerning human
understanding, book 4, chapter 7).

The general triangle as presented in Figure 1 is not as general as it
might be. If we wanted, for example, to derive what is called the cosine law
we would have to distinguish two cases as in Figures 2.1 and 2.2.
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Figure 1
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We get:

a’?=b%+c?-2cqand a? = b? + ? + 2¢cq
respectively, or in more familiar writing:
a? = b? + ¢* - 2bc cosA

The different values of the cosine function cover the different cases
that are distinguished in the more elementary presentation above.

A formula like A =1 bxh helps to compare all triangles whatever their
form or size might be. The geometrical object as such, the general idea of
triangle, disappears. A great deal of geometry has in this manner been
replaced by algebra and function theory. The first presentation of the cosine
law, although very elementary, nonetheless leads to the introduction of the
new idea of a correlative system (Carnot, 1803). A correlative system in the
sense of Carnot is a type of equivalence class. It is established completely
intuitively, as in the example given.

There could be nothing in common to all triangles (or some other point
systems), but there is a chain of resemblances representing a law of conti-
nuity. This idea led to new thinking about general terms. If two geometrical
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systems are to be considered as intuitively equivalent then the formulas
stating a certain property or law in the two cases differ at most with respect
to the signs of certain of their terms. Carnot’s ideas stimulated Poncelet to
state his famous “law of continuity” that was fundamental in the estab-
lishment of projective geometry. A general triangle has now become an
equivalence class of particular concrete triangles. The essential differences
between all the conceptions of geometry seem to be based on how the
equivalence relation in question is selected.

We could start thinking differently about the matter. We could, for
example, state that what serves as a “general” idea in geometry should be
interpreted in relation to the particular purpose at hand. If, for example, one
wants to prove the theorem that the three medians of any triangle intersect
at exactly one point (Figure 3), then an equilateral triangle serves perfectly
well as an instance of a general triangle because the claim of the theorem
mentions only concepts that are independent of distance and angle (one can
define the area measure independently of the lengths and the sizes of the
angles by means of a determinant function, and the definition of median is
also independent of these concepts) or, to put it differently, the conditions
of the theorem in question are invariant with respect to affine transfor-
mations.

L™

Figure 3.1 Figure 3.2

As early as 1710, Bishop Berkeley aimed what he himself called “the
killing blow” at Locke’s notion of general idea and asked the readers of
Locke’s to try to find out whether they could possibly have “an idea that
shall correspond with the description here given of the general idea of a
triangle—which is neither oblique nor rectangle, neither equilateral nor sca-
lene, but all and none of these at once.” (Berkeley 1737, 54). And to this
logical impossibility he answered

that though the idea I have in view whilst I make the demonstration be, for
instance, that of an isosceles rectangular triangle whose sides are of a deter-
minate length, I may nevertheless be certain it extends to all other rectilinear
triangles, of what sort or bigness soever. And that because neither the right
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angle, nor the equality, nor determinate lengths of the sides are at all con-
cerned in the demonstration. It is true the diagram I have in view includes all
these particulars, but then there is not the least mention made of them in the
proof of the proposition. And for this reason it is that I conclude that to be true
of any which I had demonstrated of a particular triangle and not because I
demonstrated the proposition of the abstract idea of a triangle. (Berkeley, 1737,
56)

There exist different proofs of the theorem about the medians. One
might, for instance, start from the interpretation of the point of intersection
as a center of gravity. This interpretation is suggested by the fact that the
medians divide the area of the triangle in half. Such a proof, very different
from the one using the symmetries of an equilateral triangle, leads to an
interesting generalization. By imagining variable weights fixed to the vertices
of the triangle we gain as a generalization a proof of the theorem of Ceva
(1648-1734). The theorem of Ceva generalizes the situation for arbitrary
points of intersection of three line segments joining the vertices of a triangle
to points on the opposite sides.

The theorem runs as follows: Given a triangle in the projective plane
and a line through each of the vertices of the triangle, then the three lines
are either parallel to each other (meet at infinity) or they meet at one regular
point of intersection, if and only if the product of the ratios in which they
divide the opposite sides of the triangle is unity.

1 by
c, by
al 02
a b oa
a, b o
Figure 4

There exist different proofs of the theorem of Ceva too. It can, for
example, be derived from the theorem of Menelaos, or it can be proved very
easily by means of a calculation in terms of projective coordinates. This
latter proof gives an excellent illustration of Poncelet’s law of continuity
since the condition of the theorem can be expressed by an algebraic function.
This condition in our case just says that a certain determinant is zero.
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Carnot gains a generalization of Ceva’s theorem from his principle of
correlative systems. As the theorem can be stated in terms of an equality of
two simple quantities and as a positive quantity cannot be equal to a negative
one, the theorem must remain valid for all correlative systems, i.e. even
when the point of intersection lies outside the triangle.

From Ceva’s theorem the proposition about the intersection of the three
altitudes of the triangle can immediately be derived, by verifying that the
condition of Ceva is fulfilled in this case also. This is remarkable because
the notion of a perpendicular is obviously not a projective invariant.

b
X
C a,
Figure 5
a, =bcosy a,=ccosf
b,=ccosa b,=acosy
c,=acosP c,=bcosa

Bishop Berkeley wanted to argue that there are no general ideas and
no intuitions directed towards them, but only linguistic and formal activi-
ties. Kant in contrast stressed that to understand the true character of
mathematics one has to observe its axioms (intuitions) and its applications
rather than the deductive procedures employed in proving theorems. He
accepted however the functional perspective on mathematical knowledge
that is so clearly noticeable in Berkeley. “No image”, Kant says, “could
ever be adequate to the concept of a triangle in general. It would never
attain the universality of the concept which renders it valid for all triangles,
whether right-angled, obtuse-angled, or acute-angled; it would always be
limited to a part only of this sphere.” (B 180). The imaginative schema
however, although it is in thought and not in the images, is not just a part of
conceptual and propositional knowledge. It is necessary to get to the mean-
ing of concepts. The imaginative schema as a “mediating representation
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must be pure (without empirical content) and yet must on the one side be
intellectual, on the other sensuous.” (B 178).

The most important aspect of cognition is continuity. For Kant the
continuity of experience, or as he sometimes called it, its unity, is the most
important hallmark of the objectivity of knowledge. What turns an individual
mental event into an idea, what provides a particular image with meaning,
is its connection with other such events, is its place within an unending
series of the same kind. “Kant understood imagination as a capacity for
organizing mental representations (especially images and percepts) into
meaningful units that we can comprehend. Imagination generates much of
the connecting structure by which we have coherent, significant experience,
cognition and language.” (Johnson, 1987). Thus Kant seems to aim at a sort
of blending or amalgamation of the views of Descartes, Locke, and Berkeley.
Berkeley considers mathematics analytically, Locke believes it.to be
synthetic but a posteriori, and for Kant it is synthetic as well as a priori.

Kant’s work depends on the possibility of being able to operationalize
the pure forms of the intuitions of space and time. Space and time were to
be transformed into operative categories by means of which we should
succeed in constructing our world. This is performed under the constraint
of the system of tools and means available to the epistemic subject. Intuition
is directed towards the overall context of mathematical activity in as much
as the activity objectifies or realizes itself in the external forum of space
and time by means of certain tools and artifacts. The complementarity of
means and problems is what governs the evolution of our cognitions and of
our intuitions in particular. Gregory Bateson has provided us with a very
suggestive metaphor for the concept of evolution, presenting it not as a one-
sided adjustment:

Surely the grassy plains themselves were evolved pari passu with the evolution
of the teeth and hooves of the horses and other ungulates, Turf was the evolving
response to the evolution of the horse. It is the context which evolves. (Bateson,
1973)

In our research praxis the context of means or tools seems more pow-
erful than the context of problems or objects. This observation can be
reformulated by saying that the theoretical dynamic becomes a largely in-
ternally driven process and theories get to be understood as realities of their
own kind. At the beginning of the 19th century certain parts of mathematics
formed a contextual notion of meaning by claiming, first, that a theory de-
termines the intentions of its terms, and, second, that intentions determine
extensions or referents. Even for Kant the comparison between empirical
intuitions or perceptions and concepts was a difference in kind, whereas for
classical rationalism it had been one of degree. Since mathematics, like
science in general, is interested in objective knowledge, mathematicians
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have to have other means of identifying the referents of its terms than the
descriptions provided by the theory as intentions of its terms. The availabil-
ity of other ways of accessing the referents establishes a practice in which
theories are used in a twofold manner, attributively as well as referentially
(“Ais B” vs. “A represents B”).

My last thesis is as follows: The apparent mismatch between empirical
observation and mathematical intuition, which is responsible for the neglect
of the role of the latter, is due to a misunderstanding about the empirical
sciences.

The objects of ordinary perception are constituted or constructed rather
than perceived as such, entirely spontaneously and naturally. Visual per-
ception is a highly complex phenomenon which is strongly influenced by
socio-cultural factors. Kant’s idea of a schema of the imagination expresses
these facts, and the philosophy of science speaks of the theory-ladenness of
observation in this context. Physicists, as Steven Weinberg observes, are
making abstract models of the universe to which they “give a higher degree
of reality than they accord the ordinary world of sensations” (Weinberg
1976, 28). The philosophy of mathematics has put forward an even stronger
claim, to the effect that all objects are essentially abstract objects, or even
mathematical objects (Tymoczko, 1991).

This seems to bring back the time of 17th/18th century “idealism”,
when thought was a matter of ideas or of mental discourse and when there
were no strong boundaries between things and ideas. These times, we recall
from Peirce’s statement at the beginning of this section, ended with the
critical philosophy of Kant. From now on the question of the relationship
between the concrete and the operative, or between the intuitive and the
discursive, became of fundamental importance for any cognitive or episte-
mological theory.

The scholar who has most distinctly expressed the constructive position
of Kant in current mathematical education is Jean Piaget. A central concept
of Piaget’s epistemology is the discrimination between reflective abstraction,
which proceeds from the actions and operations of the subject and is
responsible for the construction of mathematical concepts, and empirical
abstraction, which is directed at the objects of empirical reality.

What is problematic in Piaget’s conception is the fact that this
differentiation between empirical and reflective abstraction becomes an
immediate split as a result of his use of a concept of empirical abstraction
that is too primitive. This cuts in two exactly that which Piaget considers
the advantage of the operative approach, namely, the unity of subject and
object when based on objective activity. If empirical abstraction is considered
not to be constructive the tension between the two poles—the constructive
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and the intuitive aspects of all cognition—is resolved and both aspects stand
alongside one another as unrelated characteristics of two different classes
of scientific concepts, rather than the two different sides of any concept.
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VERS UNE CONSTRUCTION REALISTE
DES NOMBRES RATIONNELS

Nicolas Rouche

Université catholique de Louvain, Louvain-la-Neuve, Belgique

Il est rare de nos jours que 1'on manie des grandeurs pour effectuer
une mesure : on se contente de consulter des cadrans. Par ailleurs les
grandeurs, si importantes chez Euclide, ont au XX° siécle disparu des
mathématiques et quasiment disparu de 1'enseignement. Or c'est la mesure
des grandeurs qui, historiquement, a donné naissance aux nombres autres
que naturels. Il est donc intéressant de regarder comment, par quelles mé-
thodes diverses, on a enseigné les nombres depuis que les grandeurs se sont
estompées.

C'est ce que nous faisons ci-aprés, d'ailleurs sans prétention d'épuiser
le sujet. Ce regard critique débouchera sur la question : sachant comment
on a enseigné les nombres dans le passé, comment pourrait-on faire a I'ave-
nir ?

Le présent article explicite et compléte certains développements de
Rouche (1992a). 11 est une version abrégée de Rouche (1992b).

L'EVOLUTION HISTORIQUE DES MESURES

Depuis que I'homme existe, il pergoit et cherche a exprimer des
quantités. Il n'a pas cessé au cours des siécles de créer des moyens de plus
en plus commodes, rapides et précis pour mesurer les grandeurs. Jetons un
coup d'eeil sur cette évolution millénaire.

Les distances autrefois comptées en heures ou journées de marche sont
aujourd'hui fournies automatiquement et directement dans le langage des
chiffres par les compteurs kilométriques des automobiles.

L'homme a d'abord mesuré I'écoulement du temps a la hauteur du soleil
dans le ciel. Il reconnaissait aussi les saisons au défilé des constellations du
zodiaque. Ensuite il a inventé les cadrans solaires : le soleil, source premiére
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des divisions du temps, précisait son message sur les heures et les saisons
par le truchement de 1'ombre d'un baton. Avec les clepsydres et les sabliers,
I'homme a recouru i des mouvements artificiels pour mesurer le temps.
Ensuite, il a inventé les horloges mécaniques, bientdt pourvues d'un
balancier, puis les horloges a quartz avec encore un cadran a aiguilles et
enfin les montres digitales. On pergoit 'évolution globale qui va d'un contact
direct avec « la source principale du temps » (les mouvements du soleil), en
passant par les cadrans a aiguilles qui, comme les astres, tournent d'un mou-
vement uniforme, jusqu'aux montres digitales qui exhibent de purs symboles.

Naguére encore la balance a fléau et le peson exhibaient les lois des
leviers, tandis que la balance a ressort, tenue a la main, donnait a la fois la
sensation du poids et la connaissance de son action sur le ressort. Les ba-
lances digitales d'aujourd'hui ne fournissent que des chiffres. Et méme, en
donnant directement le prix d'une marchandise achetée, elles évitent a
l'utilisateur la fatigue d'un probleme de proportionnalité.

De méme les mesures de capacité se font aujourd'hui sans qu'on ait &
se servir des récipients-unités qui en donnaient une perception directe. Et
l'essence d'auto se mesure autant sinon davantage en francs qu'en litres.

Ainsi les manipulations de base des grandeurs (comparaisons, sommes,
fractionnements, ...) sont progressivement éliminées de la vie quotidienne.
Chaque mesure est réduite « a la seule opération de lecture d'un nombre sur
un cadran ». En liaison avec les progrés de la technologie, plus les hommes
utilisent des mesures et moins ils ont a exécuter des opérations de mesure
(voir la préface de Rouche, 1992a).

LES GRANDEURS ONT DISPARU DES MATHEMATIQUES

Si nous considérons maintenant I'histoire des mathématiques, nous y
voyons en quelque sorte les nombres prendre la place des grandeurs. Jetons
un regard sur cette évolution, elle aussi millénaire.

La théorie des grandeurs du V¢ Livre d'Euclide, un des piliers prin-
cipaux des mathématiques grecques, a été enseignée jusque tard dans le
XXe sigcle, dans le cadre de la géométrie d'Euclide. Il n'y était question ni
d'unités de mesure, ni de nombres (hormis les naturels) susceptibles d'ex-
primer la mesure d'une grandeur dans une unité donnée.

A coté de cette théorie des grandeurs s'est élaboré, au cours des siécles,
un systéme de nombres de plus en plus satisfaisant, aboutissant a notre corps
des réels. Cette construction des nombres s'est appuyée essentiellement sur
la mesure des grandeurs, comme I'histoire en témoigne abondamment.

Mais I'édifice des nombres a été renversé dans la seconde moitié du
XXe siecle. A cette époque, pour donner aux réels un fondement logique
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ferme, on a largué leurs amarres historiques a la mesure des grandeurs pour
les rattacher a la seule théorie des nombres naturels (puis plus tard, a travers
ceux-ci, a la théorie des ensembles).

Ainsi les nombres réels, nés au cours des siécles de la géométrie et de
la physique des grandeurs, ne leur devaient dorénavant plus rien. Et non
seulement ils avaient conquis leur autonomie, mais encore, a travers la
structure d'espace vectoriel, ils ont plus tard servi a (re)fonder la géométrie.
Dans ce cadre nouveau, le corps des nombres est construit avant méme qu'on
aborde la géométrie. Les premiers objets 2 mesurer, par exemple les segments
sur un axe, sont en quelque sorte mesurés d'avance. Toute la problématique
de la mesure, issue des difficultés de manipulation des grandeurs les plus
concrétes, a proprement disparu, et les grandeurs se sont évanouies des
mathématiques.

Bien entendu, elles n'ont pas en méme temps disparu de la physique,
dont elles sont le matériau méme. Ainsi au cours de la premiére moitié du
XX¢ si¢cle, les mathématiques se sont éloignées de la physique dans la
mesure sans doute o elles avaient rompu leur trés ancien ancrage dans les
grandeurs pour en établir un nouveau dans la théorie abstraite des ensembles.

LES GRANDEURS DANS L'ENSEIGNEMENT AUJOURD'HUI

Voyons maintenant comment cette évolution s'est répercutée dans
I'enseignement.

Au niveau secondaire tout d'abord, 12 ol les enseignements de mathé-
matiques et de physique sont le plus souvent séparés, la situation est en gros
la suivante. Les grandeurs sont traitées en physique. C'est 1a que I'on affronte
I'impossibilité d'un rapport entre deux grandeurs d'espéces différentes, les
systémes d'unités, la possibilité d'un rapport entre les mesures de deux
grandeurs d'espéces différentes et la conceptualisation par ce biais de nou-
velles grandeurs (vitesse, densité, ...), les formules complexes associant
toutes sortes de grandeurs et la théorie des « équations aux dimensions ».

Toutes ces choses sont par contre ignorées dans le cours de mathéma-
tiques. Dans celui-ci, un mouvement est une fonction de A dans A dont la
vitesse est la dérivée. Quelle difficulté y aurait-il 4 considérer le rapport
d'un espace a un temps, puisque de toutes fagons espace et temps sont
d'avance de méme nature : ce sont deux nombres réels ? Il reste a ce stade
comme une trace de la difficulté primitive 3 mettre en rapport une distance
et un temps dans la remarque (éventuelle) que le graphe position-temps doit
étre interprété en géométrie affine et non métrique.

Beaucoup d'enseignants de mathématiques sont embarrassés lorsqu'ils
butent sur un symbole de grandeur tel que kg ou m (pour métre). Ces choses
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ne sont pas prévues dans la théorie et ils ne savent qu'en faire. Nombre
d'entre eux ont d'ailleurs une répugnance pour la physique. Mais ce n'est
pas ici le lieu d'analyser plus en détail les raisons du véritable divorce entre
les enseignements de mathématiques et physique a I'école secondaire.

La situation est différente a I'école primaire. La, I'apprentissage des
mathématiques est tellement proche de ses sources dans le monde familier
qu'un divorce consommé entre physique et mathématiques y est impossible.
Ce que l'on constate en gros, mais qui mériterait une confirmation attentive,
c'est

* que l'apprentissage des grandeurs a I'écart des nombres donc avant
toute idée de mesure est assez peu développé ;

* que beaucoup de phénomenes qui ont pour vocation de conduire ala
construction des fractions et des rationnels sont ignorés dans l'ensei-
gnement ;

« que les mesures d'aires et de volumes débouchent trop vite sur des
formules, au détriment d'une construction des idées de mesure cor-
respondantes ;

« et enfin que sous le titre de grandeurs ne se retrouve dans le pro-
gramme qu'une nomenclature du systéme décimal des poids et
mesures, accompagnée de nombreux exercices de changement
d'unités.

Au total donc, I'enseignement semble bien ne pas accorder beaucoup
d'attention 2 la genése de l'idée de mesure, liée a I'apprentissage des nombres.

QUELQUES PROPOSITIONS D'ENSEIGNEMENT AU XX* SIECLE

La situation que nous venons de décrire au triple niveau de la vie quo-
tidienne, de la science mathématique et de 'enseignement pose au moins
deux questions.

1) Comment amener les enfants d'aujourd'hui, qui bien entendu auront
acces aux chiffres et aux nombres d'une maniére ou d'une autre, 2
comprendre le sens des résultats de mesure, a savoir les décoder et
les utiliser ?

2) Plus généralement, les manipulations de base des grandeurs ayant
constitué pour les hommes d'autrefois le contexte intuitif dans
lequel les grandes structures numériques prenaient racine, comment
faut-il organiser l'apprentissage des mesures et des nombres pour
les enfants d'aujourd'hui, compte tenu des évolutions respectives
des mathématiques et de la civilisation technologique ?
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Examinons certaines des réponses les plus significatives qui ont été
données a ces questions depuis quelques dizaines d'années.

Au début du siecle déja, Weber et Wellstein d'une part, et Burkhardt
de l'autre (cités par Klein, 1908) proposaient, chacun a leur facon, de
construire les nombres rationnels a partir de la seule connaissance des
nombres naturels, et donc sans s'appuyer sur les grandeurs et la mesure des
grandeurs, quitte a s'occuper de ces derniéres aprés. Klein s'oppose, dans
les termes suivants, 4 une telle organisation de l'apprentissage (tous les
passages soulignés le sont par Klein lui-méme) :

[...] certainement la présentation moderne [celle des deux auteurs cités] est
plus pure, mais par ailleurs elle est aussi pauvre [que la présentation habituelle
jusqu'alors]. De ce que 1'étude traditionnelle offre comme un tout, elle ne donne
en fait qu'une moitié : l'introduction abstraite et logiquement compléte de
certains concepts arithmétiques —nommés « fractions » — et des opérations
qu'on leur applique. Mais alors une question totalement indépendante et non
moins importante demeure pendante : peut-on aussi réellement appliquer la
doctrine théorique ainsi déduite aux grandeurs mesurables qui se présentent
évidemment a nous ?

On pourrait de nouveau appeler cela un probléme de « mathématiques
appliquées », pouvant faire 1'objet d'un traitement entiérement séparé; mais
il faut évidemment se demander en outre si une telle séparation est aussi
pédagogiquement opportune.

Chez Weber-Wellstein, cette division du probléme en deux parties
s'exprime d'ailleurs de fagon trés caractéristique : aprés l'introduction
abstraite du calcul des fractions, la seule dont nous ayons parlé jusqu'ici,
il consacre une section particulidre — intitulée « les proportions » — 2 la
question de l'application effective des nombres rationnels au monde
extérieur ; et 12 aussi sa présentation est assurément plus conceptuelle
qu'intuitive.

Tout autre est l'enseignement congu par Papy (1970) dans les années
soixante pour les éléves de douze a quatorze ans et dont il a puisé I'inspiration
théorique dans la Geometric algebra de Artin. Ce dernier avait bati axioma-
tiquement la géométrie affine plane sans présupposer l'existence de nombres,
mais au contraire en construisant le corps de la géométrie comme un corps
d'objets géométriques (les transformations préservant la trace). Bien siir, ce
corps s'avére isomorphe a celui des réels, mais il ne devient corps de nombre
qu'a posteriori. A l'usage des classes cette fois, Papy construit lui aussi les
réels en méme temps qu'une géométrie axiomatique du plan affine. Dans ce
cadre, les droites du plan sont graduées et sous-graduées dans le systéme
binaire, et les nombres réels représentés par les nombres binaires illimités a
virgule, sont associés bijectivement aux points de la droite. Les nombres
décimaux sont introduits ensuite. L'addition des réels est définie 2 partir de
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la somme des vecteurs paralléles, et le produit des réels est obtenu comme
rapport de la composée de deux homothéties.

Les rationnels comme classes d'équivalence de fractions n'apparaissent
pas dans un tel exposé. Mais le choix, de construire les réels dans un cadre
géométrique, manifeste le souci de les associer intuitivement aux mesures
de longueurs. Tel est aussi le souci de Lebesgue (1975), ouvrage important
mais que nous ne mentionnons ici que pour mémoire, car il ne vise pas l'en-
seignement élémentaire.

Une autre conception intéressante est celle de Steiner (1969), a peu pres
contemporaine de celle de Papy. Mais alors que le texte de ce dernier s'a-
dresse, comme nous l'avons dit, aux éléves de douze a quatorze ans, celui
de Steiner est un texte mathématiquement dense proposant un fondement
axiomatique pour soutenir l'apprentissage des nombres a partir du plus jeune
age. Il n'est donc nullement destiné aux éléves, mais aux responsables de
'enseignement élémentaire. Dans la théorie de Steiner, les nombres naturels
d'abord et les rationnels positifs ensuite sont engendrés comme opérateurs
sur un domaine de grandeurs. L'addition de ces nombres est donc interprétée
comme addition d'opérateurs, et le produit des nombres comme composition
d'opérateurs. Steiner exprime I'espoir que la connaissance d'un tel systéme
conduira i trouver les moyens adéquats pour enseigner ces matiéres et rame-
ner I'attention sur un point de vue négligé dans l'enseignement : la relation
des nombres aux mesures et leur usage comme opérateurs.

Par-dela les différences relevées jusqu'ici entre les contributions de
Weber-Wellstein, Burkhardt, Papy, Steiner et Kirsch, un caractére commun
les rassemble, a savoir l'idée de mettre a la base de 'enseignement élémen-
taire des nombres une théorie axiomatique. Et chaque auteur, en proposant
la sienne, argumente selon les cas de sa pureté, de sa clarté, de son rapport
au vécu quotidien et a l'intuition. Mais dans tous les cas, ce dont il est
question, c'est d'une conceptualisation au sens mathématique habituel,
débouchant (chez Papy) ou susceptible de déboucher (chez les autres) sur
un enseignement effectif.

Tout autre est, un peu plus tard, la démarche de Freudenthal dans sa
Didactical phenomenology of mathematical structures (1983). L'idée n'est
plus ici de construire une structure mathématique déductive qui, représen-
tant le mieux ou le moins mal possible la réalité familiére, puisse inspirer
un enseignement. Freudenthal cherche d'abord 2 identifier des phénoménes,
c'est-a-dire des faits, des relations observés dans le quotidien ou les
mathématiques, et qui provoquent la pensée mathématisante. Nous supposons
le lecteur familier de cette notion de phénoméne.

Freudenthal inventorie une quantité extraordinaire de phénomeénes
divers. Plusieurs fois il s'exclame sur la difficulté d'y mettre de l'ordre :
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« J'espeére au moins, dit-il, que je ne me noierai pas dans cet océan. » Cons-
tatant l'absence de cohérence globale d'un ensemble de phénoménes, par
exemple celui qui se rapporte aux grandeurs et aux rationnels, il organise
localement cet ensemble a l'aide d'objets mentaux. Un objet mental n'est
pas un concept construit techniquement comme en mathématiques, avec des
quantificateurs et d'autres symboles, et inscrit dans une structure déductive.
C'est quelque chose de plus familier, qu'on pourrait aussi appeler notion,
mais suffisamment €laboré pour en faire précisément un instrument d'orga-
nisation d'un champ de phénomeénes. Les nombres de tout le monde écrits
dans le systeme décimal, les polygones les plus simples, les graphiques de
fonctions sont trois exemples d'objets mentaux, parmi une foule d'autres.

Freudenthal insiste, spécialement a propos des fractions, pour que les
phénomeénes sous-jacents ayant été organisés localement et donc sans qu'on
y reconnaisse une cohérence globale, on appuie I'enseignement sur leur
ensemble et non sur une partie d'entre eux. L'insucces bien connu de I'appren-
tissage des fractions pourrait, selon lui, étre dd a une exploration trop
incompléte par les éléves des phénoménes quelque peu hétéroclites qui y
conduisent.

L'apprentissage des mathématiques selon Freudenthal doit commencer
au niveau des objets mentaux, et non tout de suite a celui des concepts mathé-
matiques formels, mais il a pourtant vocation de rejoindre ces derniers. Le
but ultime de I'enseignement demeure bien d'enseigner les mathématiques
telles qu'elles sont. Mais force est de reconnaitre que beaucoup d'éléves
abandonnent 1'étude des mathématiques en cours de route. Pour ceux-1a,
mieux vaut s'en aller avec le bagage sensé des objets mentaux qu'avec le
vide des concepts formels mal assimilés et dépourvus de contexte significatif.

Ici s'achéve notre examen de quelques propositions faites depuis 100
ans pour l'enseignement des grandeurs et des nombres. Il y en a eu, cela va
de soi, beaucoup d'autres. Mais celles que nous avons retenues suffisent, du
moins nous l'espérons, a poser le probléme assez clairement.

Repartons du constat de Freudenthal : il existe un vaste ensemble de
phénoménes divers, impossibles a organiser globalement, mais qui tous
conduisent d'une certaine fagon aux grandeurs et aux nombres abstraits et
en constituent des facettes concrétes. Acceptons en outre 1'idée que si dans
l'enseignement on néglige une ou plusieurs parties importantes de cet
ensemble de phénoménes, on aboutit 2 une connaissance des nombres 2 la-
quelle manquent certains supports intuitifs et qui ne trouve que difficilement
certains de ses points d'application dans la réalité.

Si on admet cela, il devient évident que tout enseignement inspiré
d'un exposé axiomatique unique tels ceux de Weber-Wellstein, Papy ou
Steiner sera phénoménologiquement trop pauvre, si on peut s'exprimer ainsi.
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Bien entendu, ces exposés sont tous ingénieux et intéressants. Chacun, dans
un registre théorique, organise et éclaire d'un jour qui lui est propre une
partie des phénoménes en cause. Et a ce titre, ces contributions méritent
d'étre connues des responsables de 1'enseignement d'aujourd’hui. Mais force
est de reconnaitre que tout tirer d'une source axiomatique unique aboutit a
n'éclairer qu'une partie insuffisante de la réalité familiére.

Il faut donc bien partir de la réalité multiforme, celle des éleves, et
l'organiser en structures locales, ce qui implique qu'on ne rassemble pas
d'emblée ces structures en un tout cohérent.

CRITIQUE DE LA PHENOMENOLOGIE DE FREUDENTHAL

Cela dit, tout reste a faire. Il faudrait que les responsables de 1'ensei-
gnement mathématique élémentaire abandonnent l'idée d'inculquer les
mathématiques comme un produit théorique préparé en dehors d'eux. Il
faudrait non seulement qu'ils prennent conscience de la nécessité d'ancrer
leur enseignement dans une réalité phénoménologique qui défie tout essai
sommaire de structuration globale, mais encore qu'ils se familiarisent avec
cette réalité, sa richesse et ses incohérences, les obstacles qu'elle oppose a
la construction du savoir mathématique ordinaire.

Une réponse d'apparence évidente serait : on n'a qu'a lire et appliquer
ce que Freudenthal a écrit, puisqu'il semble avoir vu si juste ! Essayons donc
maintenant, en approfondissant sa contribution, de voir ce qui, peut-étre, la
rend difficile a saisir et a mettre en ceuvre.

D'abord, quelle que soit la question qu'il aborde, il identifie les phé-
noménes pour commencer dans un cadre mathématique et & un niveau
susceptible de dissuader la plupart des lecteurs issus de I'enseignement €lé-
mentaire. Cela est trés clair dans la construction de son texte. Par exemple,
au chapitre 1, le premier inventaire des phénoménes li€s aux grandeurs est
réalisé dans le cadre d'un exposé axiomatique de ceux-ci. Autre exemple : au
chapitre 5, une partie importante des phénomeénes concernant les rationnels
est relevée dans une présentation axiomatique partielle de ces nombres
considérés comme opérateurs sur un domaine de grandeurs.

Ayant ainsi d'abord identifié les phénomenes mathématiques, il parta
la recherche des phénomeénes quotidiens qui ont vocation d'y conduire, de
les éclairer, d'en étre des contreparties intuitives. Il découvre ainsi quelques
ensembles de phénoménes familiers, ayant chacun sa cohérence propre. Mais
ces ensembles sont en quelque sorte juxtaposés : le principal lien entre eux
est qu'ils préfigurent, chacun partiellement, une méme théorie mathématique.

Freudenthal reléve que certains de ces ensembles ne se regroupent pas
d'eux-mémes pour constituer la théorie visée. Par exemple, ayant développé
les fractions comme « opérateurs de fractionnement », ce qui conduit natu-
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rellement a leur multiplication, l'auteur ajoute : « I'addition manque »,
laissant entendre qu'il faudra aller la chercher ailleurs. Et il dit encore
quelques pages plus loin : « dans cette structure [le produit des fractions vu
comme composition d'opérateurs de fractionnement] le modele du rectangle
ne s'insére pas facilement. Ceci ne veut pas dire qu'il faille le négliger. » Le
«modele du rectangle » c'est I'ensemble des phénoménes liés aux calculs
d'aires de rectangle ayant pour cotés des fractions de 1'unité de longueur.

Dans cette optique, la réalité familiére est pourvoyeuse de phénoménes
illustrant les fractions et les rationnels. Elle n'est pas considérée d'abord,
indépendamment des mathématiques auxquelles elle conduira plus tard,
comme organisable localement a I'aide d'objets mentaux. On n'insiste pas
sur le fait que les ensembles locaux de phénomeénes structurés sont impos-
sibles, si on les prend tels quels, & organiser globalement en une théorie
cohérente. Certes, ces ensembles locaux coexistent parfaitement dans la
réalité et la pensée communes. Mais lorsqu'on insiste pour mettre en corres-
pondance détaillée les grandeurs et les nombres, on se heurte a des difficultés
importantes, des contradictions. Nous prenons ici le mot contradiction non
au sens de la rencontre d'une proposition et de sa négation, mais au sens de
difficulté essentielle, d'opposition fondamentale entre deux choses. Les
contradictions dont nous parlons ainsi sont a la fois des incitants et des obs-
tacles a l'abstraction, a la construction d'une théorie formelle.

AFFRONTER LES CONTRADICTIONS

Pour pouvoir avancer dans notre réflexion, donnons d'abord 1'un ou
I'autre exemple de ces structures incompatibles que I'on obtient en organisant
localement la masse des phénoménes.

Considérons d'abord I'ensemble des phénomenes liés  la comparaison
(plus grand, plus petit) et a I'addition des grandeurs fractionnées. Cet en-
semble forme un tout cohérent, bien organisé, oii I'on voit commencer a se
construire la structure de champ. En particulier 'addition y est une opération
binaire interne avec les bonnes propriétés.

La nature des choses veut que cet ensemble ne soit pas muni d'une
multiplication, opération binaire interne. Personne n'a jamais obtenu une
longueur en multipliant deux longueurs, et jamais non plus une masse en
multipliant deux masses. Par conséquent, si on veut construire la structure
multiplicative des rationnels, il faut chercher ailleurs.

Mais les fractions (pas les grandeurs fractionnées) peuvent étre vues
comme opérateurs de fractionnement (de grandeurs). A ce titre, elles forment
un tout autre ensemble, regroupant une foule de phénomeénes familiers. Cet
ensemble admet une structure multiplicative correspondant 2 la composition
des opérations de fractionnement, structure qui préfigure une autre facette
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du champ des rationnels. En contrepartie, les opérateurs de fractionnement
ne se laissent doter d'une addition que moyennnant beaucoup d'artifices.

Les choses rebondissent si on constate que les fractions peuvent aussi
servir 2 mesurer des longueurs, des temps, des masses, etc. Or dans le cas
des longueurs (et pas directement dans le cas des autres grandeurs), la mul-
tiplication des mesures fractionnaires apparait bel et bien, mais non sous
forme d'une opération interne. Multiplier des mesures de longueur donne
des aires, des volumes ou des hypervolumes selon le nombre des facteurs.
Cette multiplication s'exécute d'un point de vue formel comme la multi-
plication des fractions dans la théorie abstraite des rationnels (on multiplie
les numérateurs entre eux et les dénominateurs entre eux). Mais pour qu'elle
préfigure la structure multiplicative des rationnels, il faut « oublier » qu'elle
n'est pas interne. Il faut abstraire la forme de l'opération de son contexte
concret (les aires et volumes).

Considérons, en guise de deuxiéme exemple, les rapports entre gran-
deurs, avec tous les phénomenes associés aux rapports et aux proportions.
A l'intérieur de chaque domaine de grandeurs (c'est-a-dire soit les objets
allongés, soit les temps, soit les objets pesants...), on trouve un rapport entre
deux grandeurs quelconques, et 1'on peut former librement des proportions
entre grandeurs. Par contre, il n'y a pas de rapport entre deux grandeurs
d'espéces différentes, et si I'on veut former une proportion entre quatre
grandeurs, il faut que les deux premiéres soient de la méme espéce, et les
deux derniéres aussi.

Cette circonstance empéche d'échanger les termes moyens dans une
proportion ol sont engagées des grandeurs de deux espéces distinctes.
Corrélativement, car c'est un autre aspect du méme phénomeéne, elle empéche
l'existence d'un rapport externe dans une application linéaire d'un domaine
de grandeurs dans un autre différent.

Pourtant, les nombres rationnels (et puis les réels) qui vont a terme
remplacer les grandeurs, devront bien surmonter ces interdits. Au bout du
compte, il faudra par le biais des nombres, donner existence a des rapports
de grandeurs d'espéces différentes comme on en voit dans les vitesses, les
densités, et bien d'autres. Les incompatibilités de départ ne seront vaincues
qu'au prix de difficultés supplémentaires, en I'occurrence celles qui naissent
du choix a priori arbitraire des unités de mesure et de la restriction a un
systéme d'unités cohérent.

Ces deux exemples auront sans doute permis au lecteur de comprendre
mieux ce que nous avons apppelé structures partielles contradictoires. Ces
contradictions sont fondamentales, elles tiennent a la nature des choses,
elles font partie de la relation intime de I'homme avec la réalité. A travers
les opérations de fractionnement et de mesure, I'homme cherche a mettre en
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relation les grandeurs et les nombres. Les nombres naturels sont 13, au départ,
avec leurs propriétés opératoires. Tels quels, ils servent déja a opérer sur
les grandeurs et a les mesurer. Mais viennent ensuite les opérateurs de frac-
tionnement et les mesures fractionnaires. L'homme cherche i étendre 2 ces
objets nouveaux les propriétés opératoires des nombres naturels. Mais cela
ne va pas sans peine, sans contradictions, sans quelques ajustements cruciaux.
Pour constituer les rationnels en structure abstraite, il faut oublier les con-
notations concrétes de chaque structure partielle pour n'en retenir que les
propriétés formelles, il faut abstraire.

Une conclusion s'impose : les rationnels ne sont pas tout formés dans
la nature. Il ne suffit pas d'observer celle-ci, fut-ce minutieusement, pour
les y découvrir. Les rationnels ne sont pas naturels, il sont artificiels, il sont
le résultat d'une construction de I'esprit humain.

Ce n'est d'ailleurs pas par hasard que trois mathématiciens ont affirmé
en écho répété a travers le XIXe siécle :

* Le nombre est un pur produit de notre esprit (Gauss) ;
* Dieu fit le nombre entier, le reste est I'ccuvre de I'homme (Kronecker) ;

* Les nombres négatifs et fractionnaires ont été créés par l'esprit humain
(Dedekind).

Et maintenant que conclure de 1a sur le plan de 'apprentissage et de
I'enseignement ? Il nous semble intéressant d'aborder franchement dans les
classes ce que nous avons appelé ci-dessus les contradictions de la pensée
commune dans sa premiére organisation. Ces contradictions vaincues don-
nent son plein sens a la théorie abstraite et seule leur connaissance peut
éclairer les limites d'applicabilité de celles-ci aux situations particuliéres.

Si I'on accepte cette conclusion, deux de ses conséquences doivent
étre envisagées.

La premiére est qu'il faut renoncer  'ambition généreuse des promo-
teurs des mathématiques modernes d'enseigner d'emblée aux éléves des
connaissances définitives. Papy (1972) écrivait : « il y a moyen d'aller
directement de la connaissance commune aux structures et au point de vue
moderne ». On peut croire au contraire que sur le chemin qui conduit aux
grandes structures mathématiques se trouvent beaucoup d'obstacles signi-
ficatifs qu'il vaut la peine d'affronter et de ranger dans sa mémoire.

La seconde est que, puisque les rationnels ne sont pas « dans la nature »,
ne sont préfigurés dans la pensée commune que par morceaux incompatibles,
il faut renoncer a une pratique assez fréquente dans I'enseignement : présenter
comme ayant une portée générale un modele particulier d'un concept abstrait.

295



ICME-7 SELECTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

Par exemple, on pensera avoir montré vraiment ce qu'est 3 en identi-
fiant cette fraction aux trois quarts d'un tout (une tarte, un béton, ...). On
oublie en ce faisant que 3 apparait aussi lorsqu'on partage 3 tartes entre
4 amis. On oublie (ou peut-étre, pour ne pas perturber les enfants, on s'efforce
de le camoufler...) le fait qu'on ne peut pas multiplier deux fractions con-
crétes de ce type : qui a jamais pu multiplier un morceau de tarte par un
morceau de tarte ? On pourrait développer cet exemple et en donner beaucoup
d'autres. Les contradictions forment obstacle 2 la construction des rationnels
abstraits, mais on peut croire que ces obstacles sont bien plus pernicieux
lorsqu'on les ignore. Car alors les éléves passent par des situations embar-
rassantes, avec en plus le malaise de ne pas comprendre ce qui leur arrive et
le risque de conclure que les mathématiques sont une science qui prend les
libertés les plus étranges avec la réalité, en somme une science arbitraire.
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MATHEMATICS IS A LANGUAGE

Fritz Schweiger

Universitit Salzburg, Austria

MATHEMATICS AND LANGUAGE

Recent years have seen considerable interest in the relationship be-
tween language and mathematics. It is not possible to quote a representative
sample of the relevant literature, but some cornerstones to be mentioned are
the Nairobi Report (1974), the Seminar-cum-Workshop (1984), reports pre-
sented at previous International Congresses on Mathematical Education
(especially ICME-4, 1980), and the recent publication, Language issues in
learning and teaching mathematics (Davis & Hunting, 1990).

I will mention mathematical linguistics first: the attempt to apply
mathematical methods to linguistic problems. Besides being of theoretical
interest, this has been an important issue in machine translation, artificial
intelligence, and so on. Investigations in syntax and semantics, which use
the theory of formal languages and automata theory and programming lan-
guages (such as BASIC, PASCAL, LOGO, C, ...), can be seen as another
bridge to mathematics. Surprisingly the findings of mathematical linguis-
tics have not had much impact on mathematical education.

Next the language of mathematics, the nowadays elaborated special
language in which mathematical ideas, theories, and algorithms are ex-
pressed, comes to mind. This language has developed a special written form
which has turned out to be more influential than spoken mathematical lan-
guage.

Another issue is teaching mathematics in a language which for the
learner is a first or second (or even third) language, especially in the case of
ethnic minorities and indigenous groups. Mathematics in its written form
seems to be only partially dependent on the (natural) language in which it is
expressed. Plane figures like [J, O, A, ... can be understood worldwide.
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The classical diagrams illustrating Pythagoras’ theorem can be understood
in the context of a textbook written in Japanese or German, Arabic or Tamil.
This situation is somewhat similar to the almost universality of the pictorial
codes used in airports and railway stations.

At an advanced level (when memory has already stored suitable
environments) a lot of meaning can be communicated “language-free”
(without the need to know the words):

d—sj‘—;‘—i = COS X, J;c;‘) = a‘;{w

Anyone who has given a lecture in a foreign language knows the uneasy
feeling when one is writing down some symbols but is unable to find the
proper words. Expressing symbolic statements in oral language has an
intrinsic complexity (which is comparable to the complexity experienced
when one has to generate such a formula with a text editor on a computer).
In the mother tongue one is not aware of this point but in a foreign language
one feels it. Therefore it seems reasonable to ask: Is there a connection
between learning mathematics and learning a foreign language? One probable
difference comes to mind: Learning a second language seems to be closer to
the acquisition of a first language and may be influenced by the experience
of first language acquisition.

Teaching and learning are parts of the general problem of mathematics
and communication. Although language clearly plays a crucial role in all
problems related to communication skills, classroom communication and
reading mathematical texts, in considering mathematics I have to omit the
important areas of research which center on social or psychological aspects.
My point of view will be basically that of communicating through math-
ematics, that is, the use of mathematics as a tool of communication.

MATHEMATICS IS A LANGUAGE

Metaphorical concepts provide us with a partial understanding and
hide some other aspects. Therefore “Mathematics is a language” may be
seen as a structural metaphor in the sense of Lakoff and Johnson (1980).
Their definition states that one concept is metaphorically structured in terms
of another. It is easy to find several quotations which express this idea.
Mason (1985) says: “Algebra is firstly a language—a way of saying and
communicating.” Clearly in this quotation “algebra” may be replaced by
“mathematics”.

Also well known is Galileo Galilei’s view:

La filosofia & scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico 1’universo), ma non si pud intendere se
prima non s’impara a intender la lingua, e conoscer i caratteri, ne’ quali &
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scritto. Egli ¢ scritto in lingua matematica, e i caratteri son triangoli, cerchi,
ed altre figure geometriche, ... (Galilei, 1623, p. 631). [Philosophy is written
in this grand book—I mean universe-which stands continuously open to our
gaze, but it cannot be understood unless one first learns to comprehend the
language in which it is written. It is written in the language of mathematics,
and its characters are triangles, circles and other geometrical figures, ...]

To put it in different terms: Galilei considers mathematics to be the
way of communicating with nature. Since the days of Galilei the continuing
interplay between observations, experiments, and theoretical models which
are formulated in mathematical terms has not exhausted its usefulness. One
might add: To some extent, mathematics is the language we use in commu-
nicating about nature.

What is mathematics?

The statement “Mathematics is a language” invariably provokes two
questions: What is mathematics? What is language? Neither question can
be answered easily. I can assume that every mathematician, every mathe-
matics educator, and every mathematics teacher has his or her own picture
of mathematics. All these individual pictures obviously must have some-
thing in common otherwise communication about mathematics would be
impossible. It is a challenge for education to provide a common core of
mathematical ideas which make it possible to appreciate the role of mathe-
matics in our society and culture.

I will take the broad view of mathematics as emphasized in the recent
investigations called “ethnomathematics”: Mathematics is a basic compe-
tence of mankind. It starts with a whole range of abilities which some
educators would call “pre-mathematical”: counting and ordering, recognition
of patterns and symmetries, generation of patterns and structures, use of re-
cursive procedures (which is closely related to counting) and algorithms
(repeated actions to achieve some goals), and the construction of models
and their use. As far as we know, in all human cultures, back to the early
Stone Age, we find traces of these abilities. There have been some statements
that certain tribal communities lack an elaborated system of number words
but closer investigation has shown that the matter is in fact more complicated:
the skill of recursive procedures is present, as Watson (1990) has emphasized
recently in the case of Australian aboriginal cultures. She refers to the gurrutu
system of classification used in the Yolngu communities. And there is no
doubt that geometry has accompanied humanity since its beginnings. Clearly
this has something to do with a sense of beauty as well as being rooted in
the intrinsic features of arts and crafts, like making weapons, baskets and
shelters.

Let’s mention logic! Logical thinking seems to be a syntactical ab-
straction of causal or temporal relations. Any myth tells us something about
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the origin of certain peculiarities of our life: why there are both men and
women, why we must face death, what are the origins of diseases, sin and
evil. These narratives may have been told to help mankind to cope with an
environment both friendly and hostile. Consider statements involving tem-
poral chaining, such as: If the snow melts, then spring will come and then
hunting will be easier, or some fish will show up, or fruit trees will blossom,
and so on. The rhythms of sunrise and sunset, shorter and longer days, full
and new moon were observed. Calendars were born. Probably the idea of
applying the syntax of causal and temporal chaining to arithmetic and ge-
ometry was the origin of mathematics as we know it. Logical thinking has
been indispensable for the development of mathematics. In return mathe-
matics has been applied to logic, giving birth to a new branch of mathematics:
mathematical logic.

Mathematics is present at various levels and in different environments.
So is language. Language is a continuum, from baby talk to elaborated
speech, and includes novels and poetry as well as scientific articles. A conver-
sation in a cafeteria has something in common with a drama by Shakespeare.

What is language?

If I were writing this paper in French I would have a problem in
translating its title.

“Les mathématiques sont-elles un langage ou une langue?” In French
“langue” means the idiom of a group of people like English, French, or
Inuktitut. One also says “langue maternelle” for “mother tongue” (which is
not so strange because “langue” originally means “tongue”, an important
part of our speech organ). Clearly mathematics is not a language like Eng-
lish, French, or Inuktitut. One can convey and express mathematical ideas
in these languages. The same mathematical content can be encoded in dif-
ferent languages with the helpful addition of diagrams and symbols.

One may replace the symbols as long as the decoder knows or can
guess the encoding rules: The statement

dsinx
=COSX
dx
may also written as
sin’y = cosy

The conventionality of signs is quite clear, but there are practical and
educational limits to their proliferation. Communication needs memory ca-
pacity. The need to change symbols is a burden. “Good” symbolism may
even reveal striking similarities. Some of these similarities can nowadays
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only be recovered by historical or linguistic considerations. Capital Greek
Y (sigma) is related to sum, capital Greek I (pi) is reminiscent of product.
The integral sign [ is a fossilized form of an S for sum, the operator 9 is an
old hand-written d, standing for derivation. This is similar to the use of
letters in handling the menu of a computer. Very often C stands for “copy”,
F for “format”, and so on. There has always been a claim that mathematical
symbols are the last stage of a triad: rhetorical (expression in vernacular)—
syncopated (use of abbreviations)—symbolistic (use of symbols). The
evolution of mathematical symbolism is a fascinating topic of its own.

In French “langue” also means a particular mode of expression, as one
speaks of the “language of poets” (“la langue des poétes”). In the same
sense, mathematics is obviously the language of mathematicians, and at
least part of the language of physicists, engineers, and others.

The other French word, “langage”, also expresses a variety of mean-
ings. Basically “langage” can be described as the ability of mankind to
express ideas and to communicate. Bolinger and Sears (1981) stress the
importance of language this way: “Whatever success a culture has is largely
due to the understanding and cooperation that language makes possible.”
Langacker (1967) says, “Most human knowledge and culture is stored and
transmitted in language.”

One may ask about the relationship between “langue” and “langage”.
Following Martinet (1970) one can say: Any language, in the sense of “lan-
gue”, is an expression of language, in the sense of “langage”. Any (natural)
language like English, French, or Inuktitut is a tool of communication, a
special encoding of the human competence for expressing ideas, feelings,
and thoughts. Therefore, basically, any (natural) language serves the same
purpose. To some extent, switching from one code to another code, namely
translation, is always possible.

Natural languages can be very different and have changed dramatically
throughout history. Language as a basic human competence has not changed
so much. Mathematics can be seen as a powerful extension and refinement
of this competence.

SOUNDS, WORDS, SENTENCES, AND MEANINGS
Sounds, letters, and symbols

Linguistics traditionally distinguishes different levels of language
activity: phonology, lexicon (words), syntax, and semantics.

Obviously, in its oral form, mathematics has not added new sounds to
languages generally. In linguistics it is generally accepted that sounds are
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the basic units of any natural language. This priority does not change if one
uses spoken language to express mathematical ideas, but the phonetic system
of any language will not give insight into the specific role of mathematics.

It is entirely different if we look at mathematics in its written form.
Here, one basic property of the surface structure of natural languages can
be questioned, namely their linearity. Speech sounds and words follow in a
linear order due to their sequential realization in time. This principle is well
observed in the more elaborated writing systems: alphabetic, syllabic or
ideographic. Clearly there are some exceptions: in some Indian scripts like
Devanagari (which runs from left to right) the sequence ki is written i + ka,
but this can be seen as a special cluster. Mathematical texts normally follow
the linearity of their contextual environment, but sometimes the order of
reading or writing is just conventional and basically not linear, as in complex
formulas and diagrams:

1
fxzdx, X
0

G—> G/N

/
/
7/
/
»

H

The order of operators is conventional: compare x* and sin x! If one
uses a pocket calculator, in both cases one normally has to enter x first and
then to press the appropriate function key. A top-down strategy would start
with the functions “square” or “sine” first and then enter the argument x.

The most obvious fact is that mathematics has introduced a symbolic
notation (mostly on the basis of a Western heritage). It uses the letters of
the Roman alphabet a,b,c, ..., x,y,z, in such a way that for the layman the
use of letters has become almost synonymous with mathematics. Clearly
other fonts (gothic, script, and so on) are often used freely (but are pro-
nounced differently). Mathematics also uses Greek letters a, B, v, ... and at
least one Hebrew letter R (aleph) (for the cardinality of countable sets) and
one Cyrillic letter ILI (for the Shafareviz group in algebraic number theory).
But there are also subscripts, superscripts, and diacritics like ~,”,7, and *.
Furthermore think of 4, f, U, N, J—, ... ! The knowledge of a certain number
of these symbols and their correct contextual interpretation is necessary to
appreciate the communicative power of mathematics. The use of symbols
is nowadays a characteristic of mathematical texts. The statement of
Pythagoras’ theorem in classical Greek contains fewer symbols than the
statement of the same theorem in a modern textbook:
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Ev Tois opdoywviows Tpuywvols To amo tms v opdmy yeviav
UTTOTELVOVO TS TAEVPRS TETPAYWVOV LOOV ECTL TOLS QO TWV TNV 0pIMV
YOVLAY TEPLEXOUT OV TAEVPWV TETpaywYoLs. Eote Tpuywvov opuoywviov
70 ABT" 0pdmv exov mmv vwo BAT yoviav eyw otv To amo tqs BT
TETPAYWVOV LOOV €0TL TOLs amo Tov BA, AT tetpaywvos. [Liber I, 47.
Quotation from Euclidis Elementa (Eukleides, 1969)].

It is especially interesting that the familiar form a% + b? = ¢2 is not
given. But in this more compact version one has to know the meaning of the
letters a, b, and c in this context as well as the fact that a2 stands for a-a
Definitions are condensed to a single letter or to a small string of letters and
their combinations are used to create new meanings, which has serious im-
plications for the use of short term and long term memory.

A comparison with musical notation comes to mind. Musical notes
can be read and understood (linearity also breaks down here), but to get the
full picture—active decoding by playing a passage on the piano, for exam-
ple—is very often necessary. Understanding derived from the pictorial
representation very often needs active reinvention in both music and math-
ematics. Mathematics may be seen to be easier in this respect. One may
proceed “allegro” or “andante” according to ability. Teachers should give
students more freedom in this respect.

Words

There is no doubt that mathematics has developed a special vocabulary
of its own. One can distinguish the following basic processes:

* The use of words with a specialized meaning, different from their
meaning in everyday language : vector, angle, set, function ...

* The use of words in a metaphoric sense: space, collection, normal,
regular ...

* Words arrived at by translating words from other languages: “field”
(French “champ”).

Word building processes:
* Compounds:

type A: Abelian group (An Abelian group is a special type of group.),
complete metric space (A complete metric space is a special
type of metric space.)

type B: complex number (There is no received definition of number
such that complex number is a special type of number. Com-
plex number obviously is a structural metaphor in the sense
of Lakoff and Johnson (1980). Historically complex numbers
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were seen as new numbers. The notion of number provides a
partial understanding only.), metric space, vector space.

» Derivations: to rectify, to zornify (i.e., to apply Zorn’s lemma).
¢ Neologisms: homomorphism, homeomorphism, morphism (!).

There are also prefixes and suffixes like co- and contra- or hyper-.
The word “million” is derived from Italian “miglione”, a great thousand by
the use of the magnifying suffix “one”. A reanalysis then led to billion,
trillion, etc. A recent formation is fractal, derived from fractional: “bro-
ken”!

Clearly my comments here are restricted mainly to English. Similar
observations could be made for French, Italian, Spanish, or other languages.
One wonders how languages of quite different types, such as Arabic,
Japanese, or Hindi, deal with the growing amount of mathematical vocabu-
lary (See e.g., Seminar-cum-Workshop, 1984). Outsiders may think that all
mathematical terms are coined as descriptive terms like injective, or
coproduct (from product). But very often, at least at the time when these
words were coined, emotions or affects or humor played a role: the classi-
fication of finite simple groups includes a group called a “monster” and
another one is called “baby monster”. Transcendental numbers had at least
some metaphysical flavor. The term “square root” is a metaphor from botany.
The words “square” and “cube” for a? and a> reflect the use of geometric in-
tuition in ancient mathematics. Clearly this belongs more to semantics than
to (formal) derivational processes.

Syntax

At first glance it seems there should be no special syntax of mathe-
matics since a mathematics book written in Japanese belongs to the corpus
of Japanese texts. A speech delivered in French clearly uses the devices of
French syntax, and so on. A second look reveals that mathematical texts
(more than oral utterances dealing with mathematics) employ a restricted
syntax. Certain sentence types prevail in mathematical texts: equational
statements or conditional chains. It has been observed that nominalizations
and the passive voice are used much more than in everyday language (See
e.g., Laborde, 1990). At least in the Western European languages the sub-
junctive mood is employed frequently: “Let us assume ... R denote the field
of rational numbers ... G be an Abelian group ... ”. Mathematical texts are
the literature of mathematics. English texts belong to English language in
so far as they say something about the structure of the English language! A
third look shows that mathematics has already developed some syntactical
structures of its own. The syntagma a + b = ¢ is well formed but ab + c = is
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not well formed (as a complete sentence in every day arithmetic). The

formula
¢ L _a?
2w

is well formed (and correct).

The formula

cn[{,

-
27

is less well formed. A basic rule of mathematical syntax is violated, namely
the anaphoric use of the same letter, although as in ordinary language some
errors do not impede the communicative power.

Finally, mathematical language has not developed word classes (such
as nouns, verbs, adjectives ... ) of its own with the notable exception of
number words and quantifiers that are fundamental to mathematics. It is
worth mentioning that these word classes display remarkable syntactical
diversity in the languages of the world. Number words sometimes behave
like adjectives, but also like nouns. In a number of languages, mainly found
in Asia, the choice of number words depends on the noun to be quantified.
There are no grammatical categories (like person, gender, number, tense,
mood, or aspect) which are specific to mathematics. Again mathematical
texts use the devices given by the “matrix language”. It is well known that
the different organization of natural languages causes considerable problems
in understanding mathematical texts which may also be of importance for
teaching and learning (e.g., devices for quantification or negation).

Semantics

The semantics of mathematics is what makes mathematics a powerful
language. The dialogue with nature, as Galilei metaphorically says, is only
possible if mathematical language transports meaning. The symbols and
words may be exchangeable and may vary considerably from language to
language (according to the language in which a mathematical text is written
or spoken).

The communicative power lies in the semantics. An expression like
Z = xy can communicate an infinite set of meanings. Basically it can be
interpreted as follows: The quantity z depends linearly on both the quanti-
ties x and y. It is the prototype of a bilinear map. Very often substitution of
special symbols, depending on the context, is used:

U=iR, s=ct, T = pV,
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The exponential function ¢+ e is the vehicle of communication
about various problems of decay (radioactivity, atmospheric pressure,
dampening ... ). For measurements mathematics provides prototypes: Z,
discrete and linear; Z mod m (equivalently: any cyclic group of order m),
discrete and cyclic; R, continuous and linear; S! (the unit circle), continuous
and cyclic. The real line R is used as the mathematical model for time which
flows from — » to + ». Everyday language structures time as an object
which moves in the opposite direction: the coming weeks, the preceding
years, time has passed ... .

Shapes are classified roughly as triangles, squares, rectangles ... in
the plane, as parallelepipeds, pyramids, cylinders, cones, spheres ... in space.

Recently the dialect of fractals was added to the mathematical toolkit.
I am not sure if it is Nature’s preferred dialect, as Voss (1988) claims since
coming generations may recognize other dialects which are still unknown
to us.

Bolinger and Sears (1981) characterize the linguistic aspects of
mathematics as follows:

Another specialized language is mathematics ... Its specialty is making pre-
cise the way we deal with things in space—amorphous space, where we group
things together by addition and multiplication, separate them by subtraction
and division, and compare them for equality and inequality, and structured
space, where we locate them in geometrical ways. Mathematics is less lan-
guage-dependent than logic is; in fact, it is an alternate route to a special part
of the real world.

Centuries of research have enriched the meaning of mathematical
concepts. The classification of crystallographic groups reveals facts about
the possible arrangements of molecules; the existence and uniqueness
theorems for functional equations and differential equations govern the
outcome of models. More or less any application of mathematics is based
on the meaningfulness of mathematical concepts. There has been some
argument that not only mathematical language, but mathematics itself, has
been strongly influenced by the structure of Indo-European languages.
Especially with a side view on logic and foundations it was said “If Aristotle
had spoken Chinese or Dakota, his logic and his categories would have been
different.” (Quoted in Bolinger & Sears, 1981, p. 139). Clearly there is some
truth in such a statement; but, on the other hand, mathematics seems to be
built on a bundle of human abilities which are universal. Every culture has
contributed, to some extent, to the variety of mathematically-based arts and
crafts. This has been documented by the recent emphasis on ethnomath-
ematics and ethnogeometry. Furthermore linguistic research has hinted at
the existence of language universals, which is not just an empirical fact but
seems to point at deeper rooted structures of linguistic competence.
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ACQUISITION OF MATHEMATICS AND LANGUAGE

When I say, “Mathematics is a language”, I am considering language
as an instrument of communication. Mathematics is an extension of the
communicative power of any natural language like English, French, Cree or
Tamil. The acquisition of writing, the knowledge of literature, and learning
a foreign language are important extensions too.

The capacity for acquiring a language as a first language is in fact
remarkable. It has often been observed that adults are not capable of learn-
ing a language in the natural, spontaneous way that children do. If one keeps
in mind the complexity of the grammars of natural languages this is really
astonishing. It seems clear that mathematics is not learned in the way chil-
dren acquire their mother tongue. But wait! This is not entirely true. The
basic competencies, like counting, ordering, recognizing patterns and struc-
tures, the use of recursive processes, are acquired in a similar way. We
know from language acquisition that linguistic input is necessary for chil-
dren to build up their own competence. Such an input is clearly also crucial
for counting, ordering, designing, recognition of patterns, and so on. Writ-
ing and reading are normally taught in a controlled way and are seen
nowadays as an obvious extension of linguistic capacity. The interesting
question about the extent to which “natural” mathematical learning is pos-
sible is discussed in Robinson (1990).

Foreign languages can be learned in two ways: in a “natural” way or
by controlled instruction. In both cases, age is very often claimed to be a
crucial factor: learning from simple exposure seems to be more successful
for young children only. For the other age groups controlled instruction
works much better. A critical account of the evidence supporting or ques-
tioning an age factor in language acquisition is given in Singleton (1989).
Obviously the situation for learning mathematics can be compared with learn-
ing how to read and write, with learning a musical instrument, or with
learning a foreign language. It is much easier to build up mathematical com-
petence at an early age.

Current linguistic theories claim that language acquisition can be
described as setting parameters in a language module (Roeper, 1988). So,
learning a second language essentially means resetting the parameters (Flynn,
1988). I would hypothesize the existence of a mathematics module which
interacts with the language module. Metaphorically speaking, it is a device
which enables the growing learner to decode and encode mathematical
messages. I do not know of any empirical investigations into a fact which I
have observed in university studies: anyone who is interested to begin
studying arts or humanities in his or her older years can successfully do so.
The only senior citizens I have met who were students of mathematics were
former engineers or mathematics teachers, which means they were already
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exposed to mathematical subject matter in their youth. People who have
successfully mastered a second language normally do quite well learning a
third or even a fourth language. (In the framework of the linguistic theories
mentioned before, resetting parameters is easier.) People who play a musical
instrument very easily adapt to an additional instrument. I have the feeling
that there are devices that are better installed at early ages: an interpreter
for foreign languages, a driver for musical performance, and last, but not
least, an interpreter for mathematics. (I do not claim that human thinking is
closely related to the way a computer works, but the metalanguage I use
uses ideas from computers as metaphors.) Clearly it should be possible for
highly motivated students to master mathematics at older ages too.

This hypothesis has an immediate consequence for mathematical
education. Mathematics is a basic educational component, not only due to
its importance for understanding and controlling our culture, but because a
lack of mathematical education could be a serious hindrance to continuing
tertiary education in natural sciences, or to entering a profession which needs
mathematics.
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MATHEMATICAL THINKING AND
REASONING FOR ALL STUDENTS:
MOVING FROM RHETORIC TO REALITY

Edward A. Silver

University of Pittsburgh, United States of America

The theme of “mathematics for all students” is not a new one. It has its
roots in compulsory education movements in many countries over 100 years
ago, and the writings of Dewey in the early part of the twentieth century
were influential internationally in focusing attention on universal access to
quality education (Ernest, 1991). Despite indications of historical interest
in the teaching of mathematics to all students, and despite the fact that
mathematics is often viewed favorably by a large portion of society in the
recreational contexts of games and puzzles (de Guzman, 1990; Howson &
Kahane, 1990), even a cursory review of the history of mathematics education
reveals that most students have definitely not found mathematics to be a
safe haven in their educational world. Throughout the world, mathematics
is the school subject most likely to be taught and learned poorly. Although
mathematics is taught for extensive periods of time in formal schooling, it
is often taught as if the primary instructional goal were to teach students to
dislike it and to fail rather than to grow in affection and continue to pursue
it.

Conventional instructional practices in mathematics have been so
effective in “weeding out” those who are not exceptionally mathematically
talented that too few students reach the end of the “pipeline” and enter
mathematical or scientific careers in many countries. In the United States,
this trend—which is dysfunctional for the growth of the academic discipline
of mathematics—has led in recent years to a serious re-examination of
mathematics education (National Research Council, 1989). As a result, there
is currently a great deal of reform rhetoric built around the possibility that
new forms of instruction can be invented to transform the current situation,
in which we have “mathematics for the few”, into a new one in which we
have “mathematics for all.”
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In general, previous attempts to provide universal access to math-
ematics have resulted in the creation of two forms of mathematics education:
one for social and economic élites, emphasizing thinking, reasoning, and
higher forms of mathematical content, and another for the rest of society,
emphasizing basic computation (Resnick, 1987). More recent discussions
of mathematics for all students (Boero, 1989; Freudenthal, 1991) have tended
to stress the need for all students to experience the more thoughtful aspects
of mathematics (e.g., reflective thinking, reasoning, problem solving), and
it is this version that is at the heart of this paper. The major goal of this
paper is to begin the process of connecting the rhetoric of “mathematics for
all” to unifying themes, to samples of promising practice, and to theoretical
formulations that may help advance our thinking as we continue school
reform efforts. The paper begins with a fairly brief review of the current
situation in the United States with respect to mathematical performance and
participation. Next a vision is sketched of some forms of instructional
practice that hold promise as purveyors of the new goals for mathematical
thinking and reasoning for all students. Finally, the implications for teacher
development are considered. The themes of communication, culture, and
community are stressed throughout as an argument is made for the building
of communities of collaborative, reflective practice both for students and
for teachers.

MATHEMATICAL THINKING AND REASONING
FOR ALL STUDENTS: THE CURRENT RHETORIC
AND REALITY IN THE UNITED STATES

Mathematics education in the United States finds itself in a state of
crisis related both to a low rate of student participation and to inadequate
student performance in mathematics. With respect to participation, data
available from recent national mathematics assessments (Dossey, Mullis,
Lindquist, & Chambers, 1988; Mullis, Dossey, Owen, & Phillips, 1991)
indicate that only nine of every one hundred graduating high school stu-
dents completes four years of college preparatory mathematics. With respect
to mathematics performance, results of national and international assess-
ments (e.g., NAEP, SIMS, IAEP) provide sobering statistics regarding the
impoverished state of American students’ mathematical proficiency, espe-
cially with respect to complex tasks and problem solving.

For those the educational system now serves least well, especially
females, the poor, and members of ethnic and language minority groups,
the situation is considerably worse.! For example, in urban schools serving

1 For a more complete discussion of mathematics education reform in the United
States as it relates to equity issues see Secada (1991) and Silver, Smith, and
Nelson (1993).
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economically disadvantaged communities, four of five students take no
mathematics beyond the minimum required for graduation. Further, NAEP
data indicate that less than half the students in urban schools take any
mathematics beyond one year of algebra, and one in five do not study algebra
at all. As far as performance is concerned, white males and some white
females from affluent families are the most likely to perform at high levels
in mathematics, while the vast majority of students are achieving at levels
substantially below international standards. Although mathematics achieve-
ment differences between majority and minority students have decreased
during the past two decades (Mullis, Owen, & Phillips, 1990), substantial
gaps still remain.

Many worry that the gaps in participation and achievement between
majority and minority segments of society pose a serious threat to the
economic and social well-being of the United States. This warning was
sounded by the National Research Council in Everybody counts, a report to
the nation on the state of mathematics education:

Because mathematics holds the key to leadership in our information-based
society, the widening gap between those who are mathematically literate and
those who are not coincides, to a frightening degree, with racial and economic
categories. We are at risk of becoming a divided nation in which knowledge
of mathematics supports a productive, technologically powerful élite while a
dependent, semiliterate majority, disproportionately Hispanic and Black, find
economic and political power beyond reach. Unless corrected, innumeracy
and illiteracy will drive America apart. (1989, p. 14)

There is a compelling need to improve mathematics course enrollment
and mathematics achievement for all American students, with special
attention to students in poor communities, and at all grade levels, since the
trajectory for high school participation and performance in mathematics is
set well before ninth grade (Oakes, 1990).

Although recently promulgated in the United States as a national
education goal, increasing mathematics participation and improving the
quality of performance of all American students is a formidable challenge.
Adding to the challenge is the need to address the matters of participation
and performance in a manner consistent with the spirit of the more general
mathematics education reform efforts, which have been stimulated by NCTM’s
publication of the Curriculum and evaluation standards for school mathe-
matics (1989) and the Professional standards for teaching mathematics
(1991). These reform-oriented reports paint a portrait of school mathematics
with textures and hues that emphasize thinking, reasoning, problem solving,
and communication rather than memorization and repetition. The complex
challenge before us is to move forward with an agenda simultaneously aimed
at achieving equity and access to good mathematics instruction, and

313



ICME-7 SELECTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

reconceptualizing such instruction around mathematical thinking and
reasoning rather than memory and imitation.

Some have argued that what is needed is a new form of education
emphasizing higher forms of literacy for all students (e.g., Brown, 1991;
Resnick, 1987). Such an education would ensure that students would not
only be able to read, write, and perform basic arithmetic procedures, but
also would know when and why to apply those procedures, would be able to
make sense out of complicated situations, and would be able to develop
strategies for formulating and then solving complex problems.

The complexity of providing high-literacy education for all students
can be appreciated by considering some of the pernicious legacies of con-
ventional school mathematics instruction. Consider, for example, reports
by researchers (e.g., Resnick, 1988; Baranes, Perry, & Stigler, 1989;
Schoenfeld, 1991) that many children come to see school mathematics as a
domain which is disconnected from sense making and the world of every-
day experience. One specific example of this dissociation comes from a
series of studies that my colleagues and I have conducted over several years
(Silver & Shapiro, 1993), in which we have examined children’s difficul-
ties in solving story problems involving division with remainders, such as
the following problem that appeared on a national assessment and was suc-
cessfully answered by only 24% of 13-year-old students: “An army bus holds
36 soldiers. If 1,128 soldiers are being bused to their training site, how
many buses are needed?” (National Assessment of Educational Progress,
1983).

In one recent investigation (Silver, Shapiro, & Deutsch, in press), we
asked students to answer a problem similar to the one asked by NAEP, and
to provide an explanation for or an interpretation of their answer. We found
that students’ interpretations of their answers dealt more with technical
mathematical concerns than with sense making. Thus, for example, many
students were content to propose answers that involved a fraction of a bus,
even though they knew that buses do not have fractional parts, because the
technical process of computation produced such a fractional answer. The
observation that most children divorced sense making from mathematical
activity was clear not only from the answers they gave but also from the
explanations they did not give. Reports from their teachers, who discussed
the problem with children after they handed in their papers, suggested that
some children appeared to be capable of more sense making than was evi-
dent in their written responses to questions, but that they did not see their
“sensible” answers (e.g., arguments based on assuming that some travellers
would be absent, or that people could be arranged to accommodate larger
numbers on a bus, or that a mini-bus or van could be used as the “fractional
part” of a full bus) as having any validity in the context of responding to a
mathematical problem.
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Student performance was clearly adversely affected by the dissociation
of sense-making from school mathematics, which points to the need for
more instructional attention to sense-making as a part of instruction, but the
results of our investigation identified another issue that must also be
addressed in order to improve student performance. Specifically, students
had great difficulty in providing written explanations of their reasoning or
justifications for their answers. Although some students may have been
somewhat more capable of explaining their thinking and reasoning orally,
the finding suggests the need for explanations, especially written ex-
planations, to become a more prevalent feature of school mathematics
instruction. Unless and until solution explanations and interpretations
become a regular item on the menu of instructional activities in mathematics
classrooms, it is unlikely that many students will spontaneously engage in
such activity when it is appropriate to do so. And if students continue to
dissociate thoughtfulness from the solution of problems, there can be little
hope of substantially improving the poor mathematics performance of
American students.

Another challenge to providing a high-level mathematics education to
all students relates to the forms of instructional practice that currently domi-
nate school mathematics. As many studies have suggested (e.g., Stodolsky,
1988), conventional mathematics instruction emphasizes students learning
alone, producing stylized responses to narrowly prescribed questions for
which there is a single answer, which is already known by the teacher and
which can and will be validated only by teacher approval. At all educational
levels, drill-to-kill or assembly-line instruction, consisting of repetitive drill
and practice on basic computation and other routine procedures, has char-
acterized school mathematics, especially in impoverished urban and rural
schools. Although minority students have made achievement gains over the
past two decades, the gains have generally come from improved perform-
ance on those portions of tests related to factual knowledge and basic
calculation skills. Despite the positive trend in reducing intergroup per-
formance differences, data regarding instructional practices suggests that
students assigned to the lower tracks of many high schools (predominantly
ethnic minority and poor students) tend to receive less actual mathematics
instruction, less homework, and more drill and practice of low-level factual
knowledge and computational skill than students assigned to middle and
higher tracks (Oakes, 1985). Although these instructional practices may be
sufficient to support the narrowing of performance differences on tasks re-
quiring only basic factual knowledge or on routine computational skills,
they are unlikely to lead to improved performance on more complex tasks
requiring mathematical reasoning and problem solving.

An effective response to this current situation will require solid com-
mitment to a revolutionary invention and implementation of new forms of
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educational practice—classrooms as communities of collaborative, reflec-
tive practice—in which students are challenged to think deeply about and to
participate actively in engaging the mathematics they are learning. In such
communities, students not only listen but also speak mathematics them-
selves—discussing observations, explanations, verifications, reasons, and
generalizations. In such classrooms, students have opportunities to see, hear,
debate, and evaluate mathematical explanations and justifications. The class-
room becomes a place in which the emphasis is less on memorizing
procedures and producing answers and more on analyzing, reasoning and
becoming convinced. Surely, some exceptional examples of such classrooms
exist today in the United States and in many other countries, but our chal-
lenge is to make these kinds of classrooms the norm rather than the
exception.?

CLASSROOMS AS COMMUNITIES OF COLLABORATIVE,
REFLECTIVE MATHEMATICAL PRACTICE

In the book, Thinking through mathematics (1990), Jeremy Kilpatrick,
Beth Schlesinger, and I sketched a picture of mathematical classrooms as
places rich in communication of and about mathematical ideas, places in
which justification and verification were emphasized, and places in which
teachers and students engaged in authentic forms of mathematical practice.
In short, we attempted to portray a vision of mathematics classrooms as
communities in which students were engaged in collaborative, mathematical
practice—sometimes working collaboratively with each other in overt ways,
and always working collaboratively with peers and with the teacher in a
sense of shared community and shared norms for the practice of mathematical
thinking and reasoning.

Agreeing with Bishop (1988), we took classrooms to be arenas in which
students develop their own interpretation of mathematical culture and values,
and we argued that if school mathematics is to become more authentic in its

2 1tis not assumed that the entire solution is contained in the educational propos-
als advanced in this paper. For example, there are closely related issues of
knowledge ownership and cultural identification that are not addressed herein.
Moreover, there are important, interrelated social and economic issues that must
also be addressed in order to attain a truly equitable solution. For example,
urban and poor schools are more likely to serve populations whose needs are not
being met in the areas of health care, housing, transportation, and economic and
personal security. As a consequence, poor urban students are less likely than
their more affluent suburban counterparts to attend school regularly, to have
available energy and attentiveness to focus squarely on an academic agenda,
and to be sufficiently free of family and other responsibilities to study well at
home. Although it is not possible to deal with these issues in this paper, their
absence should not be construed as being due to ignorance of their importance.
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relationship to the culture of mathematical practice, then mathematics
education will need to pay more attention to the social nature of mathematical
knowing, and that classrooms will need to be viewed as communities of
mathematical thinkers. Rather than giving a myopic, naively romantic
portrait of classrooms as places inhabited by little mathematicians, however,
we tried to depict these classrooms simply as places where mathematics
was connected in fundamental ways to important cognitive activities that
have validity from a disciplinary perspective. As the title of the book implies,
the central message was that mathematics classrooms should become places
in which students regularly engaged in thinking. Since more than half of
American students assert the belief that learning mathematics is mostly
memorization (Mullis, Dossey, Owen, & Phillips, 1991), a shift in pedagog-
ical emphasis more fundamentally toward thinking rather than memorizing
would be quite revolutionary.

The view of mathematical knowing as a practice (not in the sense of
drill-and-practice but rather in the sense of professional practice) is supported
by recent trends in the philosophy of mathematics. In particular, Lakatos
(1976) has portrayed a social process of debate to illustrate the nuances of
mathematical discourse and culture, and Kitcher (1984) has developed an
epistemology of mathematics based on the importance of shared meanings
and not simply shared results. This work suggests the view, that to understand
what mathematics is, one needs to understand the activities or practices of
persons who are makers or users of mathematics. This deviates from the
more conventional view that understanding mathematics is equivalent to
understanding the structure of concepts and principles in the domain.

For many purposes, it has been and will continue to be valuable to
think of mathematical knowing in terms of the acquisition of cognitive struc-
tures and procedures, but this view provides an incomplete account of
mathematical experience, and it fails to provide an adequate theoretical base
for new forms of pedagogy. The complementary view, emphasizing math-
ematical practice, clearly links to current calls for changes in pedagogy,
which emphasize reasoning, problem solving, and communication, since it
suggests that one should focus on the activities in which students engage in
mathematics classrooms as well as the relationship between those activities
and the characteristic practices within communities that make or use math-
ematics. Combining these views, the goal of school mathematics would be
the development of a richly textured knowledge base, in which knowing is
connected to important intellectual tasks and activities, rather than the com-
munication of decontextualized and abstract skills and concepts.

Viewing mathematics as a practice as well as a knowledge domain
challenges us to examine and accept social and cultural aspects of mathemat-
ics and mathematics education that have been largely ignored in the United
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States.3 The popular image of a mathematician is someone isolated in a
paper-strewn study, but sociocultural perspectives suggest that mathematical
knowledge is as much socially constructed as it is individually constructed,
and that the practice of mathematics is fundamentally a social practice. In
brief, the argument is that mathematics is created using socially appropriated
tools and conventions and that ideas attain validity only when they are
accepted within the mathematical community (Tymoczko, 1986). The
controversy and disagreement over the acceptability of the computer-based
solution for the famous, and long-unsolved “Four Color Problem” (Appel &
Haken, 1977) provides a contemporary illustration of this process (Peterson,
1988). The history of mathematics teaches us that communication and social
interaction have played fundamental roles in the development of mathemat-
ical ideas.

Although conventional mathematical pedagogy has generally ignored
the role of communication in learning mathematics, except in the sense of
providing technical vocabulary and symbolism as components of a language
of mathematics, there is an increasing awareness of the centrality of
communication and discourse in mathematics education (Barnes, 1976; The
Mathematical Association (UK), 1987; NCTM, 1991). As was noted above,
students need opportunities not simply to give answers, but also to explain
their thinking—to discuss what they have observed, why procedures appear
to work, or why they think their solutions are correct. Within mathematical
communities, communication in the form of verification and justification is
natural. When students are challenged to think and reason about mathematics
and to communicate the results of their thinking to others orally or in writing,
they are faced with the need to state their ideas clearly and convincingly.
Thus, communication lies at the heart of activities that have mutual benefits
for the individual student and for the community to which the student
belongs. Moreover, the act of communicating one’s ideas within the cultural
norms of mathematical practice provides both need and value for mathe-
matical reasoning, as classrooms are transformed into arenas in which
convincing and justifying become for students a central focus of attention
rather than a peripheral matter. In such classrooms one would expect to see
communication fostered through the use of open-ended problems, which
lead to discussions of multiple interpretations and multiple solution methods;

3 Mathematics educators outside the United States have been much more alert to
a broad range of sociocultural aspects of mathematics education. For example,
Bishop (1988) has provided an extensive account of a culturally-based view of
mathematics education; D’ Ambrosio (1985) has written eloquently about the
need to consider mathematics from the perspective of the culture of the people
who make it, use it or are asked to learn it; and Mellin-Olsen (1987) deals with
issues of cultural transmission in his consideration of power relationships and
ownership of mathematical knowledge.
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the use of journals, which allow students to communicate their reflections
on their mathematical activity; and work in pairs or small groups, which
provide contexts that promote communication and collaboration.

Other authors (e.g., Lampert, 1987; Greeno, 1988; Lave, Smith, &
Butler, 1988; Cobb, Wood, & Yackel, 1993) have also provided interesting
visions of what a more social view of mathematics classrooms might look
like. One general, unifying feature of these accounts is the view of mathe-
matics classrooms as places where students, under the careful tutelage of
their mathematics teacher, engage in doing mathematics rather than having
it done to them. As Schoenfeld (1991) has argued, school mathematics has
suffered from its inability to provide students with experience in and an
appetite for collaborative mathematical thinking.

There are important consequences for teachers in the emerging view
of mathematics classrooms as environments for collaborative mathematical
thinking. Not only will teachers need to be skillful in orchestrating the
dynamics of such classrooms but they will also need to be deeply knowl-
edgeable about the mathematics they are helping children learn and capable
of modeling reasonably good mathematical thinking and reasoning. These
increased requirements for teachers represent a major challenge for reform
efforts in mathematics education.

In order to realize a vision of mathematics classrooms as communities
of collaborative, reflective practice for students, teachers will need to become
more confident and competent in their own ways of knowing and doing
mathematics. To orchestrate a group engaged in mathematical discourse, or
to help individuals or groups formulate and revise learning goals or problem-
solving approaches, a teacher must possess broad, deep, flexible knowledge
of content and pedagogical alternatives. Without such knowledge of content
and pedagogy, teachers will be unable to quickly reformulate goals and relate
students’ conceptions to the characteristic intellectual activities, knowledge
structures, and cultural norms shared within the larger mathematical commu-
nity. Unfortunately, teachers in the elementary and middle grades, though
often quite flexible and child-centered in their pedagogy, usually possess
quite limited knowledge of mathematics; and secondary school mathematics
teachers, although generally more knowledgeable about mathematics, often
possess only a limited array of conventional pedagogical practices and tend
to resist change.

Among the many distinctive features of professional practice identified
in the Professional standards for teaching mathematics (NCTM, 1991,
p- 168), are “experimenting thoughtfully with alternative approaches and
strategies in the classroom”; “reflecting on learning and teaching individually
and with colleagues”; and “participating actively in the professional
community of mathematics educators.” The current situation is typically
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quite different—teachers working in isolation and with little or no motivation
to change. For example, a recent survey of mathematics teachers found that
only about half of the teachers at all grade levels saw their colleagues as a
source of information on new teaching ideas and even fewer saw professional
meetings as a source of such ideas (NCTM, 1992).

What mechanisms might be needed to assist teachers as they assume
more complex roles and responsibilities? As was the case when we ana-
lyzed the situation for students, the answer is likely to be found in a form of
education that is different from what currently exists. In the conventional
practice of teacher education and teacher development, the three major re-
sources and activity structures are (a) preservice teacher preparation in
content (which is typically quite meager for elementary and middle school
teachers and which is often disconnected and decontextualized for second-
ary school teachers) and pedagogy (which is usually quite limited for teachers
at all levels); (b) inservice staff development sessions, which are typically
single-session encounters with little or no support for implementation; and
(c) university-based, graduate degree programs, which often have an aca-
demic rather than an applied focus, or which are quite general. These
resources provide some support for teachers, but they are unlikely to be
sufficient in these times of shifting pedagogical emphases and increasing
intellectual demands in teaching. Helping teachers move beyond a pedago-
gy of isolation and recitation is likely to require new forms of assistance.

BUILDING COMMUNITIES OF COLLABORATIVE,
REFLECTIVE PRACTICE FOR TEACHERS

What is needed is a new way to think about teacher education and
teacher development as the building of communities of collaborative, re-
flective practice. In this view, teachers would come to see themselves as
being joined with colleagues within their school in an effort to provide quality
mathematical experiences for their students. Teachers would plan together,
discuss each other’s teaching practice, develop consensus on ways to eval-
uate their students’ thinking, and support each other through difficult points
in the change process. A simple version was provided in Thinking through
mathematics (Silver, Kilpatrick, & Schlesinger, 1990) in the story of Mrs.
Holmes, whose entry into new forms of pedagogical practice was closely
associated with the formation of community, first with a single colleague,
Mr. Jarvis, and then with a larger group of teachers at her school. Within
this community, Mrs. Holmes was able to discuss and reflect on her peda-
gogical practices in ways that both enhanced and supported her efforts to
improve her teaching.

Moving beyond the school, teachers would also see themselves as
members of collaborative, reflective communities involving teachers outside

320



SILVER

their building—such as other teachers within the same school district or
even at the state or national level—and they would see themselves as
members of a larger, more extended community of educators trying to create
new forms of practice in mathematics education. This latter community
would include university teacher educators or researchers, curriculum
supervisors, and others who might not have classroom teaching responsi-
bilities but who could be available as intellectual partners and collaborators.
In these larger communities, teachers would actively reflect on issues and
contribute their individual and collective experiences.

The kinds of communities to which I refer do not simply involve mem-
bership in professional organizations, although such organizations can
provide a support base for the formation of real communities of practice,
especially since their communication mechanisms, such as meetings, jour-
nals and other publications, and newsletters, establish opportunities for
discourse among members. Beyond group membership, however, I am sug-
gesting a view of collegiality that is both reflective and supportive, in which
the activity of central concern is the social construction of new forms of
pedagogical knowledge and practice. In these communities, teachers would
be challenged to think deeply about and to participate actively in engaging
the mathematics they are teaching. In such communities teachers would not
only teach within their individual classrooms but also participate in larger
forums of discussion about pedagogical practice and student performance.
As with student communities of practice, the discourse in these teacher com-
munities would be filled with observations, explanations, verifications,
reasons, and generalizations. Moreover, in such communities, teachers would
have opportunities to see, hear, debate, and evaluate mathematical explana-
tions and justifications as well as mathematical pedagogical practice.

Although it is not possible to give many details in this paper, it is
important to stress that this vision of reflective communities of practice for
teachers is not some romantic fantasy with little connection to reality. In
fact, there is emerging both a theoretical foundation and an empirical
evidence base to support our thinking about the construction of communities
of collaborative, reflective practice for mathematics teachers. As far as
empirical evidence is concerned, the experiences of teachers working within
school districts associated with the Urban Mathematics Collaboratives
(Webb, Pittelman, Romberg, Pitman, Middleton, Fadell, & Sapienza, 1990)
illustrates, the power of teachers joining as collaborators to induce some
forms of institutional change. In the QUASAR project (Silver, 1991), many
examples can be found of teachers and resource partners (usually university
teacher educators) creating communities of reflective collaboration as they
develop new forms of instructional practice in middle schools serving
economically disadvantaged neighborhoods. At QUASAR schools, teachers
and resource partners have used common meeting time to plan instruction,

321



ICME~7 SELECTED LECTURES / CHOIX DE CONFERENCES D'ICME-7

to visit each other’s classes or to watch videotapes of each other’s teaching,
to reflect on their individual and collective pedagogical practices, and to
discuss the work of their students. Moreover, they have made time to explore
and examine foundational mathematical concepts and principles, thereby
enhancing individually and collectively their mathematical content knowl-
edge and identifying areas in which further assistance is needed. As a result
of these interactions, they have begun to challenge conventional, externally
mandated testing and to build alternative assessment systems; to design ways
of integrating and supporting the entry of new teachers into the culture of
the program; and they have begun to shape the use of staff development
time to suit the needs of their own mathematical development and those of
their instructional program (Smith, Stein, & Seeley, 1992). In general,
teachers and resource partners in these settings have come to see mathematics
instruction as a collaborative practice, which is improved through commu-
nication and discourse with colleagues, and by capitalizing on the distributed
network of expertise within the community, in which the resource partners
are seen as playing a vital role rather than being viewed as “outsiders” in
the school community.

As far as theory is concerned, theories of distributed cognition
(Salomon, 1993) appear to hold promise for describing the ways in which
expertise and knowledge are held and accessed in these communities.
Individual students in the classrooms and teachers in the schools come to be
seen as sources of particular forms of expertise that they share within the
community.

New theories about the nature of pedagogy, such as the notion of
teaching as “assisted performance” provided by Tharp and Gallimore (1988)
may help us to think about the activities needed to build communities of
collaborative, reflective practice both for students and for teachers. Accord-
ing to Tharp and Gallimore, who have extended and applied Vygotskian
theory to innovative educational practice, assisted performance refers to
what a person can do with the help of a supportive environment. The gap
between the person’s individual capacity and the capacity to perform with
assistance is taken to be their version of the Zone of Proximal Development
(ZPD), originally defined by Vygotsky (1978) as “the distance between the
actual developmental level as determined by individual problem solving
and the level of potential development as determined through problem
solving under adult guidance or in collaboration with more capable peers”
(p- 86). The first of several stages of passage through the ZPD, according to
Tharp and Gallimore, involves performance assisted by capable others. This
form of assisted performance, which is sometimes called scaffolding, is
precisely the kind of assistance that a skilled teacher may provide to indi-
viduals or groups of students as they struggle to understand complex
mathematical ideas, and it is also descriptive of the forms of support provided
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by members of a community of teachers who model lessons for each other,
explain mathematical ideas to one another, or provide other forms of advice
and support.

As far as membership in the larger communities of educational prac-
tice—those that spread beyond the boundaries of school and local
community—and in thinking of how newcomers enter the communities of
practice established at a particular school, Lave and Wenger’s (1991) notion
of “legitimate peripheral participation” seems helpful. They use the term to
refer to their observation, drawn from ethnographic work on apprenticeship
and other work on the sociocultural basis of learning, that learners participate
in communities of practice and that mastery of knowledge and skill requires
that newcomers move toward fuller participation in the practices of that
community. Applied to the issues discussed in this paper, we can think of
individual teachers, like those in the QUASAR project, as moving themselves
and their students toward fuller participation in the community of math-
ematics education reform and in the culture of mathematical practice. In
fact, Forman (1992) has analyzed aspects of classroom activity in one
QUASAR teacher’s classroom and used the notion of legitimate peripheral
participation to describe that teacher’s functioning within a larger community
of mathematics education reform. Furthermore, she suggested the applica-
bility of this concept in describing how students in this teacher’s classroom
gradually became integrated into the cultural norms and practices (shared
with the larger community of mathematics education reform) that the teacher
was attempting to establish. Thus, the theoretical notions of distributed cog-
nition, of teaching as assisted performance and of legitimate peripheral
participation appear to be applicable at all levels of the process of building
communities of reflective practice in classrooms, in schools, and in more
extended communities.

It should be emphasized that attaining the goal of mathematical think-
ing and reasoning for all students promises to be difficult work. It would be
naive to assume that schools can be easily transformed into learning com-
munities for students and for teachers. Yet, this paper has not only argued
the urgent need to do so but also hinted at some forms in which the goal
might be accomplished. What is abundantly clear is that attainment of this
goal requires that the themes of communication, culture, and community
must become more common topics of both conversation and action within
the community of collaborative, reflective practice that we call mathemat-
ics education.
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NOTE

Preparation of this paper has been supported in part by a grant from
the Ford Foundation for the QUASAR project. The opinions expressed herein
are those of the author and do not necessarily reflect those of the Foundation.
I wish to acknowledge the positive influence and productive impact of inter-
actions with many colleagues on the QUASAR project, especially Catherine
Brown, Ellice Forman, Peg Smith, and Mary Kay Stein, and by discussions
with Jeremy Kilpatrick and Beth Schlesinger in writing the book, Thinking
Through Mathematics. They should not, however, be held responsible for
any deficiencies in this paper that are due to my failure to comprehend what
they were trying to help me understand.
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HUMANISTIC AND UTILITARIAN
ASPECTS OF MATHEMATICS

Thomas Tymoczko

Smith College, United States of America

Philosophers of mathematics and mathematics educators did not
always have much to say to one another. Philosophers dealt with the more
abstract aspects of mathematics, attempting to provide foundations for
mathematics and to place it in a general context of human activity. Educators
dealt with the more concrete aspects of mathematics, attempting to convey
the details and to instill the techniques in students who might range from
elementary school to college. In recent times the philosopher (and educator)
Ludwig Wittgenstein decried this separation. He emphasized the interplay
between philosophy analysis and pedagogy.! The questions, “But how do
we teach this concept? How do we convey it to a pupil?” mark a constant
theme of his philosophy.

After Wittgenstein, there were many others who developed the
previously ignored connection between philosophy and pedagogy in math-
ematics.? In this essay, I join the attempt to further dialogue between
philosophers and educators by suggesting that we can learn from each other.
In particular, I suggest we can correct a reciprocal misreading of math-
ematics. My twin claims are that philosophers cause themselves problems
by focusing their attention on pure mathematics while ignoring applied
mathematics, and that educators cause themselves problems by focusing
their attention on applied mathematics while ignoring pure mathematics.

See Wittgenstein (1953, 1967). For an account of Wittgenstein’s mixed career
as an educator, see Monk.

From the mathematical side, George Polya deserves special mention as an early
pioneer. For references to his and other more recent work, see the anthology
Tymoczko (1985).
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My essay is theoretical. Sadly, I must ignore the social and political
influences on educators that leave them so little room for educated experi-
mentation in the classroom.3

This essay is divided into three main parts. The first addresses the
current state of philosophy of mathematics. I suggest that philosophers have
created a pseudo-problem for themselves by refusing to recognize the real
world basis for mathematics. Traditional problems of mathematical existence
can be answered by recognizing mathematics as an integral part of common
sense and science.

The second part of the essay asks whether the preceding pragmatic
account can answer all philosophical questions about mathematics. It answers
that an essential ingredient—“human interest”—has been left out of account.

Finally, the third part of the essay tries to show how the ingredient of
human interest must influence mathematical pedagogy. It is not always the
utility of mathematics that should matter in the classroom, it is often the
mathematical beauty that is at stake.

A year ago, when predicting the contents of this essay, I said that a
crucial topic would be the role of the community in mathematics. Only by
regarding mathematics as the practice of a community of mathematicians,
and not as the product of an isolated mathematical geniuses, can we arrive
at an educationally sound philosophy of mathematics, or so I believe. The
community still figures in the present essay, but in a somewhat disguised
form. What I call “humanistic mathematics” or “the discipline of pure math-
ematics” is essentially tied to a community of practitioners. Ultimately,
humanistic mathematics is no more and no less than the general practices of
a mathematical community.

UTILITARIAN ASPECTS OF MATHEMATICS

By and large Western philosophy has regarded pure mathematics as
the essence of mathematics. That is, pure mathematics is regarded as a
discipline that could exist in and of itself; pure mathematics is thought to be
logically, metaphysically and epistemologically prior to any applications
of it.* Moreover, it is pure mathematics that is assumed to manifest the
philosophically interesting traits of mathematics—knowledge of it is a priori,
certain, absolute, eternal.

3 This point was stressed to me by commentators at ICME-7 in Québec.

4 The empiricist, John Stuart Mill was an exception to the general tradition. For
more recent exceptions, see Tymoczko (1985) where the contemporary school
of quasi-empiricism is discussed.
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I believe that this focus on pure mathematics has distorted philo-
sophical perspectives on mathematics. That there is a distortion is
immediately felt by both mathematicians and mathematical educators. Typ-
ical philosophical questions about mathematics seem very remote from the
business of creating new mathematics and of teaching old mathematics.
Nowhere is this distance between those who do and teach mathematics and
those who philosphize about it more pronounced than it is over the question
of mathematical existence. Philosophers seem obsessed with the question
of whether we should assert or deny that mathematical objects exist. A large
portion of current research papers in the philosophy of mathematics is de-
voted to this question.

Ordinarily the existence of a given subject matter is of critical
importance. It matters that there is no phlogiston, no ether and no ghosts.
We should discourage any student who wished to study how ghosts moved
by pointing out that there are no ghosts and never were any ghosts.
Alternatively, we should encourage anyone who wanted to study inherited
traits by observing the demonstrated existence of an inherited trait carrier,
namely DNA.

But it is obvious that the debate about mathematical existence shares
few features with serious debates about existence. The discipline of mathe-
matics is well established and will continue to flourish—or not—quite
independently of the final philosophical word on mathematical existence.

The philosophers’ mistake, or so I claim, is their focus on pure
mathematics, in isolation from practical applications. This focus mystifies
mathematics. Indeed, I’m not content to simply reverse the polarity and to
elevate applied mathematics above pure mathematics because the very notion
of applied mathematics, the application of some mathematical theory to some
independent non-mathematical area, should be challenged. At the very least,
what we call applied mathematics is better called “utilitarian mathematics”
or even “extracted mathematics”, the result of extracting a mathematical
component from an already existing fundamental human activity of which
it is an essential ingredient. Among fundamental human activities I would
count business, trade, farming, warfare, navigation and science, to name a
few.

My view is that these activities or institutions are possible only be-
cause they have an essential mathematical component from the beginning.
In just the same way these activities are possible only because they have a
linguistic component. If human beings could not speak then they could not
conduct business or wars, and if they could not “do mathematics”, then they
could not conduct business or wars. Look more closely at the example of
warfare. To be sure, animals and insects can kill and fight each other, occa-
sionally even in groups. So I do not deny that inarticulate, unmathematical
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human groups could throw stones at one another. But without some mathe-
matics, they could come no nearer to warfare than they could without speech.
Warfare requires planning, for example, and planning would be impossible
without speech and without mathematics.

Let me make the same point with respect to economic activity or
business. Business does not just apply various already existing mathematical
theories to facilitate an activity that is, in principle, independent from such
mathematical applications (although it can do that). Business could not exist
in anything like its historical form without some mathematics. Certainly we
cannot imagine a modern economy struggling along without mathematics
then suddenly becoming more efficient because of the introduction of
mathematics! No mathematics, no economy: even primitive business needs
some form of accounting.

So mathematics is not just applied to human activities: sometimes it
makes those activities possible in the first place, just as language does.
Indeed, we do not speak of applied language, as if there could be some
original pure language independent of any use to which humans put it. It is
for this reason that I speak of extracting mathematics from forms of life that
we humans engage in; the practice is not there before the mathematics. After
the fact, by an effort of abstraction, we extract “the mathematical component”
from the human practice. But we are misled if we think we can imagine that
practice without its mathematical component. There is no version of the
institution without mathematics. That’s why I hesitate to call this mathe-
matics “applied mathematics”, a term which suggests we got the mathematics
from somewhere else and applied it to ongoing human concerns. No, what I
call utilitarian mathematics is part of our heritage as human beings, much
as speech is.

If we turn to science we find the same phenomenon writ large. The
truism that mathematics is the language of science applies to classical physics
and the calculus and even more to quantum physics and its various math-
ematical theories. (Can we even describe the subject matter of quantum
physics without mathematics?) The view I challenge is the view that there
are, in principle, two independent areas. According to this view, physics
makes a major advance when physicists realize that they can apply math-
ematics to their subject matter. In my view, it makes no sense to try to
imagine classical physics without mathematics, specifically the calculus.
Indeed, I claim, we actually have to work to extract something specifically
mathematical from classical physics. Both Newton and Kant regarded
fundamental mathematical concepts as simultaneously fundamental physical
concepts: mathematical quantities were generated by temporal processes or
continual motions. Time, space and motion were the common province of
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mathematics and physics. Kant subsumed the calculus under his general
discussion of physics as the a priori study of motion.’

So far, then, I have advanced two variations on a theme. The theme is
that mathematics springs from human institutions, ancient ones like trade
and warfare, and more modern ones like science. Utilitarian mathematics is
a constituent of these institutions and practices. Pure mathematics, of which
we shall speak more shortly, is parasitic on the utilitarian aspects. Pure
mathematics is not merely historically dependent on utilitarian mathemat-
ics, it is logically dependent. Moreover, this shift in perspectives has
philosophical consequences. The hitherto vexing question of mathematical
existence now can get the same kinds of answer that the less vexing ques-
tion of scientific existence and the hardly vexing question of common sense
existence get. Things like numbers, atoms and dogs exist because the very
best theories describing and predicting our experience in the world assert
the existence of (or quantify over) numbers, atoms and dogs. I’ve defended
this answer in considerable detail elsewhere (Tymoczko, 1991) but here I
should acknowledge that the basic idea is due to Willard Quine. It was his
idea that we ought to admit that x’s exist whenever our best theory of the
world and of our experience in it quantifies over x’s. (Intuitively, Quine’s is
a “no-double-talk” theory—if one insists on saying that there are x’s, then
one ought to admit that x’s exist. See Quine (1961) for his account of onto-
logical commitment.) Thus Quine would say that we are as deeply committed
to functions and derivatives as we are to velocities and accelations, to num-
bers as we are to regiments and francs.

Thus from our new radical point of view, we can answer the oldest
problem of the philosophy of mathematics: Do mathematical objects exist?
Our answer is a simple yes, mathematical objects exist in the same way that
scientific objects (atoms) do and ordinary objects (dogs and dollars) do. We
can answer thusly because we regard mathematics as an essential part of
human activities which we cannot give up. Note that this answer is not
available to those who begin by considering a pure mathematics that is
essentially independent of human activities in the real world.

See Friedman for a detailed discussion. To be sure Newton did not mention the
calculus in his Principia (although he may have used calculus to discover his
principles). But that hardly effects the point that mathematics and physics are
essentially intertwined. At worst, the mathematical concept of functions sup-
plemented by the classical method of exhaustion would be the basis of physics.
More seriously, physics as we teach it today, is impossible without the special
features of calculus (try to imagine physics without differential equations!).
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IS UTILITARIAN MATHEMATICS ENOUGH?

Have we found, then, a happy home for mathematics as a part of
science, perhaps as experimentation lives as a part of science? Not for
mathematics as we know it; so far we have left pure mathematics totally out
of account. Just how this pure mathematics arises out of its utilitarian
underpinnings is the question to which we now turn (note the inversion—
philosophy traditionally asked how pure mathematics could be applied!).

Let us begin by trying to imagine what a culture would be like with
just utilitarian mathematics. In a sense, this is not difficult, possibly the
ancient Babylonian and Egyptian cultures had only utilitarian mathematics.
I conjecture that even a very advanced modern culture could exist with only
utilitarian mathematics. But it would differ from ours not merely by lacking
pure mathematics, but perhaps by lacking the very idea of mathematics. My
reason is that although we can imagine a culture with lots of mathematical
techniques and sophistication, but there seems no reason to imagine these
as forming a unity, we do not have to imagine these techniques as forming
a unity for the culture. Instead, there might be just analogous parts of various
human endeavors—science, business, industry, etc. In analogous fashion,
the experimental aspect of science, the totality of experiments including
trial and error, seems to lack any intrinsic unity.

There is an interesting quote by C.H. Edwards, Jr., in his account of
the history of the calculus that bears on this:

It is arguable that, had all succeeding generations [after the Greeks] also refused
to use real numbers and limits until they fully understood them, the calculus
might never have been developed, and mathematics might now be a dead and
forgotten science. (Edwards, 1979, p. 79)

What a provocative idea—*“mathematics might now be a dead and
forgotten science”! Surely what Edwards means is not that, without calculus,
people would forget how to count, measure plots of land, etc. What would
die and be forgotten is a separate discipline of mathematics, a subject that is
internally coherent and worth pursuing for its own sake. What would die is
what is traditionally called pure mathematics, and what I call humanistic
mathematics, though Edwards himself calls it a science.

Utilitarian mathematics, or applied mathematics, is unified by its
connections to pure mathematics. In pure mathematics, the distinctively
mathematical concepts, objects and techniques are recognized—recognized
by their very inclusion in pure mathematics. (In short, what belongs to
mathematics is what mathematicians say belongs to mathematics! In ways
such as this the mathematical community makes its presence known.)

But what is pure mathematics? This is the question that challenged
traditional philosophy. We, on the other hand, ask it in a different context.
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We ask it after we have made a place for utilitarian mathematics; we ask it
after we have established the existence of mathematical objects. Indeed,
perhaps we have already answered the question: pure mathematics is just
the dispassionate study of mathematical objects, pure mathematics is just
the science of mathematical objects as physics is the science of mass and
energy, space and time. However, there is a decisive objection to this answer.
The problem is that there are too many mathematical objects and they are
too varied.

For the sake of argument, let us restrict ourselves to the domain of
natural numbers and their accessories, such as functions on the natural
numbers and sets of natural numbers. It is rather tempting to think that
number theory is just the study of numbers and their properties and functions.
The trouble is that from an objective point of view, there are far too many
properties and functions. Besides the primes, for example, there are such
properties as the odd primes, the primes greater than 3, the primes greater
than 5, etc., not to mention the primes but including 4, the primes but also 4
and 6, etc. In other words, there are a whole lot of number theoretical concepts
out there for mathematicians to study—why focus on some concepts instead
of others? A similar question could be raised with regard to arithmetic
functions like successor, plus and times. The problem is that the objective
mathematical universe (as well as the formalists’ or the constructivists’
universes) is filled with many variants of what we take to be the basic
concepts of mathematics and many other plain monstrosities. My worry is
that the study of variant concepts and functions is not mathematics, but it is
part of the study of mathematical objects. Studying arbitrary mathematical
objects permits too much (see Tymoczko, 1986, for more on this argument).

Exactly the same point can be made with respect to formal theories
of mathematics. While it might be tempting to define pure arithmetic as the
set of theorems of formal Peano arithmetic, my objection is that if this def-
inition were correct, then random computations would count as doing
arithmetic, as would the proof of arbitrary formulas. But we—mathemati-
cians, educators, and philosophers—would not count such things as doing
mathematics. If someone insisted on filling notebooks with pointless calcu-
lations we would call him a crank if not just crazy. The point is that proving
theorems is not mathematics—at best, proving relevant theorems is. Qur
earlier point was that studying mathematical objects is not mathematics, at
best, studying interesting objects is.

So we must abandon the trivial answer to the question: What is pure
mathematics? It’s not just the study of arbitrary mathematical objects or the
production of arbitrary proofs and computations. I suggest we can understand
what pure mathematics is only if we abandon the claim that mathematics is
simply the study of the mathematical universe and embrace the thesis that
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mathematics is interest relative—that is, what counts in mathematics is only
what counts to mathematicians (eg., humans) at a given time in mathematical
history. Mathematics is not just a universe of mathematical objects or
formalisms or constructions; at the very least it includes a point of view on
that universe. This is the essence of humanistic mathematics—mathematics
requires a perspective and a human perspective is the only perspective we
can get!®

Several years ago, Alvin White of Harvey Mudd College in the United
States began a campaign for what he called “humanistic mathematics”.”
While I admired the pedagogical reforms that issued from White’s
campaign—he wanted mathematics taught in a humane way—I failed to
appreciate the significance of humanistic mathematics. To be sure, it was
interesting to consider teaching mathematics as if it were one of the
humanities, but what made mathematics one of the humanities? Certainly
not the mere fact that humans did it; humans do science too. In writing this
essay, I have rediscovered White’s point. Pure mathematics is ultimately
humanistic mathematics, one of the humanities, because it is an intellectual
discipline with a human perspective and a history that matters. There is no
answer to the question: What is important in mathematics, once and for all?
We can only ask what is important in mathematics to human beings, with
given abilities and limitations at a given point in their mathematical
development. The discipline of pure mathematics is much more like
geography than it is like physics. That is why I want to rename it “humanistic
mathematics”.

If, for the sake of argument, you grant my conclusions so far, then we
can turn to the topic of how mathematics might be taught in a way that
reveals its humanistic side.

HUMANISTIC MATHEMATICS

Earlier, I accused philosophers and mathematicians of making recip-
rocal mistakes. Philosophers have ignored utilitarian mathematics and
thereby created for themselves the problem of mathematical existence. But
educators, I claim, are prone to make the opposite mistake. In teaching

6 A case in point might be the rise of complexity theory and the resurgence of
interest in discrete mathematics. My intuition is that in recursion theory, all
finite sets are trivially recursive and so uninteresting. But the development of
computer technology has enabled us to raise interesting questions about distinc-
tions in the finite realm, eg., the P = NP problem.

7 Further information on White’s project is available in the Newsletter on Hu-
manistic Mathematics, published by White at Harvey Mudd College, Claremont,
CA.
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mathematics, they insist on stressing its utility, even when it has none. As a
result, they often hide from their students the excitement and intrinsic inter-
est of mathematics: they hide it behind a facade of supposed utility. It’s
rather like trying to awaken someone to the joys of mountain climbing by
trying to convince her that someday she might need to climb a mountain (as
if cars and buses would not be able to satify any practical need).

Let me try to explain my view of humanistic mathematics in two
ways. The first is by means of a concrete example concerning the teaching
of quadratic equations in secondary schools in the United States. The second
is with a more global metaphor for humanistic mathematics.

In my experience there is a “standard” way of teaching quadratic
equations. It is organized according to utilitarian mathematics. The motiva-
tion is supplied, supposedly, by practical needs expressed in word problems.
For example, suppose you have a rectangular plot of land and you want to
build a sidewalk one metre wide around it, etc., etc. The student is led through
hundreds of execises involving various techniques of factorization. Finally
the quadratic formula is derived (thus rendering otiose the effort that the
student put into earlier attempts to factor or to complete the square). This
project easily consumes half of a school year.

Now, if the educators’ aim is to teach applied or utilitarian mathe-
matics, perhaps this approach is all right—although it’s unethical, from a
utiliarian point of view, to delay the quadratic formula for so long. But,
before committing yourself to the utilitarian viewpoint, you might try to
remember the last time that you needed to solve a quadratic outside of a
classroom, and you might try to explain why a computer program (or calcu-
lator) is not a better way to solve such problems. Be that as it may, the
standard approach is not introducing students to the discipline of mathe-
matics or to humanistic mathematics as I conceive it.

To introduce students to humanistic mathematics is to introduce them
to a human adventure, an adventure that humans have actually partaken of
in history. The story of quadratics is part of a more general story of
investigating equations: linear, quadratic, cubic, biquadratic, etc. These form
“a natural class” of problems to us humans and the quadratic equations are
a piece of this richer puzzle. This puzzle is challenging to human mathema-
ticians for the same reason that mountains are challenging to human mountain
climbers: because the puzzles and the mountains are there for us.

By the time that they approach quadratics, students will find linear
equations easy. But do students realize what a significant thing it is to find
linear equations easy? The Greeks did not recognize negative solutions to
linear equations, and even 16th century mathematicians classified quadratics
into various subclasses because of their suspicion of negative numbers. It
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took human beings thousands of years to progress to the mathematical level
of today’s high school students, and perhaps teachers should mention this
to students.

I was saying that humanistic mathematics tells the human story of
mathematics. It puts the discussion of quadratics into the human-mathemat-
ical context that gives the mathematical topic its sense and its beauty. The
general story of quadratics provides an opportunity to discuss Arabian math-
ematics and the mathematician al-Khowérizmi who preserved and developed
the partial Greek solutions to the quadratic (of course the words “algebra”
and “algorithm” are derived from him and his work). Moreover, and this is
the surprise, the investigation of quadratics could be put into perspective by
spending just a week or two on cubic equations.

For starters, one could use the story of the cubic to expose students to
the very different mathematical culture of Renaisannce Italy, where math-
ematicians challenged each other like gun fighters in modern spaghetti
Westerns. According to William Dunham’s book Journey through genius,
from which I get my story, one Antonio Fior was bequeathed the solution to
so-called “depressed cubics” by his teacher.® Fior immediately challenged
Niccolo Fontana, known as Tartaglia (the Stammerer), to a mathematical
contest. Fontana proposed 30 problems, each asking for the solution to a
depressed cubic equation! Tartaglia knew what was going on, and by working
night and day found the general solution in time to thoroughly humiliate
Fontana, who did not know much besides the formula for the depressed
cubic. In the next twist of fate, that most bizarre, if not lunatic mathematician,
Cardano extracted from Tartaglia his solution of a particular form of cubic
equation. The price he paid was a solemn oath to Tartaglia “by the Sacred
Gospel, and on my faith as a gentleman, not only never to publish your
discoveries if you tell them to me ...” Cardano went on to use Tartaglia’s
discovery to solve the general cubic and his student Ferrari, exploited it to
solve the biquadratic.’

My idea is that Cardano’s analysis is well within the reach of
secondary students; essentially, it applies the quadratic formula to cleverly
contrived cases of the cubic. And my suggestion is that the teaching of
quadratic equations could be far more exciting if teachers used the quadratic
solution to derive the solution of the cubic—as opposed to those endless
and boring word problems. By highlighting the similarities and differences

8  Depressed cubics are cubic equations lacking a term involving the square of the
unkown.

9 For an interesting interpretation of the dispute between Cardano and Tartaglia,
and of the practical difficulties that beset Albe and Galois, see Collins and
Restivo.
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between the quadratic solution and the cubic solution, the comparison can
give the student a deeper appreciation and understanding of mathematics
for its own sake. Moreover, even less than bright students would rather
listen to the story of Cardano, no doubt, than do a hundred so-called practical
problems about quadratics.

Thus I suggest that some discussion of the cubic should be an essential
part of the teaching of quadratic equations: not because it is useful, but
because it makes sense. It puts the quadratic in its proper mathematical
perspective. By comparing and contrasting the quadratic and the cubic, a
student can begin to see the overall shape of the forest instead of just hundreds
of trees.!0

Moreover, if I were inculcating the discipline of mathematics—
humanistic mathematics—I would not finish quadratics without mention of
the work of the Norwegian Abel who showed that quintic equations were
not solvable by radicals. This should generate an interesting class discussion.
How can a mathematician show that a mathematical problem is unsolvable
as opposed to merely failing to solve it? And of course, it would be sinful
not to mention the Frenchman Galois who explained why equations to the
4th degree were solvable and why none higher were. This might even provide
an opportunity to mention the concept of “group”—as well as ending the
story where it began, with a “dueling mathematician™!

Let me briefly summarize. Standard approaches to the quadratic
formula embed the quadratic formula in purely utilitarian mathematics. They
suppress the aesthetical, the historical, and the purely mathematical aspects
of this mathematical problem in favor of touting the practical significance
of answering various canned word problems. Students spend half a year
mastering a variety of techniques leading up to a general solution which
eliminates the need for their mastery of those techniques. But they are never
told why anyone would think a general solution was intrinsically interesting
for its own sake.

Humanistic mathematics can give quadratic equations their rightful
mathematical significance by placing them in a context of pure mathematics,
more particularly, by placing them in the context of historical progress toward
answering a natural mathematical question. This is a history of approaches
and conquests that stretches millennia from the halting efforts of the Greeks
to the final summation of Galois. The general solution to quadratic equations

10 By the way, a natural human interest story arises here: how could Cardano and

Ferrari reconcile the oath to Tartaglia with their desire to publish perhaps the
most important mathematical discovery of the 16th century? Since we are inter-
ested in pure mathematics, I won’t distract you by discussing their solution, but
Dunham explains it in his lovely book.
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is but one piece of this history. Humanistic mathematics is not just “friendly”
mathematics or “touchy feely” mathematics . It is mathematics with a human
face because there is no mathematical discipline without a human face.
Stories of mathematicians are “color”. It is interesting that Tartaglia was a
stammerer who extracted a promise from Cardano. But stories about what
historical individuals saw when they looked on the mathematical universe
at historical points in time are not color. They are mathematics. No one can
learn mathematics, without being inculcated into this tradition.

CONCLUSION

In conclusion, I want to sketch an analogy between humanistic
mathematics and another human endeavor, the practice of mountain climbing.

Neither humanistic mathematics nor mountain climbing are practical
human concerns; but both of them are rooted in practical concerns, for
example, both have a foot in business and trade.

Neither humanistic mathematics nor mountain climbing are sciences;
but both are bounded by objective constraints, mathematical facts and
geological facts.

Both humanistic mathematics and mountain climbing fail as sciences
for the same reason—each depends on the contingencies of the human
condition. Mountain climbing is what it is because human beings are what
we are; we have such and such size, such and such natural abilities, can do
this easily and that with practice. Exactly the same applies to humanistic
mathematics. It is shaped by human abilities and limitations, because we
can do some things easily, others only with difficulty. God’s mathematics
would be very different from ours—as would a beetle’s conception of
“mountain climbing” differ from ours.

Moreover, as with other humanistic disciplines, mountain climbing
and humanistic mathematics both have a history. What is difficult at one
period, becomes easy at another. The historical context of a given period
sets the goals of that period. If no one has solved the general cubic or climbed
that particular mountain, then those are the goals of the day. Later, such
goals might become exercises for apprentices. Furthermore, technology is
especially important. It alters what can be done and our evaluations of various
achievements. (Solving particular quadratic equations is not too impressive
to one who has seen the formula for general solutions.)

In the end, humanistic mathematics and mountain climbing are both
driven by a fundamental human characteristic: the ability to take joy in
complex endeavors. In both cases we find activities or processes driven by
goals or achievements. Without the results, the theorems or the mountains
climbed, we would not have the activity, but it is the journey to the results—
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the actual doing of mathematics and the actual climbing of mathematics—
that provides the day-to-day gratification that keeps these practices alive.

Perhaps I could press the analogy between mathematics and mountain
climbing even further, but rather than press my luck, I will spend a final
minute in recapitulation.

The point of the analogy between mathematics and mountain climbing
is to exhibit a critical human, or subjective, component of mathematics.
This human component is not a frill that might make teaching mathematics
more enjoyable to the mathematically handicapped. This human component
is a sine qua non of a separate discipline of pure mathematics. In a nutshell,
the human component imposes sense or intelligibility on mathematics. It
imposes a human perspective on the arbitrary complexities of the mathe-
matical universe, exactly as our human perspective shapes a coherent practice
of mountain climbing on otherwise unwieldy mountains.

Educators ignore humanistic mathematics to their peril. Without it,
educators may teach students to compute and to solve, just as they can teach
students to read and to write. But without it, educators can’t teach students
to love, to appreciate, or even to understand mathematics.

REFERENCES

Collins, R., & Restivo, S. (1983). Rob-
ber barons and politicians in mathe-
matics: A conflict model of science.
The Canadian Journal of Sociology,
8, 199-227.

Dunham, W. (1990). Journey through
genius. New York: John Wiley &
Sons, Inc.

Edwards, C.H. Ir. (1979). The historical
development of the calculus. New
York: Springer-Verlag.

Friedman, M. (1985). Kant’s theory of
geometry. Philosophical Review, 94,
455-506.

Kant, 1. (1985). Metaphysical founda-
tions of natural science. Indianapolis:
Hackett.

Monk, R. (1990). Ludwig Wittgenstein:
the duty of genius. New York: Free Press.

Quine, W.V.0. (1961). From a logical
point of view. Cambridge, MA: Havard
University Press.

Tymoczko, T. (1991). Mathematics, sci-
ence and ontology. Synthese, 88, 201-
228.

Tymoczko, T. (1986). Making room for
mathematicians in the philosophy of
mathematics. Mathematical Intelli-
gencer, 8, 44-50.

Tymoczko, T. (1985). New directions
in the philosophy of mathematics.
Boston: Birkhiuser.

Wittgenstein, L. (1953). Philosophical
investigations. Oxford: Blackwell.

Wittgenstein, L. (1967). Remarks on the
foundations of mathematics. Oxford:
Blackwell.

339






FROM “MATHEMATICS FOR SOME”
TO “MATHEMATICS FOR ALL”!

Zalman Usiskin

University of Chicago, United States of America

There have been in this century two major developments in mathe-
matics education. The first of these, a movement that is several centuries
old, is the teaching of more and more mathematics to more and more peo-
ple. For instance, the study of algebra and geometry, which even a century
ago was reserved for a small percentage of the population even in the most
technological of our societies, is now a part of the core curriculum for all
students in many countries. The second development, only within the past
30 years or so, has been the emergence of computer technology, which en-
ables much mathematics to be done more easily than ever before, and enables
some mathematics to be done that could not be done at all previously. As a
result, more and more people are encountering and doing far more mathe-
matics than ever before, and there is great pressure nowadays to teach a
great deal of mathematics to all people. This is the origin of the title “From
‘Mathematics for Some’ to ‘Mathematics for All’”.

In this paper, I wish to place these developments in an even longer
historical framework than this century, and use that framework as well as
some recent work to suggest directions in which mathematics in school and
society may be moving and should be moving.

DEFINITIONS OF TERMS

The word “all” in the title of this paper refers to all of the population
except the mentally disabled, which means at least 95% of any age cohort.

The talk as given was almost twice the length of this paper and contained many
examples not presented here. The longer version may be obtained from the au-
thor at the University of Chicago School Mathematics Project, 5835 S. Kimbark
Avenue, Chicago, IL 60637 USA.
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In the United States, it is reported that about 75% of 18-year-olds graduate
from high school with their age cohort, and about 10% more earn their high
school diplomas later. So for the United States, my “all” constitutes a
population larger than those who finish high school. In contrast, in Japan,
95% is almost the percentage of students who graduate from high school.

On the other hand, here the phrase “mathematics” for all refers to school
mathematics for all, and so these remarks are not meant to apply in those
places where children do not attend school, or cannot attend school, or choose
not to attend. Mathematics for all refers at different times in this paper to
the mathematics that has been learned by all, that is being learned by all,
that could be learned by all, that should be learned by all, or that will be
learned by all.

The content of school mathematics is broad, and includes: skills and
algorithms; properties and proofs; uses and mathematical models; and
representations of many kinds. In the UCSMP secondary materials these
are termed the SPUR (S = skills, P = properties, U = uses, R = representations)
dimensions of mathematics?.

THE CURRENT STATE OF MATHEMATICS FOR ALL

In most of the world, all students are expected to learn a considerable
amount of arithmetic. Until recently, because one needed to know paper-
and-pencil skills in order to use arithmetic, the Skills dimension was the
most emphasized everywhere. Because of the emergence of calculators, at
the present time in some countries there is a decrease in the attention given
to the Skill dimension, and a corresponding increase in attention to both the
Uses and Representation dimensions. Yet I think it is fair to say that in most
classrooms in the world, the teaching of paper-and-pencil skills still domi-
nates class time.

Some elementary school teachers are fearful of the calculator for they
know that it can do all of the arithmetic they have been teaching. They
understand that arithmetic is important for every child to know, but when
the calculator comes in these teachers do not know what to teach and they
may stop teaching arithmetic entirely. This is not just a view of ignorant
teachers; there have been recommendations by some science educators in
the United States that much of the time spent on mathematics in the elemen-
tary school can now be spent on science because the content that has been

2 A general description of UCSMP may be found in the annual project brochures,
obtainable from the project. The SPUR characterization of mathematics is de-
scribed in the Teacher’s Edition of any of the six UCSMP textbooks published
by ScottForesman, 1900 E. Lake Avenue, Glenview IL 60025 USA.
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taught is no longer needed. So we must be careful to explain the breadth of
arithmetic to those outside of mathematics or we will lose the time that is
devoted to mathematics in the elementary school. Thus though it would
seem that “arithmetic for all” is so ingrained in schooling that it will not
leave, I believe we should not be complacent.

Obviously, as zealots for mathematics education, there are many of us
who might wish as much mathematics as possible to be learned by everyone.
But there are zealots in all fields, who wish the same for their fields.
Furthermore, children these days need also to know more about other subjects
than they have hitherto been expected to know. Thus we cannot simply dictate
that more and more mathematics be learned by all; we must have the strength
to take out old content as well as put in new content.

It is already the case that, in some countries, some of the more com-
plicated arithmetic algorithms, such as long division, are not being taught
to all students and are not being tested. It is a case of “arithmetic for all”
becoming “arithmetic for some”.

Despite the fact that some mathematics is becoming obsolete, more
and more mathematics is entering the curriculum. As an example, in the
United States only a generation ago, most students encountered not one day
of probability and the only statistics taught was how to calculate the average
of a set of numbers. A national report in 1959 recommended merely that an
optional course in probability and statistics be available to 12th grade
students.? By 1975, only 16 years later, there was quite a change: a report
recommended that statistics be taught at all levels of the curriculum, a
recommendation that has been repeated many times.*

Similar increases in the mathematics all students are expected to learn
has happened in all countries. For example, students in almost all countries
today are expected to know a great deal more about measurement than they
used to know. In some countries, all students are expected to know some
algebra and some geometry, and this algebra is quickly becoming quite graph-
ical with an earlier study of functions. There are trends that indicate the
geometry is becoming quite a bit more visually sophisticated, with the in-
creasing use of coordinates, isometries and other transformations, and
continuous deformations.

> College Entrance Examination Board Commission on Mathematics. Program

for College Preparatory Mathematics. New York: CEEB, 1959.

4 National Advisory Committee on Mathematical Education (NACOME). Over-
view and analysis of school mathematics: Grades K-12. Reston, VA: National
Council of Teachers of Mathematics, 1975.
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FROM ARITHMETIC FOR SOME TO ARITHMETIC FOR ALL

To obtain guidance regarding what may happen or, what should be
our policies towards these changes, it is useful to ask if there has ever
previously been a time like ours, when there was such a revolution in the
amount of mathematics which the average citizen was expected to know.
From a Western perspective, a corresponding revolution began in the 15th
century.

Compared with the situation today, in the 15th century very little
mathematics—only counting and the simplest of addition—was known to
all people even in the most advanced of countries. Nowhere near 95% of
children went to school, and arithmetic was one of the liberal arts, taught in
colleges which few attended. We might say that in the 15th century all math-
ematics was for some. Tobias Dantzig tells a story that supposedly took
place in the first half of the 15th century of a trader in Germany who wanted
his son to get the best mathematics education he could. He consulted a pro-
fessor at a German university who advised him that his son could learn to
add and subtract at his university, but if he wanted to learn to multiply and
divide, then he should go to Italy, where they were more advanced in such
matters.’ Yet 500 years later, by the end of the last century, whenever there
was compulsory schooling arithmetic was present, and the expectations for
arithmetic were quite formidable, the complexity of the problems being
enough to challenge any of us today.

Three fundamental developments changed the situation. The first was
the increased amount and sophistication of trade between peoples. These
increased the need for accurate records that were understandable to traders
and to those who benefited from the trade: manufacturers of goods, owners
of land from whom farmstuffs and minerals were obtained, and all others in
the marketplace. Great numbers of people were engaged in these activities
and so the increasing need for mathematical knowhow in the marketplace
was no small influence on the amount of mathematics known to the average
citizen.

The second development was mathematical: the invention of algorithms
that made it easier to do arithmetic than had previously been the case. Roman
numerals were not well suited to computation beyond addition and subtrac-
tion, and algorithms for multiplication and division were in their infancy in
the 15th century. At the end of the 16th century when Simon Stevin first
considered decimal places to the right of the unit’s place, one of the main

5 Tobias Dantzig. Number: The language of science. (New York: Macmillan,
1954.) Cited in Frank Swetz, Capitalism and school arithmetic: The new math
of the 15th Century. LaSalle, IL: Open Court Publishing Co., 1987.
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arguments he put forth for using them was that there existed algorithms for
multiplication and division that could be applied to what he called “decimal
fractions”, and thus computation would be simplified. Within 30 years of
Stevin’s invention of decimals, logarithms had been invented and decimals
were established as the preeminent way to represent numbers.

The third development that enabled the expectation for competence in
arithmetic to become universal was the invention of printing. Arithmetic
skills are not easily learned; certainly they are not usually learned merely
from one or two books that might be community property. Thus in order for
competence in arithmetic to become universal there had to be enough books
to enable all students to have their own books. Printing made it possible to
have enough books. Printing also helped to standardize the language of arith-
metic throughout the western world. Today’s differences in notation
throughout the world are minor: numerals and other symbols are the same,
enabling traders world-wide to use the same arithmetic language.

Thus between 1400 and 1900, “arithmetic for some” became “arith-
metic for all”, and necessary for this were three developments: a societal
need for the competence, the mathematical language and tools that made
this competence a reasonable expectation, and technology that made it pos-
sible for this competence to be realized. At the same time that arithmetic
changed from being for some to for all, so did reading, and for the same
reasons. An enlightened citizenry and an intelligent work force came to
require both the ability to read and the ability to compute and apply arith-
metic.

FROM ARITHMETIC FOR ALL TO
ARITHMETIC AS A PART OF LITERACY

One need only examine a daily newspaper to get an idea of the extent
to which arithmetic is ingrained in our cultures and has become a necessary
part of communication, indeed, a part of literacy. In various countries
I have invariably found the median number of numbers on a newspaper
page is somewhere between 120 and 150. The mean number of numbers is
far higher—the last time I calculated it for a Chicago newspaper, the mean
number of numbers on a page was over 500, due to sports pages, want ads,
the weather page, and the business pages.

These numbers are used in many ways: as counts, often large, and,
with a wide variety of counting units as measures; in scales of various kinds;
as ratios; both interval and single number estimates and exact values. There
are various kinds of graphs, sometimes daily analyses of lotteries, results of
polls, many stock averages, and sports statistics, all of which could be
simplified at times if algebraic formulas were used. There are advertisements
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with discounts given as percents, annual percentage rates for investments,
dimensions of the articles being offered, computer specifications, powers
of zoom lenses, and other technical information.

An exhaustive listing of numbers in the newspaper is not needed to
make the point that to read a newspaper today requires that the reader be
able to process mathematical information to an extent far beyond that re-
quired even one generation ago. It is often said that we are in an information
age; it is the case that much of that information is numerical or pictorial,
and thus is mathematical.

Concomitant with the evolution of arithmetic as a part of literacy is a
major change in the views of society toward who can be competent in these
things. No longer is arithmetic seen as the province of a few. In places
where arithmetic is a part of literacy, no longer is it seen as a subject that is
so abstract that only a few can learn it. In most places, no longer is a special
degree of competence in arithmetic skills viewed as an indicator of intelli-
gence.

THE CURRENT STATE OF ALGEBRA
AS A PART OF LITERACY

Could we replace “arithmetic” in this summary by any mathematics
other than arithmetic? A reasonable first candidate is algebra since in some
countries algebra is already taught to all. But algebra does not have any-
thing near the stature that arithmetic has in society. Many well educated
people ask why algebra was taught to them in school; they would never ask
that about arithmetic. Many people have been taught algebraic skills and,
perhaps, algebraic properties; and they may have even been taught some
graphical representations. But they never were taught the uses, and they do
not see the societal need for all to learn algebra. Algebra is viewed by many
people as so abstract that it really does not have uses of its own.

If we view the newspaper as signalling what mathematics is needed
by society, then we see how far we have to go before algebra becomes viewed
as a part of literacy. There may be thousands of numbers, tables, graphs,
and charts in newspapers; but it is seldom that one finds any algebra. It is
unusual to find one overt example of algebra in a newspaper despite the fact
that there are simple formulas underlying many of the sports statistics,
discounts, and business data. So if algebra becomes a part of literacy, I do
not think it will be the algebra that is now being taught.

Indeed, whereas the level of political analysis one finds in newspapers
is often quite deep and requires a thorough knowledge of a nation’s
governmental system, even the simplest algebra—even though it may be
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studied by the vast majority of people in a nation—is taboo. When such
mathematics is presented it is often preceded by cautionary statements, such
as “For those who understand such things ...” Unlike arithmetic, algebra is
still viewed as a sign of intelligence by those who do not use it.

WILL ALGEBRA FOR SOME
BECOME ALGEBRA FOR ALL?

It is appropriate to ask whether we can ever expect algebra to become
as much a part of literacy for future generations as arithmetic is now. Will
algebra ever be as universal as arithmetic?

Following the clue provided by the history of arithmetic, the first com-
ponent in the question of algebra for all would have to be a perceived need
by society for that algebra. I believe the general view of the nonmathemat-
ical public is that algebra is certainly required if you wish to be an engineer
or scientist of any sort; or if you wish to work with computers, statistics,
economics, or any field that seems dependent on numbers; or if you are in a
field that uses science, such as medicine. The general public might also
realize that the building trades, such as carpentry or plumbing, use algebra-
ic formulas. It may well be that this is enough to insure that algebra should
be and will be taught to all.

In the policy arenas of the advanced industrialized countries, the
arguments for major attention to algebra and higher mathematics for the
entire populace go somewhat as follows. The economic well-being of a
country must be based on having jobs for its people. The new jobs in the
21st century will be based on achievements in sectors such as biotechnology,
telecommunications, computers and software, robotics and machine tools,
and microelectronics. Better products in these areas require statistical quality
control. To have statistical quality control workers need to understand it,
which requires that they have studied statistics and operations research, and
for these a person needs a considerable amount of mathematics.

For a couple of hundred years there have existed the mathematical
language and tools that make competence in algebra a reasonable expecta-
tion. World-wide we use the Latin alphabet in elementary algebra; we use
coordinate graphs to picture functions. The big change—within the past
five years—is that there now exists technology that makes the graphing of
functions and data, and even curve-fitting and data analysis, accessible to
all, that can be taken anywhere one has a pocket, and which is user-friendly
enough so that one does not need to know huge amounts of mathematics in
order to use it. Not only is algebra more accessible, but so is elementary
analysis.
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The widely available technology does not yet cover all of algebra.
I am waiting for the symbolic algebra calculator that is easy to use and
cheap. I want it to be able to solve literal equations as well as numerical
ones. I want a simpler form of Derive or Mathematica or Maple on my
calculator for under $100. This technology seems certain to come.

For this reason, I believe that algebra will become a subject for all,
though not the same algebra that we now teach, and with it will come many
of the concepts of elementary analysis and calculus.

WILL ALGEBRA FOR ALL
BECOME ALGEBRA FOR SOME?

As with arithmetic the technology does not necessarily suggest an in-
creased emphasis on algebra in schools. Because the purpose of technology
is to avoid work, to make it possible for us to direct machines to do tasks
even when we do not understand how the machines work, the same techno-
logical advances that have made it possible to do great amounts of algebra
easily may also make it less necessary for people to learn certain parts of
algebra.

For example, suppose we wished to predict future population from
recent data and an exponential model. The data can be plotted without know-
ing algebra. Transforming the variable p to log p can be done simply by
writing a formula if one is using a spreadsheet, or by pressing a button if
one is using a calculator, and then the points on the second graph can be
found. The line of best fit can be found without any algebra: simply press
another few buttons. This line can be used for predicting the population
from the graph. Thus an activity that in the past might have required a con-
siderable amount of algebraic skill can now be done with none of the
traditional skills. Instead, what are needed are the facility of graphing func-
tions using an automatic grapher and knowledge of the inverse relationship
between the exponential and logarithmic functions.

On the most recent graphing calculators there is a key that solves any
type of a large number of equations arithmetically by successive approxi-
mation methods hidden from the user. A student who has this calculator
does not need to know the quadratic formula in order to obtain the solutions
to a quadratic equation to the nearest thousandth, nor does the student need
to know the inverse trigonometric functions in order to solve a trigonomet-
ric equation.

We make the assumption, because we are in mathematics, use mathe-
matics, and love mathematics, that an increasingly technological world
requires more and more mathematics for all. However, what may be the
case is that such a technological world requires more and more mathematics
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for some but less for all due to the advances that those few make. Just as we
use algebra to solve problems which the ancient Greeks solved or attempted
to solve geometrically, and many of us in mathematics have never learned
exactly how they did that, it is possible that future generations will learn
how to use the latest technology to solve our algebra problems and never
learn how we solved them using algebra.

The situation is made more interesting by spreadsheets, which have
their own algebra. Possibly in the near future the language of spreadsheets
will become the most commonly used algebraic language. So we may think
we have the mathematical language and tools for algebra for everyone, but
when everyone comes to learn an algebraic language it may be a different
one than the one we have been teaching. The difference between algebra in
school and algebra in the real world is akin to the difference between arith-
metic in school and arithmetic in the newspaper. In school the tendency in
almost all countries is to concentrate on the Skills and Properties of alge-
bra, while in the world at large the Uses predominate, with Representations
also being quite important.

The same technology that enables algebra questions to be treated
without algebra also enables calculus questions to be treated without calculus.
The very same software programs and calculator technology that enable
one to avoid symbolic algebra also make it possible to avoid the symbolic
manipulations of calculus and statistics. It is possible today to answer max-
min problems without having to resort to derivatives; to obtain areas under
curves without integrals. In many places we have justified algebra not on its
own merits but on its importance in the more advanced mathematics of
calculus and differential equations. But with technology these subjects, too,
are not so advanced. We must be careful that, despite its importance, we do
not lose algebra in school because of the other means we now have for
tackling problems that used to require algebra.

CAN ALGEBRA AND CALCULUS CONCEPTS
BE LEARNED BY ALL?

There are many countries in which the national curriculum includes a
study of algebra for everyone. Within the United States there is a trend to
attempt to teach algebra to all. Yet I know of few algebra teachers in any
country who believe algebra can be learned by all; and as for calculus, that
is out of the question: the subject matter itself is beyond the students, or so
the teachers think.

If these subjects remain unchanged both in the classroom and in the
society at large, I agree with this point of view. But all of the current devel-
opments suggest that “algebra for all” will be quite different from the
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traditional algebra that we have been teaching, and I believe that it will
include calculus.

The reason for my optimism can be found in any country where our
language is not the mother tongue. In the United States we tend to teach
foreign languages in senior high school, so the students study that language
at about the same time that they take algebra through calculus. Many Amer-
ican students have a great deal of trouble learning languages. Their accents
are atrocious, it seems as if the language is beyond them, and only a small
percentage seem to do well in their language study. Yet in the countries
where the language is spoken, even small children know it. Are these chil-
dren all brilliant?

Of course their proficiency in their mother tongue is not due to any
special brilliance, but because they are immersed in it and so become fluent
in it. With instruction virtually all of them learn to decode the incredibly
complex combinations of letters and other symbols that constitute their own
written language. It is difficult to believe that any person who can learn to
read and write and comprehend his or her native language does not possess
the ability to read and write and comprehend algebraic symbolism, part of
the language of mathematics.

What makes it possible for children in foreign countries is an envi-
ronment in which these languages appear in context. Thus, in the United
States, the effective teacher of French tries to make the classroom into a bit
of Montréal or Paris or Grenoble. The movements within mathematics
education to put context into the mathematics, to utilize applications of
mathematics in everyday teaching, and to engage students in classroom
discussions can be seen as an attempt to speak the language of mathematics
in the classroom. Because mathematics beyond arithmetic is not yet com-
monplace outside the classroom, this is a necessary move within the
classroom if we are to achieve higher levels of mathematics for all.

Because mathematics is so much a language, there are many aspects
of it that are better learned when the child is younger than when the child is
older. Part of the reason for the difficulty of calculus is certainly that ideas
are often first encountered at the ages of 17-20, quite late for one to learn a
language.

FROM ALGEBRA/CALCULUS FOR SOME
TO ALGEBRA/CALCULUS FOR ALL

In the future the algebra-calculus sequence will give less attention to
algebraic techniques for solving problems, because these will be solved by
preprogrammed software. But the sequence will need to place increased
emphasis on two aspects of algebra: the uses to which algebra, functions,
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and calculus can be put; and the importance of algebra as a language for
communicating generalizations and functional relationships. Both of these
aspects increase in importance because of computers. In the parlance of the
SPUR characterization, algebra of the future will undoubtedly contain less
of the Skills dimension and more of the Uses and Representations dimen-
sions. As for the Properties dimension, due to the importance of the language
of algebra, it ought to maintain its role in the curriculum. In particular, the
broad properties of functions, of matrices, and of vectors will probably en-
ter the domain of mathematics for all.

Critical in all this is that we encourage the use of algebra as a lan-
guage of communication. In addition to our current emphasis on variables
in formulas and variables as unknowns, we must place greater emphasis on
the uses of variables to generalize patterns, the use of variables as indicat-
ing places in spreadsheets or computer storage, the use of variables as
arguments in functions. Here are some ways in which this could be done:
(1) emphasize how much easier it is in many circumstances to apply a for-
mula rather than read a table; (2) demonstrate how the language of algebra,
functions, matrices and vectors makes it easier to handle certain problems;
(3) show how some patterns and trends can be described algebraically more
compactly than with graphs; (4) show the power of functions to predict, and
how picking the wrong function can lead to errors.

GEOMETRY

The world is geometric. Although in school geometry students are
taught as if the only planar shapes are polygonal or circular, and the only 3-
dimensional shapes are spherical, cylindrical, or conical, every object in
the world, from the chair you are sitting on to the leaves of a tree considered
individually or as a set, has a shape and a size. Computer graphics have
greatly increased our ability to draw pictures to represent this world and to
examine those pictures. They have made the Skills and Uses of geometry
more accessible; and, as mentioned earlier, they have increased the impor-
tance of geometrical Representations of functions. So I believe that sets of
points will play an ever increasing role in the curriculum, but these may not
be the traditional sets of points, but more ordered pairs and triples, graphs
of functions and relations, representations of graphs and networks. The
importance of coordinates and transformations will certainly increase, and
the traditional work with polygons and circles is likely to decrease or be
encountered by students earlier in their mathematics experience. It is likely
that experiences with all these topics will be encountered by all students.
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MATHEMATICAL SYSTEMS

The traditional role of geometry as a vehicle for displaying a mathe-
matical system is already gone from many countries, and I do not see much
call for its return where it has left. Moreover, it does not seem that other
parts of mathematics have picked up this loss. Less and less formal deduc-
tion is being taught in schools.

Here computers present particular problems. Because of their ability
to display example after example they encourage induction as a valid meth-
od of argument. Picture a triangle with its medians drawn. A student who is
able to deform this triangle continuously on a screen, and who sees that the
medians are still concurrent, will surely be less likely to think that a proof
of the concurrency is needed. Similarly, a student who can zoom in on the
graph of a function to determine its maximum value to virtually any desired
accuracy is not likely to see calculus as powerful as previous generations
saw it. For this reason, the current condition, in which deduction is taught
only to some, is not likely to change. Formal deduction may even be taught
to fewer students in the future, but I hope I am wrong. The requirement that
results be deduced in order to be valid is one of the fundamental character-
istics of mathematical thought; it is too important not to be taught to all.

SUMMARY

We are in an extraordinary time for mathematics, a time unlike any
that has been seen for perhaps 400-500 years. The accessibility of mathe-
matics for the population at large has increased dramatically due to advances
in technology. These advances make it likely that more mathematics than
ever before will become part of the fabric of everyone’s education and eve-
ryday literacy. But the mathematics will not be a superset of what is taught
today for those things that can be done quickly and easily by computers are
very likely to disappear from the curriculum. What will remain is a more
conceptual, more applied, and more visual mathematics. The result—if his-
tory repeats—will be a field of mathematics which will be even more exciting
than our wonderful field is today.®

6 1 would like to thank my wife Karen for her help in organizing this talk, Ed
Zegray and the son of Bernard Hodgson for helping translate many of my trans-
parencies into French, and Ed Jacobsen of UNESCO for his introduction.
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ON THE APPRECIATION OF THEOREMS
BY STUDENTS AND TEACHERS

Hans-Joachim Vollrath

University of Wiirzburg, Germany

When a theorem has been taught, students are expected to understand
it and to know a proof. They should be able to reproduce the theorem and its
proof, and to apply the theorem correctly. But for a real understanding they
need to know something about the historical background of the theorem,
about its place within the theory, and its relevance for applications. There-
fore students should learn not only theorems but also the importance of
these theorems. This can only be accomplished by teachers who have learned
to appreciate theorems adequately. Therefore, an important part of teacher
education must be concerned with the interpretation, discussion, and evalu-
ation of theorems.

DISCUSSING THE PYTHAGOREAN THEOREM

At the beginning of my geometry lecture for future teachers I usually
ask them which theorems they remember from their school geometry. Most
years, the best-remembered theorem is the Pythagorean theorem. After I
tell them that this is almost always the one selected by students, we try to
find out why this theorem is so prominent. Typical comments by the students
include the following:

This theorem is interesting (important, beautiful, highly regarded,
surprising, central).

It has a simple (beautiful, impressive, suggestive, meaningful) formula.
The theorem concerns an important geometric figure, the right triangle.

These are very general judgments. In further discussion, more specific
answers are given:
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The Pythagorean theorem
* reveals a relationship between the sides of a right triangle.

* helps to express one side of a right triangle in terms of the other two
sides.

* is a special case of the law of cosines.

« is an inference from the theorem: a® = p-c; b? = g-c.

» shows how to transform two squares into one square.

This theorem

« is named for Pythagoras, the Greek philosopher and mathematician.
» was known to the ancient Egyptians.

* has been discovered in most cultures.

There are more than 200 proofs of the theorem, including one by
Garfield, who became president of the United States.

To summarize, there are four general types of response:

« affective: beautiful, interesting, surprising;

* cognitive: special case, inference, reveals a relationship;

* instrumental: useful, applicable, helpful;

« cultural: known by Pythagoras, and the ancient Egyptians.

What are the origins of the students’ appreciation for this theorem?
We can presume that the most important source for their views is personal
experience, gained by studying the theorem, its proofs and its applications.
However, it seems likely that judgments by teachers have some influence as
well.

But how can teachers teach adequate views of theorems? How effective
are their methods?
APPRECIATION OF THEOREMS IN
MATHEMATICS INSTRUCTION

It is helpful to understand how teachers can express their appreciation
of a theorem to their students, either explicitly or implicitly.
Explicitly expressed appreciation of a theorem

It is traditional in mathematics to give hints about the importance of a
proposition by identifying it as a lemma, corollary, theorem, or fundamental
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theorem. These assessments are handed down from generation to generation.
They often have their origin in papers or books of the mathematicians who
discovered the propositions. Well known examples include Gauss’ Theorema
Egregium or Sperner’s Lemma. In the latter case, the lemma has become
more famous than a normal theorem.

The teacher can give explicit expression to the appreciation of a
theorem by comments such as:

* This is an important theorem.
(which is a bland statement!) or by a more specific comment:
* This theorem is very useful for calculations concerning triangles.

In the second comment, assessment is directed to the use of the theorem,
whereas the following example expresses an appreciation for the knowledge
gained by the theorem:

* The theorem expresses a relationship among the three sides of a
right triangle.

An assessment about a theorem can also include a kind of reasoning
about its importance:

* There are more than 200 proofs for the Pythagorean theorem. It is
therefore one of the most prominent theorems in mathematics.

Sometimes the estimation of the importance of a theorem changes. A
well known example is the “fundamental theorem of algebra” which is cur-
rently referred to as the “so-called fundamental theorem of algebra” in
modern books on algebra. This makes clear that one should not overesti-
mate these qualifications. But in both cases they express estimations
explicitly.

In my personal experience, an explicitly expressed appreciation of a
theorem is only impressive if it is specific, and based on reasons, knowledge,
and experience.

Implicitly expressed appreciation of a theorem

In the name “Pythagorean theorem” special prominence is given to
this theorem. The reference to a famous mathematician suggests that he
discovered the theorem, though it is well known that this is often not true,
as indeed it is not true for the Pythagorean theorem. Perhaps more impor-
tantly, the names of theorems can differ from country to country with a
national identification. The name of a theorem can also refer to its contents,
for example “mean value theorem”, or “prime number theorem”. In all these
cases teachers can implicitly express their appreciation of the theorem.
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But the way in which teachers deal with a theorem also reveals their
appreciation of it. By starting with an interesting problem, discussing as-
sumptions, giving different proofs, studying applications, or making remarks
about its history, the teacher can bring the students to think: “This must be
an important theorem because there is so much ado about it.”

There is a strong conviction among mathematicians that the importance
of a theorem is evident when it is really understood. Many mathematicians
therefore avoid speaking or writing about their estimation of a theorem. For
experts, their “hidden appreciation of a theorem” is recognizable in several
ways. The position of a theorem within the theory, the numbers of references
to a theorem, and the consequences drawn from a theorem all indicate
appreciation.

Unfortunately many students feel lost when they are asked to express
their estimation of a theorem because they have not received clear hints that
are relevant for judging it. Implicitly expressed appreciation of a theorem
allows students a free hand to make their own judgments, but they must
learn to interpret the teacher’s behavior correctly.

Comparing explicit and implicit judgments can be summarized as
follows. Explicit judgments of theorems are recognizable by the students.
They reveal the personal preferences of teachers and ask for agreement, but
can also invoke opposition. Above all, explicit judgments demand reasons.
Implicit judgments allow students more freedom for their own assessment,
but the students can also be misled by or misinterpret their teacher’s behavior.

THE PROBLEM OF JUSTIFICATION

A proposition is called a theorem if it is true relative to a system of
axioms. The statement that a proposition is a theorem belongs to meta-
language, and can also be true or false. But what about the statement:

The theorem is important with respect to mathematical knowledge.
One may agree or disagree either on a rational or an emotional basis.

Some typical situations in which mathematicians are asked to evalu-
ate theorems include theorems in a doctoral dissertation, theorems in a paper
presented to a journal, theorems in a paper under review, comparing the
“yalue” of a theorem in an award, or deciding which theorems shall be se-
lected for a report in an encyclopedia.

There are not many statements by mathematicians about their stand-
ards. Let me give one example: Behnke (1966) wrote about the procedure
for judging a research paper for a journal. Novelty and correctness of the
results are necessary but not sufficient merits for publication. Criteria for
the significance of a paper include:
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* elegance of the presentation,
* ingenuity of the proofs,

+ fertility of the considerations,
* adequacy of the resources,

* suitability of the reasoning.

But obviously each criterion is as vague as the quality which it is

expected to judge. When Behnke characterized the qualified mathematician
by the ability to apply these criteria correctly, the result was a circle be-
tween the judgment and qualification of a mathematician. After all, the
community of mathematicians sets the values, and it is also responsible for
the justification of the decisions. But the community pretends a harmony
which is not always present.

Recent discussion about the status of the mean value theorem of

calculus will illustrate the discord. Van der Waerden (1980) and Laugwitz
(1990) judged the mean value theorem as:

* historically unimportant,

* clear by intuition,

* rather useful because of the conventions used in its proof,

* only interesting in its systematic aspects.

They concluded that the mean value theorem is rather unimportant.

Schweiger (1987) and Winter (1988), reviewing the same theorem,

emphasized:

tant.

* it expresses practical intuitions from physics and economy,

* it opens a field of discoveries,

* itexpresses the fundamental completeness of the real number system,
* it is important for approximations,

* it is a bridge from local to global changes,

* it is a paradox that the mean value theorem is equivalent to both a
more special theorem (Rolle) and a more general theorem (Taylor),

* it is an example for a non-constructive theorem.

On this basis, they decided that the mean value theorem is very impor-
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Perhaps you will think that it is not so important whether the theorem
is confirmed to be important as to know it. But from a didactic point of view
this was a rather important discussion. The background was the question of
the role the mean value theorem should play in a calculus course. The ex-
perts were mathematicians and didacticians who were influenced by their
knowledge and experience, but also by their personal preference and taste.
Their argumentation was impressive, though their emotions were rather ir-
ritating.

In my opinion there was not just one winner of this discussion. We all
profited from it because we learned a lot about this theorem which we would
not have found in textbooks. Perhaps teachers feel lost. What should they
tell their students about the value of this theorem when the experts do not
agree? But is it not an advantage to take part in an open discussion? It protects
us from handling judgments of theorems dogmatically. The reasons given
in arriving at the judgment help teachers in curriculum decisions, but they
also reveal aspects for their own estimation of the theorem’s importance.

DEVELOPING ADEQUATE ESTIMATIONS
IN STUDENT TEACHERS

Mathematics books which are used at the university for the mathematics
education of future teachers rarely comment on the assessment of theorems.
While lectures are used to give more comments, in my experience students
tend to relax during such commentaries. My remarks are often not seen as
relevant for the examination, even though an important task of courses in
the didactics of mathematics is to discuss theorems which the students already
know from their mathematics lectures, under the aspect of evaluation. Again,
I demand that the students get the chance to reflect on their experiences, to
listen to other students’ judgments, and to consider them carefully. Usually
it is very surprising for the students to realize that people can have different
opinions about mathematical facts!

I would like to invite mathematicians, when they are writing books
for future teachers, to comment more about theorems from different points
of view, and on specific ways of reasoning. My request of the didacticians
is that they discuss questions of evaluation in an open way without being
dogmatic.

As we have seen, the appreciation of a theorem refers to four aspects:
knowledge, usage, culture, and beauty. It is rather easy for the students to
judge the efficiency of a theorem because they have only to remember their
own use of the theorem. Therefore it is not surprising that the assessments
of student teachers are mainly directed to usage.
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Students are able to discover the knowledge provided by a theorem by
reflecting on it for a while. It is well known that consideration of the problem
context which led to the discovery of a theorem enables student teachers to
appreciate the theorem in the context of a culture. But the realization often
seems to be not worth the effort for the students.

Questions about the beauty of a theorem are sometimes irritating to
student teachers, though my students were very interested in David Wells’
(1988, 1990) investigation about the evaluation of theorems by the readers
of The Mathematical Intelligencer. Each of 24 prominent theorems had to
be given a score for beauty. The winner was Euler’s identity. Teachers should
be aware that there are many books and papers about the beauty of mathe-
matics which can stimulate students and teachers.

In summary, student teachers need explicit comments and discussions
about the aspects of knowledge, usage, beauty, and culture to develop ade-
quate estimations of theorems.

APPRECIATION OF THEOREMS BY STUDENTS

When theorems are taught at the gymnasium, teachers are used to dis-
cussing them. We were interested in the student assessments of theorems
that resulted from this. We interviewed students from Grade 8 and Grade 10
about their estimations of geometry theorems, and students from Grade 13
about calculus theorems. For the 8th graders Thales’ theorem—The angle
in a semicircle is a right angle—and the congruence theorems for triangles
were the most prominent. Thales’ theorem was interesting to them because
of its use in constructions. The congruence theorems were seen as impor-
tant for proofs, and as a basis for the construction of triangles.

The 10th graders appreciated the Pythagorean theorem and Thales’
theorem most. They reasoned that they are logical, easy to understand, often
used in tests, and used in constructions. The appreciation of the Pythagorean
theorem resulted from tests, the great numbers of problems solved in
connection with this theorem, the great variety of examples, and the impres-
sive formula.

In our interviews with the 13th graders we asked them and their teacher
about their appreciation of the calculus theorems. The most important
theorems for these students were the theorems about minima and maxima,
L’Hépital’s rule, and the theorems of limits.

The most important theorem for the teacher was the fundamental the-
orem of calculus. The differences of the assessments between students and
teacher resulted from their different viewpoints. The students’ interest was
more directed to usage while the teacher’s interest was more directed to
knowledge.
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Such differences can appear quite dramatically. I remember a classroom
situation from my own teaching in Grade 7. When I became very enthusiastic
about a theorem, a girl jumped up and cried: “This is all rubbish!” This was
an evaluation too!

Our appreciation of theorems may provoke our students to protest.
And their rejection can be a provocation for the teacher. How should we
react adequately? I think we can agree that it is useless trying to convince
the students about the importance of a theorem. Why not let the students
know that they are allowed to have different views? Perhaps they will dis-
cover the importance of the theorem by themselves. On the other hand, it is
also true that many students like mathematics because of its objectivity.
They get the chance to appreciate mathematics based on their own criteria
and decisions.

In summary, in working with an important theorem, teachers should
try to balance the different aspects of knowledge, usage, beauty, culture.
They should become aware of the students’ appreciations and should accept
them as expressions of their personality. But they also should give their
students a chance to make adequate estimations of theorems by reasoning
without being dogmatic or autocratic.

BALANCED TEACHING

When I recently asked my students about their appreciation of theo-
rems from their school mathematics, one student said (and many agreed):
“Mathematics instruction was not theorems. It had more to do with tech-
niques.” They therefore felt rather lost at my question about their appreciation
of theorems. It seems to be more important for students, and perhaps for
their teachers too, that a method works, rather than to know why the method
works. It is more comfortable, and with respect to tests and examinations
more effective. But the result is unbalanced teaching.

We emphasized different aspects of significance. Obviously these as-
pects have to be balanced in mathematics education. There must be a balance
between knowledge and usage, theory and practice, beauty and rigor, cul-
ture and technique. One-sided assessments can reveal unbalanced teaching.
But it is also true that balanced estimations of theorems can help to balance
different aspects of teaching. They can help the students to gain a valid
impression of mathematics. Thus, balanced assessments play a key role in
teaching.

But is it not a question of the subject matter? In a geometry course,
there are many theorems which express knowledge and a few concerning
techniques. But in an algebra course in secondary schools there are usually
“laws”, and “formulas” and, above all, techniques for transforming expres-
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sions and solving equations; but only a very few “theorems” , such as the
binomial theorem, or Vieta’s theorem (about the relationship between the
roots and the coefficients of a quadratic equation).

There are different traditions of teaching geometry and teaching algebra
with respect to theory. This is also true for the history of mathematics.
Axiomatic presentations of arithmetic and algebra appeared rather late.
Hilbert’s Foundations of geometry and Landau’s Foundations of calculus
can be seen as the culmination of this development, offering equivalent
presentations in geometry and arithmetic. From Landau’s book one learns
that a large number of propositions in arithmetic can be treated as theorems,
which is not common in mathematics instruction. To better balance geometry
and algebra teaching I suggest writing, for example, the law of commutativity
of multiplication, or the rule for adding fractions, or the formula for the
solution of a quadratic equation as theorems.

Above all, properties which are fundamental for the understanding of
arithmetic and algebra should be pointed out as theorems. As illustrations,
consider:

* Natural numbers can be presented as sums of units.

* Real numbers can be presented as the limits of sequences of rational
numbers.

* The square of a real number cannot be negative.

Students can only develop a valid impression of mathematics if they
receive a balanced teaching in which they can appreciate theorems as a dis-
tillate of knowledge and potential.

ACCENTUATED TEACHING

We started with an outstanding theorem. But every theorem can be ap-
preciated with respect to cognition, usage, culture, and appearance. To some
extent each theorem is important. If a certain theorem were omitted in an
axiomatic theory it could be critical for the whole theory. However, if teach-
ers call every proposition an important theorem, this is not credible. It would
have the same effect as underlining every word in a book (as some readers
appear to do). “If everything is important, then nothing is important.” (Shen-
itzer, 1986).

Nevertheless, to illustrate properties by appropriate theorems helps
students in several ways. They become aware of what is noteworthy, find
out what they are expected to know, and develop a basis to which they can
refer when they are trying to prove a statement. However, it is also necessary
to differentiate between theorems so that students can recognize the structure
of a subject area, become aware of the key properties, and develop standards.
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To give special prominence to a theorem, say by referencing it to a
mathematician, helps students appreciate the achievement of mathemati-
cians and understand their contributions to culture. Emphasizing the
importance of theorems may help students to appreciate that mathematics is
something important for culture and for themselves.

As a consequence, students need a kind of teaching in which they get
a chance to distinguish between important and less important facts. They
can only develop standards when they become acquainted with the really
outstanding results of mathematics.

' STEPS TOWARDS ADEQUATE
ESTIMATIONS OF THEOREMS

We understand the appreciation of a theorem as a part of the meta-
knowledge that we want students to develop in mathematics education.
Students learn to reflect upon theorems by asking questions such as:

* What does the theorem represent?

« What is the essential point of the theorem?

+ What consequences does this theorem have?

+ What problems can be solved with this theorem?

Students can initiate their assessments of a theorem by tasks such as:
« Trying to formulate the theorem in your own words.

« Giving a descriptive title for the theorem.

* Trying to find a suitable name for the theorem.

Mathematical knowledge is often tested through problem solving. For
testing students’ meta-knowledge it seems to be more convenient to let the
students write an essay about the theorem. This is not very common in
mathematics instruction. Writing mathematical essays was recommended
in Germany by M. Wagenschein, but students are rarely asked to do so.
Problem solving is still predominant in German schools.

Finally, I think it is very important that students have a chance to
discuss their assessments of theorems with other students and with their
teacher. They should be willing to listen to other students’ reasons, to give
reasons for their appreciation of a theorem, and be prepared perhaps to change
a personal assessment during discussion.

Discussing assessments of theorems is a training method and a test for
scientific culture. It can be seen as a contribution to “mathematical encul-
turation” (Bishop, 1988).
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GEOMETRY AS AN ELEMENT OF CULTURE!

Alexandr D. Alexandrov

St. Petersburg Department of the Steklov Mathematical Institute, Russia

Geometry (elementary Euclidean geometry) occupies a specific posi-
tion among other branches of mathematics and among all other disciplines
because of its unique character, consisting of the union of logic, imagina-
tion and practice. Geometry in its essence is this union.

Practice is the origin and the purpose of every science; one may say
that, in its beginning, geometry is one of the natural, technical sciences.
Every one of its concepts must be demonstrated and understood in material
form as a reflection of reality not merely drawn on paper or a blackboard,
but rather seen somewhere in the surrounding world. This will broaden the
mental horizons of all students.

In fact Euclid’s initial constructions and proofs are nothing but
descriptions, mental images of practically possible operations. For instance,
the proof of the congruence of triangles by means of superposition is a mental
experiment: an image of a real, possible operation. The clearest proof of
Pythagoras’ theorem by means of shiftin g figures is another such experiment.
The construction of regular systems of figures, of ornaments, where geometry
unites with art, is another example of practical operations in geometry.

Geometric intuition grows in this fertile soil. The essence of geometry
is the organic union of intuition—a vivid visual imagination—on the one
hand, and strict logic on the other; they interrelate, interpenetrate, and guide
each other.

Therein lies the importance of a geometry course being taught in all
secondary schools.

! Professor Alexandrov was unable to travel to Québec City to deliver his lecture.

A short version of it is given here.
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Geometry can, of course, be reduced to the application of algebraic
methods, but this entails the liquidation of the specific importance of geom-
etry as a subject and as a component of culture.

Strict logic is a characteristic of mathematics while vivid imagination
belongs rather to the realm of art, which obviously appears to be the exact
antithesis of logic. Nevertheless, their union and interaction produce the
essence of geometry.

One of the greatest architects of our century, Le Corbusier, wrote,
“Geometry provides a means whereby we perceive the environment and
express ourselves. Geometry is a basis. Moreover it is a material realization
of symbols which express everything that is perfect and sublime. It gives us
great satisfaction through its mathematical precision.”

Visual imagination provides a direct perception of geometric facts and
suggests to logic how to express and prove them, while logic provides im-
agination with precision and guides it in building images which reveal
essential logical connections.

Imagination is a very important facility for man; and geometry, espe-
cially solid geometry, develops it, lends it precision and subtlety. The objects
of solid geometry cannot be depicted as simply as the objects of plane ge-
ometry and they demand the use of visual imagination.

Geometrical method deals with images. In teaching geometry one must
ensure that students perceive every concept and every theorem in its intui-
tive visual content, which is more important than its formal expression. The
latter has no geometric meaning without the former. The true geometrical
method demands that the proof of a theorem be made as intuitively evident
as possible. One is allowed to sacrifice some strictness for the sake of an
evident, graphic clarity. Thus geometric reasoning develops not only the
visual perception of geometric facts but also spatial intuitive thinking.

Along with the development of spatial imagination, geometry sharp-
ens our perception of the world surrounding us and brings structure into our
perception of its forms.

There is a saying that the general culture of a person is whatever re-
mains when all that was ever learned has been forgotten. Someone may
forget geometry as such, but its traces in spatial perception and imagination
will remain.

Geometric intuition plays an important role beyond geometry itself:
we mention only its fundamental role in mathematics. Starting with the con-
cept of continuity, which is based on the intuition of the continuity of a line,
one recalls the presentation of functions by means of curves, the complex
plane, etc. Although functional analysis lies far beyond the domain of school
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mathematics, it is worthwhile to observe the fundamental role played by
geometric intuition in the spaces that have been developed out of the three-
dimensional intuition of ordinary geometry. Beyond pure mathematics we
can mention relativity theory, of which we now have a deeper and, I dare
say, a truer understanding through the geometric presentation given to it by
Minkowski.

The other component of the spirit of geometry, its logic, is represent-
ed in particular by its characteristic construction, springing from Euclid: a
sequence of theorems with their proofs. It tells us first of all that whatever
is stated has to be proved. Here geometry militates against the immorality
implicit in the comparatively common habit of making statements without
any proof.

In teaching geometry it must be forbidden to affirm and accept anything
except axioms without proof. It is not, of course, forbidden to communicate
interesting geometric facts without proofs, but these cannot enter into the
chain of deductions and proofs.

Geometry is a chain where every link is formed by a theorem and its
proof. The sequence of these links represents a brilliant product of the hu-
man spirit: we watch a theory as it unfolds. When all the theorems and
proofs have been forgotten, the idea of a proof, the idea that proof is essen-
tial, as well as the image of a consistent theory, will persist.

The logical component of geometry has its strongest realization in
the axiomatic method. The construction of Euclid’s Elements has served as
a pattern of strict exposition for ages (remember, for instance, Spinoza’s
E'thics). Moreover, the analysis of geometric axioms plays an important part
in the elaboration of the modern axiomatic method.

The general idea of establishing an axiomatic basis for any sphere of
intellectual activity, such as ethics, is popular in our culture and has one of
its sources in geometry.

The task of axiomatics in geometry consists in absorbing intuition by
logic, to get rid of its embrace, as in the problem of the fifth postulate. The
problem consisted in the impossibility of imagining the consequences of
the denial of the postulate.

Lobachevski (as well as Bolyai) had the courage to accept these con-
sequences as the facts of a logically possible geometry. But neither
Lobachevski nor Bolyai could see the possible real or intuitive meaning of
their geometry. This was discovered much later (40 years after the first
publication by Lobachevski); and, strangely enough, the intuitive presenta-
tion of Lobachevski’s geometry proved to be simpler than the Cayley-Klein
and Poincaré models, each of which has its own advantages.
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Thus the union of intuition and logic—broken by Lobachevski’s course
of action—was restored on a higher level.

Lobachevskian geometry can hardly be included in secondary school
curricula, but it seems essential to give pupils an idea of it and to show them
the greatness of the human spirit, capable of creating unimaginable concepts
and theories which, in the course of time, proved to be comprehensible and
fruitful.
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