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Introduction

The functors K1,K2
1 for a commutative field k are closely related to the theory

of the general linear group via exact sequences of groups

1 → SL(k) → GL(k)
det→ K1(k) → 1,

1 → K2(k) → St(k) → SL(k) → 1.

Here the groups GL(k), SL(k) are inductive limits of the well known matrix
groups of the general and special linear group over k with n rows and columns:
GL(k) = lim

−→
n

GLn(k), SL(k) = lim
−→
n

SLn(k), andK1(k) ∼= k∗, the latter denoting

the multiplicative group of k.

The groups SLn(k), SL(k) are all perfect, i.e., equal to their commutator sub-
groups,2. It is known that any perfect group G has a universal central extension
G̃, i.e., there is an exact sequence of groups

1 → A→ G̃→ G→ 1

such that A embeds into the center of G̃, and such that any such central
extension factors from the above sequence. The universal central extension

1cf. the first lecture by Eric Friedlander
2except for (very) small fields k and small n, see Thm. 2.1 below
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sequence and in particular its kernel A is unique for G up to isomorphism, and
the abelian group A is called the fundamental group of G – see Thm. 1.1 ii)
and subsequent Remark 1.

The Steinberg group St(k) in the second exact sequence above is the universal
central extension of SL(k) and K2(k) is its fundamental group.

Similarly, the universal central extension of SLn(k) is denoted by Stn(k) and
called the Steinberg group of SLn(k). Again there are central extensions

1 → K2(n, k) → Stn(k) → SLn(k) → 1

and the group K2(n, k) is the fundamental group of SLn(k).

One has natural epimorphisms K2(n, k) → K2(k) for n ≥ 2, which are isomor-
phisms for n ≥ 3, but the latter is not true in general for n = 2. The groups
K2(n, k) can be described in terms of so called symbols, i.e., generators indexed
by pairs of elements from k∗ and relations reflecting the additive and multi-
plicative structure of the underlying field k. This is the content of a theorem
by Matsumoto (Thm. 2.2).

The proof of this theorem makes heavy use of the internal group structure of
SLn(k). However, the group SLn(k) is a particular example of the so called
“Chevalley groups” over the field k, which are perfect and have internal struc-
tures quite similar to those of SLn(k).

In full generality, the theorem of Matsumoto describes “k-theoretic” results for
all Chevalley groups over arbitrary fields (Thm. 5.2).

Among these groups, there are, e.g., the well known symplectic and orthogonal
groups, and their corresponding groups of type K2 are closely related to each
other and to the powers of the fundamental ideal of the “Witt ring” of the
underlying field – which play important rôles in the context of quadratic forms
(see the lectures given by Alexander Vishik) and in the context of the Milnor
conjecture and, more generally, the Bloch-Kato conjecture (see the lectures
given by Charles Weibel).

Our lectures are organized as follows:

In section 1, we reveal the internal structure of SLn(k) together with a theorem
by Dickson and Steinberg which gives a presentation of SLn(k) and its universal
covering group in terms of generators and relations (Thm. 1.1). We formulate
the theorem by Matsumoto for SLn(k) (Thm. 1.2). In an appendix, in order
to prepare for the general cases of Chevalley groups, we discuss the so called
“root system” of SLn(k) in explicit terms.

In section 2, we outline the basic notions for the theory of linear algebraic
groups, in particular, we discuss tori, Borel subgroups and parabolic subgroups.
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In section 3, the notion of root systems is discussed, in particular, root systems
of rank one and two are explicitly given, as they are important ingredients for
the formulation of the theorems by Steinberg and Matsumoto for Chevalley
groups. The classification of semi-simple algebraic groups over algebraically
closed fields is given, Chevalley groups over arbitrary fields are described in-
cluding their internal structure theorems (Thm. 3.3).

In section 4, the theorems by Steinberg and by Matsumoto for Chevalley
groups are given (Thm. 4.1, Thm. 4.2), and relations between their associated
“K2”–type groups are explained.

In section 5, we go beyond Chevalley groups and describe the classification and
structure of almost simple algebraic groups (up to their so called “anisotropic
kernel”), in terms of their Bruhat decomposition (relative to their minimal
parabolic subgroups) and their Tits index (Thm. 5.2).

In section 6, we describe some K-theoretic results for almost simple algebraic
groups which are not Chevalley groups, mostly for the group SLn(D), where D
is a finite dimensional central division algebra over k (Thm. 6.1, 6.2, 6.3, 6.4,
6.5, 6.6), and finally formulate several open questions.
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4 The group structure of SLn over a field

1 The group structure of SLn over a field

Let k be any field. By k∗, we denote the multiplicative group of k.

We consider the groups of matrices

GLn(k) = {(akl) ∈ Mn(k)| 1 ≤ k, l ≤ n, det(akl) 6= 0}
G := SLn(k) = {(akl) ∈ GLn(k) | det(akl) = 1}.

The determinant map det : GLn(k) → k∗ yields an exact sequence of groups :

1 → SLn(k) → GLn(k) → k∗ → 1.

Let eij := (akl) be the matrix with coefficients in k such that akl = 1 if
(k, l) = (i, j) and akl = 0 otherwise, and let 1 = 1n ∈ GLn(k) denote the
identity matrix.

We define, for x ∈ k and i, j = 1, . . . , n, i 6= j, the matrices

uij(x) = 1n + xeij (x ∈ k)
wij(x) = uij(x) uji(−x−1) uij(x) (x ∈ k, x 6= 0)
hij(x) = wij(x) wij(−1) (x ∈ k, x 6= 0)

The matrices wij(x) are monomial, and the matrices hij(x) are diagonal.

(Recall that a monomial matrix is one which has, in each column and in each
line, exactly one non-zero entry.)

Example: For n = 2, we have:

u12(x) =

(
1 x
0 1

)

, w12(x) =

(
0 x

−x−1 0

)

, h12(x) =

(
x 0
0 x−1

)

,

u21(x) =

(
1 0
x 1

)

, w21(x) =

(
0 −x−1

x 0

)

, h21(x) =

(
x−1 0
0 x

)

.

For n ≥ 2 we obtain matrices with entries which look, at positions ii, ij, ji, jj,
the same as the matrices above at positions 11, 12, 21, 22 respectively, and like
the unit matrix at all other positions.

The proof of the following is straight forward:

(1) The group SLn(k) is generated by the matrices {uij(x) | 1 ≤ i, j ≤ n, i 6=
j, x ∈ k}
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(2) The matrices {wij(x) | 1 ≤ i, j ≤ n, i 6= j, x ∈ k⋆} generate the subgroup
N of all monomial matrices of G.

(3) The matrices {hij(x) | 1 ≤ i, j ≤ n, i 6= j, x ∈ k⋆} generate the subgroup
T of all diagonal matrices of G.

The group N is the normalizer of T in G, and the quotient W := N/T is
isomorphic to the symmetric group Sn, i.e., the group of permutations of the
n numbers {1, . . . , n}.

This isomorphism is induced by the map

σ : N → Sn, wij(x) 7→ (ij),

where (ij) denotes the permutation which interchanges the numbers i, j, leaving
every other number fix.

For the elements uij(x), wij(x), hij(x) we have the following relations:

(A) uij(x+ y) = uij(x) uij(y)

(B) [uij(x), ukl(y)] =







uil(xy) if i 6= l, j = k,
ujk(−xy) if i = l, j 6= k,
1 otherwise, provided (i, j) 6= (j, i)

(B′) wij(t) uij(x) wij(t)
−1 = uji(−t−2x), for t ∈ k⋆, x ∈ k .

(C) hij(xy) = hij(x) hij(y)

Remarks:

• The relation (B) is void if n = 2.

• If n ≥ 3, the relations (A), (B) imply the relation (B′)

We denote by B and U the subgroups of G defined by

B =
{





⋆ ⋆ ⋆
. . . ⋆

0 ⋆



 , upper triangular
}

U =
{





1 ⋆ ⋆
. . . ⋆

0 1



 , unipotent upper triangular
}

Then:
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i) The group B is the semi-direct product T ⋉ U with normal subgroup U .

ii) The subgroup B is a maximal connected solvable subgroup of G, it is the
stabilizer group of the canonical maximal flag of vector spaces. 0 ⊂ k ⊂
k2 ⊂ . . . ⊂ kn−1 ⊂ kn.

iii) The quotient G/B is a projective variety.

iv) Any subgroup P of G containing B is the stabilizer group of a subflag of
the canonical maximal flag. 0 ⊂ k ⊂ k2 ⊂ . . . ⊂ kn−1 ⊂ kn. In this case
G/P is projective variety.

v) Every subgroup of G which is the stabilizer of some flag of vector spaces
is conjugate to such a P as in iv).

vi) We have a so called Bruhat decomposition: G = BNB = ∪w∈WBw̃B into
disjoint double cosets Bw̃B where w̃ is a pre-image of w under N →W .
Since T ⊂ B, the double coset Bw̃B does not depend on the choice of
the pre-image w̃ for w ∈ W , hence we may denote this double coset
by BwB. Therefore we may write the Bruhat decomposition as G =
BNB = ∪w∈WBwB.

Proof: i) As a consequence of the relations (A), (B) resp. (B′), we have the
following relations:

(H) hij(t) ukl(x) hij(t)
−1 =







ukl(t
2x) if i = k, j = l

ukl(t
−2x) if i = l, j = k

ukl(tx) if i = k, j 6= l
ukl(t

−1x) if i 6= k, j = l
ulk(x) if {i, j} ∩ {k, l} = ∅

This shows that U is normalized by T , and it is obvious that U ∩ T = {1}

ii), iii) (Cf. [Sp], 6.2)

iv), v), vi) The proofs here are an easy exercise and recommended as such, if
you are a beginner in this subject and want to gain some familiarity with the
basics.

Examples:

– If n = 2, we have W ∼= S2
∼= Z/2Z and G = B ∪B

(
0 1

−1 0

)

B
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– If n = 3, we have W ∼= S3. For shortness, we write wij := wij(1), then
we get:

w12 =





0 1 0
−1 0 0

0 0 1



 , w13 =





0 0 1
0 1 0

−1 0 0



 , w23 =





1 0 0
0 0 1
0 −1 0



 ,

w12 w13 =





0 1 0
0 0 −1

−1 0 0



 , (w12 w13)
2 =





0 0 −1
1 0 0
0 −1 0



 .

The permutations associated to these elements are given by

wij 7→ (ij), w12w13 7→ (132), (w12w13)
2 7→ (123),

and the Bruhat decomposition is given by

G = B ∪Bw12B ∪Bw12B ∪Bw23B ∪Bw12 w13B ∪B(w12 w13)
2B

Theorem 1.1 (Dickson, Steinberg, cf. [St1], Thm. 3.1 ff., Thm. 4.1 ff.)

i) A presentation of G is given by

(A), (B), (C) if n ≥ 3, and
(A), (B′), (C) if n = 2.

ii) Denote by G̃ the group given by the presentation

(A), (B) if n ≥ 3, and
(A), (B′) if n = 2,

Then the canonical map π : G̃→ G is central, which means that its kernel
is contained in the center of G̃.

Assume |k| > 4 if n ≥ 3 and |k| 6= 4, 9 if n = 2. Then this central
extension is universal, which means: Every central extension π1 : G1 → G
factors from π, i.e., there exists g : G̃→ G1 such that π = π1 ◦ g.

Remark 1: As G and G̃ are perfect, G̃ as a universal central extension of G
is unique up to isomorphism. The group Stn(k) := G̃ is called the Steinberg
group of SLn(k).

Remark 2: If k is finite field, then G and G̃ equal. (This is proved in [St1] as
well.)

Remark 3: By the definition of G̃ and G, the elements hij(xy)hij(x)
−1hij(y)

−1

generate the kernel of π : G̃→ G.
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Theorem 1.2 (Matsumoto, cf. [M], Thm. 5.10, Cor. 5.11, see also Moore
[Mo]) Let the notations and assumptions be the same as in the preceding theo-
rem.

The elements cij(x, y) := hij(x)hij(y)hij(xy)
−1, x, y ∈ k∗ yield the relations

cij(x, y) = cji(y, x)
−1 for n ≥ 2, and are independent of i, j for n ≥ 3.

Let c(x, y) := c12(x, y). These elements fulfill the following relations:

n = 2 : (cf. [M], Prop. 5.5)
(S1) c(x, y) c(xy, z) = c(x, yz) c(y, z)
(S2) c(1, 1) = 1, c(x, y) = c(x−1, y−1)
(S3) c(x, y) = c(x, (1 − x)y) for x 6= 1

n ≥ 3 : (cf. [M], Lemme 5.6)
(So1) c(x, yz) = c(x, y) c(x, z)
(So2) c(xy, z) = c(x, z) c(y, z)
(So3) c(x, 1 − x) = 1 for x 6= 1

In case n = 2, define c♮(x, y) := c(x, y2). Then c♮(x, y) fulfills the relations
(So1), (So2), (So3),

Moreover, ker π : G̃→ G is isomorphic to the abelian group presented by

(S1), (S2), (S3) in case n = 2
(So1), (So2), (So3) in case n ≥ 3

Remarks:

i) The relations (S1), (S2), (S3) are consequences of the relations (So1),
(So2), (So3).

ii) A map c from k∗×k∗ to some abelian group is called a Steinberg cocycle
(resp. a Steinberg symbol), if it fulfills relations (S1), (S2), (S3) (resp.
(So1), (So2), (So3)).

iii) The relations (So1), (So2) say that c is bimultiplicative, and hence the
group presented by (So1), (So2), (So3) can be described by

k∗ ⊗Z k
∗/〈x⊗ (1 − x) | x ∈ k∗, x 6= 1 〉.

iv) ker π : Stn(k) → SLn(k) is denoted by K2(n, k). Clearly we have homo-
morphisms

K2(2, k) ։ K2(3, k)→̃K2(4, k)→̃ . . . →̃K2(n, k), (n ≥ 3),

hence the inductive limit
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K2(k) := lim
−→
n
K2(n, k) is defined and isomorphic to K2(n, k) for n ≥ 3.

The elements of K2(k) are generated by the Steinberg symbols, very often
(in particular in the context of K-theory) denoted by {x, y} := c(x, y) .

The “Theorem of Matsumoto” very often is just quoted as the fact that,
for any field k, the abelian group K2(k) is presented by the generators
{x, y}, x, y ∈ k∗, subject to relations

{x, yz} = {x, y} {x, z}, {xy, z} = {x, z} {y, z},

and

{x, 1 − x} = 1 for x 6= 1.

This does not just hold for K2(k), but as well for all K2(n, k), n ≥ 3.

For this (restricted) statement, there is a complete and elementary proof
in the book on “Algebraic K-Theory” by Milnor (cf. [Mi], §§ 11, 12,
pages 93–122).

However, this neither does include the case of K2(2, k), nor the much
wider cases of arbitrary simple “Chevalley groups”, which were treated
by Matsumoto’s article as well. We will see more of this in the following
sections; in particular we will see that the kernel of the surjective map

K2(2, k) ։ K2(n, k)→̃K2(k) (n ≥ 3),

can be described, by a result of Suslin [Su], in a satisfying way in terms
of other invariants of the underlying field k.

Appendix of section 1: A first digression on root systems

We will exhibit here the root system of G = SLn as a first example, in spite of
the fact that the formal definition of a “root system” will be given in a later
talk.

For this we let Diagn(k) denote the subgroup of all diagonal matrices in GLn(k),
and we denote a diagonal matrix just by its components:

diag(dν) = diag(d1, . . . , dn) :=





d1 . . . 0
...

. . .
...

0 . . . dn



 ∈ Diagn.

Clearly T ⊂ Diagn(k). For i = 1, . . . , n we define homomorphisms:

εi : Diagn(k) → k∗ by εi(diag(dν)) = di.
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{εi} is a basis of the (additively written) free Z-module X(Diagn) of all char-
acters (i.e., homomorphisms) χ : Diagn → k∗: In general, such a character is
given by

χ(diag(di)) =

n∏

i=1

dni

i , with ni ∈ Z for i = 1, . . . , n,

hence we have χ =

n∑

i=1

niεi, and χ vanishes on T if and only if n1 = . . . = nn.

Hence the set {αi := εi − εi+1 | i = 1, . . . , n − 1 } is a basis of the Z-module
X(T ) of all characters on T .

The group W = N/T operates on X(Diagn(k)) by

(wχ)(d) := χ(w̃dw̃−1) for all d ∈ Diagn(k), w ∈ N/T,

where w̃ ∈ N is any pre-image of w. (This is unique modulo T , hence w̃dw̃−1

is independent of its choice.)

Exercise: If d = diag(dν), then (wχ)(diag(dν)) = diag(dw(ν)). (Hint: Use
W = Sn.)

The submodule X(T ) (as well as Z(ε1 + . . .+ εn)) is invariant under W .

On the R-vector space X(Diagn(k))⊗Z R, we consider the scalar product 〈 , 〉
which has εi as an orthonormal basis (we identify the elements χ ∈ X(Diagn(k))
with their images χ⊗ 1 ∈ X(Diagn(k))⊗Z R). This scalar product is invariant
with respect to the operation of W , as wεi = εw(i).

For the basis αi = εi − εi+1 of the R-vector space V := X(T )⊗Z R, we obtain
the following orthogonality relations:

〈αi, αj〉 = 〈εi, εj〉−〈εi, εj+1〉−〈εi+1, εj〉+ 〈εi+1, εj+1〉 =







2 if j = i,
−1 if |j − i| = 1,

0 if |j − i| > 1.

This means that all αi are of same length
√

2, and the angle between two
distinct elements αi, αj , i 6= j of them has cosine

〈αi, αj〉/2 =

{
−1/2 if |j − i| = 1

0 if |j − i| > 1

which means that the angle between them is either π/3 or π/2.

Define Σ = {αi,j := εi − εj | 1 ≤ i, j ≤ n, i 6= j} (hence αi,i+1 = αi).

This finite set is, as a subset of V = X(T ) ⊗Z R, invariant under W , and
symmetric, i.e., Σ = −Σ.
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Clearly,

αij =

{
αi + αi+1 + . . .+ αj−1 if i < j

−αj − αj+1 − . . .− αi−1 if i > j
,

hence every element in Σ is an integral linear combination of the αi with coef-
ficients of the same sign.

For n = 3, we obtain Σ = { ±α1, ±α2, ±(α1 + α2) = ±α13 }, and the
geometric realization looks as follows:

Root system of SL3(k):

α1−α1

α1 + α2

−α2−α1 − α2

α2

In particular, every pair (i, j) of indices with i 6= j (i.e., off-diagonal matrix
positions in SLn(k)) determines a root αij = εi − ej ∈ Σ.

Using this correspondence, we can write the formulae (H) in a completely
uniform way:

hij(t) ukl(x) hij(t)
−1 = ukl( t

〈αij ,αkl〉 x ). (1)

We leave the proof of this interesting fact as an exercise to the reader.
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2 Linear algebraic groups over fields

The basic language for algebraic groups is that of algebraic geometry. An
algebraic k-group G over a field k is an algebraic k-variety, which we won’t
define here formally. We here will just think of them as the setG(K) of common
solutions of one or more polynomials with coefficients in k, as in the easy
example of SLn(k), which can be considered as the set of zeros x = (xij) ∈ kn

2

of the polynomial equation det(x) − 1 = 0. Clearly, if k′/k is a field extension
(or even a commutative ring extension), then we may as well consider the
solutions of the same set of polynomials, but over k′ rather than over k, and we
will denote those by G(k′). Solutions over k′ are called the k′-rational points
of G.

By k-morphisms between such varieties we will mean mappings which are given
by polynomials with coefficients in k.

For example, det : GLn(k) → k∗ is such a k-morphism – which at the same
time is a homomorphism of groups as well.

For more details concerning the algebraic geometry needed for our topic see
[Sp], chap. 1.

Definition 2.1 A linear algebraic k-group is an affine k-algebraic variety G,
together with k-morphisms (x, y) 7→ xy of G × G into G (“multiplication”)
and x 7→ x−1 of G into G (“inversion”) such that the usual group axioms are
satisfied, and such that the unit element 1 is k-rational.

This definition makes G(k′) a group for every extension field (or commutative
ring) k′/k.

Since every polynomial over k is as well a polynomial over k′, an algebraic
group G over k becomes an algebraic group over k′ in a natural way, this is
denoted by G ×k k′ and is said to be obtained from G by field extension with
k′. Similarly for varieties in general.

The notions “linear algebraic group” and “affine algebraic group” are synonym:
every algebraic group which is an affine variety can be embedded by a k mor-
phism as a closed k-subgroup into some GLn ([Sp], 2.3.7).

There is a broader notion of algebraic groups, but here we will restrict to the
linear or affine case.

In the following we will make the convention: The notion “k-group” will
always mean “linear algebraic k-group”; an “algebraic k-subgroup” of a
k-group G will mean an algebraic k-group which is a k-subvariety of G.
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A homomorphism of k-groups is a k-morphism of algebraic varieties which
induces a group homomorphism for the corresponding groups of rational points.

Examples:

• The linear k-group GLn, defined by

GLn(k) = { (xij , y) ∈ kn
2+1 | det(xij) · y = 1 }

Clearly, multiplication and inversion are given by the usual matrix oper-
ations, which are “polynomially” defined over any field.

(As the usual condition det(xij) 6= 0 is not a polynomial equation, we need
the additional coordinate y to describe GLn as an algebraic variety.)

• A k-subgroup of GLn(k) is SLn, defined by

SLn(k) = { (xij) ∈ GLn(k) | det(xij) − 1 = 0 }.

• The “additive group” Ga is defined by Ga(k) = k. Here the defining
polynomial is just the zero polynomial. Multiplication and inversion are
given by the additive group structure of k.

• The “multiplicative group” is given by Gm = GL1. We have Gm(k) =
{ (x, y) ∈ k2 | x · y = 1 }.

• Let q be a regular quadratic form on k-vector space V of finite dimension
n. Then we have its associated (or polar) bilinear form by 〈x, y〉 =
q(x+ y) − q(x) − q(y) for x, y ∈ V .

For a basis e1, . . . , en of V , the form q is represented by the symmetric
matrix A = ( 〈ei, ej〉 )i,j=1,...,n ∈ GLn(k). The groups defined by

Oq(k) = { x ∈ GLn(k) | xAxt −A = 0 ; }
SOq(k) = { x ∈ GLn(k) | xAxt −A = 0, detx− 1 = 0 }

are k-groups, called the orthogonal (resp. special orthogonal) group of
the quadratic form q.

• The symplectic group Sp2n(k) is defined by

Sp2n(k) = { x ∈ GL2n(k) | xJxt = J }

where J =

(
0 1n

1n 0

)

∈ GL2n(k).

Remark: For algebraic groups as varieties, the notions “connectedness” and
“irreducibility” coincide. The connected component of an algebraic k-group G
containing the unit element is often called its 1-component and denoted by G0.
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The 1-connected component of k-group is a closed normal k-subgroup of finite
index, and every closed k-subgroup of finite index contains the 1-component
([Sp], 2.2.1).

Examples:

• GLn, SLn, SOq, Sp2n(k), Ga, Gm are connected ([Sp], 2.2.3).

• The 1-connected component of Oq is SOq: we have a decomposition
into two components Oq(k) = SOq(k) ∪ O−

q (k) with O−
q (k) = {x ∈

Oq(k) | detx+ 1 = 0 }. (Clearly, O−
q is not a group, but a coset in Oq.)

Many concepts of abstract groups (the notion “abstract” used here as opposed
to “algebraic” groups) can be transferred to algebraic groups: Very often, if
subgroups are concerned, one has to use the notion of “closed subgroups” which
are closed as subvarieties.

For example, if H,K are closed k-subgroups of a k-group G, then the subgroup
[H,K] generated by the commutators [x, y] = x y x−1 y−1 with x ∈ H(k),
y ∈ K(k) (more precisely, the Zariski closure of these) is a k-subgroup of G
([Sp], 2.2.8).

In this sense, the sequence G(0) = G, G(1) = [G,G], . . . , G(i+1) :=
[G(i), G(i)], . . . of k-subgroups of G is well defined, and G is called solvable
if this sequence becomes trivial after a finite number of steps.

There is also the concept of quotients: If H is a closed k-subgroup of the linear
k-group G, then there is an essentially unique “quotient k-variety” G/H which
is an affine k-group in case H is normal, but, as a variety, it is in general not
affine (cf. [Sp], 5.5.5, 5.5.10 for algebraically close fields, and 12.2.1, 12.2.2 in
general).

As an example for the latter fact, we look at G = SL2 and H the k-subgroup of
upper triangular matrices. Then G/H is isomorphic to the projective line P

1,
since H is the stabilizer subgroup of a line in k2, and G operates transitively
on all lines in k2.

A linear algebraic k-group T is called a k-torus, if, over an algebraic closure k̄,
the group T (k̄) becomes isomorphic to a (necessarily finite) product of copies
of groups Gm(k̄).

A k-groups is called unipotent, if, after some embedding into some GLn, every
element becomes a unipotent matrix (i.e., a matrix with all eigenvalues equal
to 1). It can be shown that this condition is independent of the embedding.

An example is the k-group of strictly upper diagonal matrices in GLn.
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The overall structure for connected linear algebraic groups over a perfect field
k can be described as follows:

i) G has a unique maximal connected linear solvable normal k-subgroup
G1 =: rad G, which is called the radical of G. The quotient group G/G1

is semisimple, i.e., its radical is trivial.

ii) G1 has a unique maximal connected normal unipotent k-subgroup G2 =:
radu G, which is called the unipotent radical of G. The quotient G1/G2 is
a k-torus, the quotient G/G2 is a reductive k-group, i.e., it is an almost
direct product of a central torus T and a semisimple group G′. (The
notion “almost direct product” means that G = T · G′ and T ∩ G′ is
finite.)

Let us summarize these facts in a table (recall that k is perfect here):

conn. (normal) conn. (normal) conn.
linear solvable unipotent

Groups: G ⊲ G1 = rad G ⊲ G2 = radu G

Quotient: G/G1 G1/G2

semisimple torus

Quotient: G/G2 = G′ · T
reductive, i.e.,

almost direct product of semisimple G′ with central torus T

In particular, for a k-group G the following holds:

i) G is reductive if and only if radu G = 1

ii) G is semisimple if and only if rad G = 1

For char k = 0 it is known that radu G has a reductive complement H such
that G = H radu G is a semidirect product.
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Examples:

i) For G = GLn(k), rad G = center(G) is isomorphic to Gm, the group
G/Gm is isomorphic to PGLn, which is simple, and radu (G) = 1.

ii) Let e1, . . . , en be the standard basis of kn. For r < n, s = n− r, take

G = Stab(ke1 ⊕ . . .⊕ ker) =
{ (

r s

r ∗ ∗
s 0 ∗

)

∈ GLn(k)
}

,

where r, s indicate the number of rows and columns of the submatrices
denoted by ∗.
Then rad G, radu G are given, respectively, by the matrices of the shape

0

B
B
B
B
B
B
B
@

α · · · 0
...

. . .
...

0 · · · α

∗

0

β · · · 0
...

. . .
...

0 · · · β

1

C
C
C
C
C
C
C
A

and

0

B
B
B
B
B
B
B
@

1 · · · 0
...

. . .
...

0 · · · 1

∗

0

1 · · · 0
...

. . .
...

0 · · · 1

1

C
C
C
C
C
C
C
A

Hence

G/radu G ∼= GLr(k) × GLs(k)
G/rad G ∼= PGLr(k) × PGLs(k)
rad G/radu G ∼= Gm × Gm

Remarks about Tori (cf. [Sp], chap.3, for proofs):

A linear k-group T is a k-torus if, over some algebraic field extension k′/k, it
becomes isomorphic to a (necessarily finite) product of multiplicative groups:
T ×k k′ ∼= ΠGm.

If this holds, then in particular T ×k ks ∼= ΠGm for a separable closure ks of k.

A k-torus T is said to be split if T ∼= ΠGm (over k. T is said to be anisotropic
if it does not contain any split subtorus

Example:

i) The algebraic R-group T defined by

T (R) =
{(

x y
−y x

)

∈ SL2(R) | x2 + y2 = 1
}
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is an anisotropic torus, since it is compact and hence cannot be isomorphic
to R∗.

However, over C it becomes

T ×R C(C) =
{ (

λ 0
0 λ−1

)

∈ SL2(C) | λ 6= 0
}

∼= C
∗

This can be seen by making a suitable coordinate change (Exercise!).

The group T (R) can be considered as the group of norm-1-elements in C.

ii) More generally, for any finite field extension k′/k, the group of norm-1-
elements {x ∈ k′∗ | Nk′/k(x) = 1 } is an anisotropic k-torus.

If T is a k-torus, ks a separable closure of k, then the Z-module of char-
acters X(T ) = Homks

(T,Gm) is in fact a module over the Galois group
Γ := Gal(ks/k).

We have:

• The group X(T ) is Z-free-module and T splits if and only if Γ operates
trivially on X(T ).

• The torus T is anisotropic if and only if X(T )Γ = {0}.

• There exist a unique maximal anisotropic k-subtorus Ta of T , and a
unique maximal split k-subtorus Ts of T such that Ta · Ts = T and
Ta ∩ Ts is finite.

Parabolic subgroups, Borel subgroups, cf.[Sp], chap. 6

Definition: Let G be connected linear k-group.

• A maximal connected solvable k-subgroup of G is called a Borel subgroup
of G.

• A k-subgroup of G is called parabolic if it contains a Borel subgroup of
G.

Theorem 2.2 (Borel 1962)

Let G be a connected k-group and k̄ an algebraic closure of k.

• All maximal tori in G are conjugate over k̄. Every semisimple element
of G is contained in a torus; the centralizer of a torus in G is connected.
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• All Borel subgroups in G are conjugate over k̄. Every element of G is in
such a group.

• Let P a closed k-subgroup of G. The quotient G/P is projective if and only
if P is parabolic. If P is a parabolic subgroup of G, then it is connected
and self-normalizing, i.e., equal to its normalizer subgroup NG(P ) in G.
If P,Q are two parabolic subgroups containing the same Borel subgroup
B of G and if they are conjugate, then P = Q.

Example: Let G = GLn.

i) The k-subgroup T = Diagn of diagonal matrices is a maximal torus of G.

ii) The k-subgroup B =
{





⋆ ⋆ ⋆
. . . ⋆

0 ⋆



 ∈ GLn

}

of upper triangular ma-

trices is a Borel subgroup of G.

iii) P := Stab(ke1) =

{ (
1 n− 1

1 ∗ ∗
n− 1 0 ∗

)

∈ GLn(k)

}

contains the

group B of upper triangular matrices and is hence parabolic, and we
have G/P ∼= P

n−1. (Here the numbers 1, n− 1 again denote number of
rows and columns.)
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3 Root systems, Chevalley groups

Root systems, definitions and basic facts:

Good references for this subsection are [Se], chap. V, and [BGAL], chap. VI.

Let V be a finite dimensional R-vector space with scalar product 〈 , 〉. A set
Σ ⊂ V \ {0} is a root system in V if the following statements i), ii), iii) hold:

i) The set Σ is finite, generates V , and −Σ = Σ.

ii) For each α ∈ Σ, the linear map sα : V → V defined by sα(v) = v−2 〈α,v〉
〈α,α〉α

leaves Σ invariant: sα(Σ) = Σ.

iii) For each pair α, β ∈ Σ, the number nβ,α = 2 〈α,β〉
〈α,α〉 is an integer – a so

called “Cartan integer”.

Let Σ be a root system on V .

rank(Σ) := dim V is called the rank of Σ.

Σ is called reducible if there exist proper mutually orthogonal sub-spaces V ′, V ′′

of V such that V = V ′ ⊥ V ′′ and Σ = (V ′ ∩ Σ) ∪ (V ′′ ∩ Σ). Otherwise Σ is
called irreducible.

Σ is called reduced if Rα ∩ Σ = { ±α } for all α ∈ Σ. (In general one has
Rα ∩ Σ ⊂ { ±α,±α/2,±2α }.)
By definition, sα is the reflection on the hyperplane Hα = Rα⊥ of V orthogonal
to α. The Weyl group W (Σ) of Σ is the subgroup of Aut(V ) generated by these
reflections {sα | α ∈ Σ}.
A Weyl chamber of Σ is a connected component of V \ ∪α∈ΣHα. The Weyl
group acts simply transitive on all Weyl chambers. Each Weyl chamber C
defines an ordering of roots: α > 0 if (α, v) > 0 for every v ∈ C.

An element in Σ is called a simple root (with respect to an ordering) if it is not
the sum of two positive roots. Every root is an integral sum of simple roots
with coefficients of same sign. The number of simple roots of Σ with respect
to any ordering is the same as dimV = rank(Σ), hence any set of simple roots
forms a basis of V .

For the Cartan numbers one gets nβ,αnα,β = 4 〈α,β〉2

〈α,α〉〈β,β〉 = 4 cos2 ϕ, where

ϕ denotes the angle between α and β. As this is integral, only 8 angles are
possible up to sign, and it is easily concluded that, for reduced root systems,
only roots of up to two different lengths can occur. If 〈β, β〉 ≥ 〈α, α〉, then
〈β, β〉 = p〈α, α〉 with p = 1, 2, 3.

The Dynkin diagram of Σ is a graph whose vertices are the simple roots, two

vertices α, β with p = 〈β,β〉
〈α,α〉 ≥ 1 are combined by p edges, moreover, the
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direction of the smaller root is indicated by < or > in case α, β have different
length.

The Dynkin diagrams classify the root systems uniquely. Below we list all
reduced root systems of rank ≤ 2 and their Dynkin diagrams.

Reduced root systems of rank ≤ 2:

W (A1) = Z2, typical group: SL2, Dynkin diagram: ◦
α

α−αA1

typical group: SL2 × SL2

nβ,α = nα,β = 0
Dynkin diagram: ◦

α
◦
β

A1 × A1

α−α

β

−β
typical group: SL3

nβ,α = nα,β = −1
Dynkin diagram: ◦

α
◦
β

A2

α−α

α+ β

−β−α− β

β

α−α

α+ β

−α− β

2α+ ββ

−2α− β −β

typical groups: SO5, Sp4

nβ,α = −2, nα,β = −1
Dynkin diagram: ◦

α
< ◦

β

B2
∼= C2

α

α+ β 2α+ β 3α+ β

3α+ 2β

β

−α

−3α− β −α− β−2α− β

−3α− 2β

−β

typical group: automorphism
group of a Cayley algebra
nβ,α = −3, nα,β = −1

Dynkin diagram: ◦
α

< ◦
β

G2
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The Weyl groups of the rank 2 root systems are given by the presentation
W = 〈sα, sβ | s2α = s2β = (sα sβ)

κ = 1〉 with κ = 2, 3, 4, 6 respectively.

Root systems are, up to isometry, completely determined by their Dynkin dia-
grams and completely classified for arbitrary rank. Below we will give a com-
plete list for the irreducible root systems.

Root system of a semisimple k-group G

Proofs for the facts given in the rest of this section can be found in the book
by Springer [Sp], or also in the book by Borel [B].

Let S ⊂ G be any k-torus.

The k-group G operates on its Lie algebra g by the adjoint representation
Adg : G→ Aut g (cf. [Sp], chap. 4.4).

Since S contains only semisimple elements (which all commute with each other),
it follows that Adg (S) is diagonalizable, hence g can be decomposed into
eigenspaces using characters α : S → Gm, α ∈ X(S):

g = gS0 ⊕
⊕

α∈X(S)

gSα, gSα = { x ∈ g | Adg (s)(x) = α(s)x } for α ∈ X(S).

We denote the set of characters α which occur in the above decomposition by
Σ(G, T ).

Assume now that k is algebraically closed, i.e., k = k̄. Then G has a maximal
split torus T . Since all such tori are conjugate inG, the set Σ(G, T ) is essentially
independent of T and is denoted by Σ(G) = Σ(G, T ), and is called “the” set of
roots of G.

The normalizer N = NormGT ⊂ G operates on the group of characters X =
X(T ) = Hom(T,Gm) (which is a free Z-module of rank = dimT . We choose
a scalar product 〈 , 〉 on the R-vector space V = X ⊗R R which is invariant
under the (finite) group W := N/T .

Then the set Σ := Σ(G) is a root system.

We choose an ordering (via some Weyl chamber), we also choose a set ∆ ⊂ Σ
of simple roots.

Then, by the preceding, we have |∆| = dimV = dimT =: rank (G). (By
definition, the rank of a semisimple group is the dimension of a maximal torus.)

The Dynkin diagram of G is the Dynkin diagram of Σ.
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Here we will give a list of all irreducible reduced root systems together with
the corresponding groups, insomuch they have special names. The number n
will always denote the rank.

We have four infinite series (An)n≥1, (Bn)n≥2, (Cn)n≥3, (Dn)n≥4, and several
“exceptional” root systems: E6,E7,E8,F4,G2.

Their Dynkin diagrams look as follows:

An: ◦
α1

◦
α2

· · · ◦
αn

n ≥ 1 SLn+1

Bn: ◦
α1

◦
α2

· · · ◦
αn−1

> ◦
αn

n ≥ 2 SOq,
dim q=2n+1

Cn: ◦
α1

◦
α2

· · · ◦
αn−1

< ◦
αn

n≥3
C2

∼=B2
Sp2n

Dn: ◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

�
@◦ αn

n≥4
D3

∼=A3

SOq,
dim q=2n

E6: ◦
α1

◦
α2

α6◦

◦
α3

◦
α4

◦
α5

E7: ◦
α1

◦
α2

◦
α3

α7◦

◦
α4

◦
α5

◦
α6

E8: ◦
α1

◦
α2

◦
α3

◦
α4

α8◦

◦
α5

◦
α6

◦
α7

F4: ◦
α1

◦
α2

< ◦
α3

◦
α4

G2: ◦
α1

< ◦
α2
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Isogenies

An isogeny ϕ is a k-morphism H → G of k-groups such that kerϕ is finite and
ϕ is surjective over k̄.. (This implies that H,G are of the same dimension.)

An isogeny ϕ is central if kerϕ ⊂ centerH .

The k-group G and G′ are strictly isogenous if there exists a k-group H and
central isogenies ϕ : H → G and ϕ′ : H → G′

A semisimple k-group G is simply connected, if there is no proper central
isogeny G′ → G with a semisimple k-group G′. It is adjoint, if its center is
trivial. It is known that for each semisimple k-group there exists a simply
connected k-group Ĝ, and an adjoint group Ḡ. Hence that there are central
isogenies Ĝ→ G→ Ḡ. The kernel of the composite (which is a central isogeny
as well), is the center of Ĝ and a finite group, which only depends on the
Dynkin diagram of G ([Sp], §8).

Examples:

i) SLn,PGLn are simply connected, resp. adjoint, the natural map SLn →
PGLn is a central isogeny, its kernel is cyclic of order n.

ii) Let q be a nondegenerate quadratic form over a field k of characteristic
6= 2. The homomorphisms Spinq → SOq → PSOq are central isogenies
as well as their composite, Spinq is simply connected, PSOq is adjoint. If
dim q is odd, one has SOq

∼= PSOq, otherwise (i.e., if dim q is even), the
kernel of SOq → PSOq is of order 2. Moreover

center Spinq
∼=

{
Z2 if dim q is odd
Z4 if dim q ≡ 2 mod 4
Z2 × Z2 if dim q ≡ 0 mod 4

For the definition of Spinq cf. [HO], 7.2A, or any book on quadratic
forms.

Main classification theorem: k = k̄

The following is the main theorem for semisimple k-groups over algebraically
closed fields k. It was proved by W. Killing (1888) for K = C, and for arbitrary
algebraically closed fields by C. Chevalley (1958).

Theorem 3.1 i) A semisimple k-group is characterized, up to strict
isogeny, by its Dynkin diagram.

ii) A semisimple k-group is almost simple if and only if its Dynkin diagram
is connected.
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iii) Any semisimple k-group G is isogeneous to the direct product of sim-
ple groups whose Dynkin diagrams are the connected components of the
Dynkin diagram of G.

Chevalley groups (arbitrary k):

Proposition 3.2 For field k and any Dynkin diagram D there exists a
semisimple k-group G such that D is the Dynkin diagram of G.

Remark: A group G like this exists even over Z. This was proved by Chevalley,
a proof can be found in [St3]

Definition A Chevalley group over k is a semisimple k-group with a split
maximal k torus.

Structural theorem for Chevalley groups:

Let k be any field, and let G be a Chevalley group over k with maximal split
torus T and Σ a set of roots for G with respect to T .

Theorem 3.3 i) For each α ∈ Σ, there exists a k-isomorphism
uα : Ga→̃Uα onto a unique closed k-subgroup Uα ⊂ G, such that
t uα(x) t−1 = uα(α(t)x) for all t ∈ T, x ∈ k. Moreover, G(k) is
generated by T (k) and all Uα(k).

ii) For every ordering of Σ, there is exactly one Borel group B of G with
T ⊂ B such that α > 0 if and only if Uα ⊂ B.

Moreover, B = T · Π
α>0

Uα and radu B = Π
α>0

Uα.

iii) The subgroup 〈U−α, Uα〉 is isogeneous to SL2 for every α ∈ Σ.

iv) (Bruhat decomposition) Let N = NormC(T ), then W = N/T is the
Weyl group, we have a disjoint decomposition of G(k) into double cosets:
G(k) = B(k)N(k)B(k) = B(k)WB(k) = ∪w∈WB(k)WB(k).

Parabolic subgroups

Let G be a semisimple k-group with a split maximal k-torus (i.e., G is a Cheval-
ley group) with root system Σ, let B be a Borel group containing T , and let
∆ ⊂ Σ be the set of simple roots corresponding to B.

• There is a 1-1 correspondence of parabolic subgroups Pθ containing B
and the subsets θ ⊂ ∆, given by:

Θ 7→ Pθ = 〈T, Uα(α∈∆), U−α(α∈Θ)〉.

In particular one has B = P∅ and G = P∆.
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• For Θ ⊂ ∆, let Wθ = 〈sα ∈W | α ∈ Θ〉.
There is a Bruhat decomposition into double cosets (disjoint, as usual):

PΘ(k) =
⋃

w∈WΘ

B(k)wB(k).

The structure of PΘ is as follows: It has a so called Levi decomposition:

PΘ = LΘ ⋉ radu PΘ.

LΘ here is the Levi subgroup of PΘ. This is a reductive k-group, obtained
as the centralizer of the k-torus TΘ :=

⋂

α∈Θ(Ker α)0 ⊂ T . Hence

LΘ = ZG(TΘ).

The unipotent radical is described by

radu PΘ =
〈
Uα | α > 0, α /∈

∑

γ∈Θ

Rγ
〉
,

i.e., it is generated by all Uα for which α > 0 and α is not a linear
combination of elements from Θ.

Remark:

The data (G(k), B(k), N, S) with S = { sα | α ∈ ∆ } fulfill the axioms of
a “BN pair” or a “Tits system” in the sense of [BGAL], chap. IV, §2.

These axioms are the foundation for the setup of the so-called “buildings”,
which give a geometrical description of the internal groups structure of
Chevalley groups.
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4 K-theoretic results related to Chevalley groups

Let G be a simply connected Chevalley group over k, (i.e., having no proper
algebraic central extension), let T be a maximal split torus and Σ the set of
roots of G for T .

For α ∈ Σ, recall the embeddings uα : Ga → Uα ⊂ G from the last section,
and define:

wα(x) = uα(x)u−α(−x−1)uα(x) (x ∈ k, x 6= 0)
hα(x) = wα(x)wα(−1) (x ∈ k, x 6= 0)

The Steinberg relations for G:

For every x, y ∈ K and α, β ∈ Σ:

(A) uα(x+ y) = uα(x)uα(y)

(B) [uα(x), uβ(y)] =
∏

i,j>0

iα+jβ∈Σ

uiα+jβ(cαβ;ij x
i yj)

Here the product is taken in some lexicographical order, with certain
coefficients cαβ;ij ∈ Z, called structure constants, independent of x, y and
only dependent on the Dynkin diagram of G.

(B′) wα(t)uα(x)wα(t)−1 = u−α(−t−2x), for t ∈ k⋆, x ∈ k .

(C) hα(xy) = hα(x)hα(y)

Theorem 4.1 (Steinberg, [St1], Thm. 3.1, 3.2ff., Thm. 4.1 ff. Theorem 1.1 in
section 1 was just the special case G = SLn.)

Given Σ, there exists a set of structure constants cαβ,ij ∈ Z for α, β, iα+ jβ ∈
Σ, (i, j ≥ 1), such that the following holds.

i) Let Ĝ denote the simply connected covering of G. A presentation of Ĝ(k)
is given by

(A), (B), (C) if rank G ≥ 2, and
(A), (B′), (C) if rank G = 1.

ii) Denote by G̃ the group given by the presentation

(A), (B) if rank G ≥ 2, and
(A), (B′) if rank G = 1,

Then the canonical map π : G̃ → Ĝ(k) is central, and G̃ is perfect, i.e.,
G̃ = [G̃, G̃].

If, moreover, |k| > 4 for rank G > 1, and |k| 6= 4, 9 for rank G = 1, then
G̃ is the universal central extension of Ĝ(k).

(Note: G̃ is not an algebraic group !)
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Remarks:

• Again, G̃, as universal extension of Ĝ(k), is unique up to isomorphism.
For given Σ, the group StΣ(k) = G̃ is called the Steinberg group for the
Chevalley groups defined by Σ or just the Steinberg group of Σ.

• If k is finite, then G̃ and Ĝ(k) are equal.

• The relation (B′) is a consequence of the relations (A), (B) in case
rank Σ) > 1.

• There are various possible choices for the sets of “structure constants”,
the interdependence of the coefficients for a given Chevalley group is
delicate, cf. [Sp], 9.2 for a discussion.

• The roots occurring on the right of (B) can be read off the two dimensional
root systems, since {α, β} generate a sub-root system of rank 2. E.g., for
G = G2, one may have:

[uα(x), uβ(y)] = uα+β(x y) u2α+β(−x2 y) u3α+β(−x3 y) u3α+2β(x
3 y2)

and this is the longest product which might occur (cf. [St3], p. 151 –
please note that long and short roots are differently named there).

For groups of type different from G2, at most two factors do occur on the
right of (B).

• Each relation involves only generators of some almost simple rank 2 sub-
groups (generated by uα(x), uβ(y) involved, hence the theorem implies

that Ĝ(k) is an amalgamated product of its almost simple rank 2 sub-
groups.

Theorem 4.2 (Matsumoto, cf. [M], Prop. 5.5 ff., Thm. 5.10, Cor. 5.11, see
also Moore[Mo]):

For α ∈ Σ, define cα(x, y) := hα(x)hα(y)hα(xy)−1 ∈ G̃.

Then, for each long root α ∈ Σ, the values cα(x, y), x, y ∈ k∗ generate the
kernel of π : G̃→ Ĝ(k).

They fulfill the following set of relations (setting c(x, y) := cα(x, y)), which
gives a presentation of kernel π:
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rank G = 1 or G symplectic: (cf. [M], Prop. 5.5)
(S1) c(x, y) c(xy, z) = c(x, yz) c(y.z)
(S2) c(1, 1) = 1, c(x, y) = c(x−1, y−1)
(S3) c(x, y) = c(x, (1 − x)y) for x 6= 1

rank ≥ 2 and G not symplectic: (cf. [M], Lemme 5.6)
(So1) c(x, yz) = c(x, y) c(x, z)
(So2) c(xy, z) = c(x, z) c(y, z)
(So3) c(x, 1 − x) = 1 for x 6= 1

Define c♮(x, y) := c(x, y2). Then c♮(x, y) fulfills the relations (So1), (So2),
(So3),

Remarks:

Hence we have two groups, the “usual” K2(k), occurring as the kernel of π for
non-symplectic groups (excluding SL2) and the “symplectic: Ksym

2 , occurring
as the kernel of π for the symplectic groups as well as for SL2:

Ksym
2 (k) defined by generators and relations as in (S1), (S2), (S3)

K2(k) defined by generators and relations (So1), (So2), (So3)

From the theorem, we also obtain two homomorphisms

Ksym
2 (k) → K2(k) c(x, y) 7→ c(x, y),

K2(k) → Ksym
2 (k) c(x, y) 7→ c♮(x, y) = c(x, y2).

These maps are interrelated in a surprising way with the Witt ring of the
underlying field K as described by Suslin ([Su], §6 (p. 26)).

The Witt ring W (k) of nondegenerate symmetric bilinear forms over k contains
the maximal ideal I(k) of even dimensional forms as well as its powers Ir(k), r =
1, 2, . . .

It is well known that Ir(k) is generated by so called Pfister forms
〈〈a1, . . . , ar〉〉 = 〈1, a1〉 ⊗ · · · ⊗ 〈1, ar〉.
Suslin observed two things:

i) There is a natural homomorphism ϕ : Ksym
2 → I2(k), c(x, y) 7→ 〈〈x, y〉〉,

and kernel ϕ is generated by (x, y) = c(x, y2). This gives rise to an exact
sequence

1 → K2(k)/{c(x,−1) | x ∈ k∗} → Ksym
2 (k)

ϕ→ I2(k) → 1.
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ii) There is an isomorphism ψ from the kernel of Ksym
2 (k) → K2(k) onto

I3(k), sending each element c(x, y) c(x, z) c(x, yz)−1 to the Pfister form
〈〈x, y, z〉〉. This yields an exact sequence

1 → I3(k)
ψ→ Ksym

2 (k) → K2(k) → 1.

Combining this for char k 6= 2, one gets the following diagram with exact rows
and columns, where Br2(k) denotes the 2-torsion part of the Brauer group of k:

The exactness of the third vertical sequence is just the norm residue theorem
by Merkurjev and Suslin (cf. [MS]).

1 1


y


y

1 −→ K2(k)

〈c(x,−1) | x ∈ k∗〉
2−→ 2K2(k) −→ 1


y


y2


y

1 −→ I3(k)
ψ−→ Ksym

2 (k) −→ K2(k) −→ 1

‖

yϕ


y

1 −→ I3(k) −→ I2(k) −→ Br2(k) −→ 1


y


y

1 1

This diagram can be found as well in [HO], 6.5.13.

Since K2(2, k) = Ksym
2 (k), we find, as a corollary, the following exact sequence:

1 −→ I3(k) −→ K2(2, k) −→ K2(k) −→ 1

This has been generalized: In [MR], it is shown that for the Laurent polynomial
ring k[ξ, ξ−1], there are the following exact sequences:

1 −→ I
3(k) ⊕ I

2(k) −→ K
sym

2 (k[ξ, ξ−1]) −→ K2(k[ξ, ξ−1]) −→ 1,

1 −→ N(k)⊕{±1 ∈ k} −→ K2(k[ξ, ξ−1]) −→ K
sym

2 (k[ξ, ξ−1]) −→ I
2(k)⊕ I(k) −→ 1.
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Here N(k) denotes the subgroup of K2(k) generated by c(x,−1) with x ∈ k∗.

These sequences give rise to a similar commutative diagram as above, cf. [MR].
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5 Structure and classification
of almost simple algebraic groups

Let k be a field, ks a separable closure of k and Γ = Gal(ks/k) and G a
semisimple k-group.

The anisotropic kernel of G:

Denote by S a maximal k-split torus of G, and assume that T is a maximal
torus of G defined over k and containing S. This can be achieved by taking T as
a maximal k-torus in the centralizer of S in G, which is a connected reductive
k-subgroup of G by [Sp], 15.3.2.

A proof of the existence of T can be found in [Sp], 13.3.6ff. This important
theorem had first been proved by Chevalley for characteristic 0, and later in
general by Grothendieck [SGA3] Exp XIV]. Since every k-torus is an almost
direct product of a unique anisotropic and a unique split k-subtorus (cf, [Sp]
13.2.4), we obtain S as the split part of T .

Since all maximal split k-tori of G are conjugate over k (cf. [Sp], 15.2.6), they
are isomorphic over k, and hence the dimension of S is an invariant of G, called
the k-rank of G and denoted by rankk G.

T can be split over a finite separable extension, and since any semisimple group
with a split maximal torus is a Chevalley group, this is true for G×k ks
Remark: T and S are usually different, as seen by the following example:

Take G = SLr+1(D)3, where D/k is a central k-division algebra of degree
d > 1.

By a theorem of Wedderburn, G ×k ks(ks) ∼= SLr+1(Md(ks)) ∼=
SLd(r+1)(ks)

A maximal split torus S ⊂ SLr+1(D) is given by the diagonal matrices
with entries in k and of determinant 1, hence S ∼= G

r
m. A maximal torus

in SLd(r+1)(ks) also consists of the diagonal matrices of determinant 1
and hence has dimension (r + 1)d− 1.

3It should be mentioned here that SLr+1(D), as an algebraic group, is defined to be the
kernel of the “reduced norm” RN : Mr+1(D) −→ k, defined as follows. Let A be any finite
dimensional central simple k-algebra. Then, by Wedderburn’s theorem, A ⊗k k̄ ∼= Mm(k̄)
for some m, hence dimk A = m2. The characteristic polynomial χa⊗1 of the matrix a ⊗ 1
for any a ∈ A has coefficients in k and is independent of the embedding of A in Mm(k̄) (cf.
[BALG], Algèbre...):

χa⊗1(X) = Xm
− s1(a)Xm−1 + s2(a)Xm−2

∓ · · · + (−1)msm(a).

Clearly, s1(a), sm(a) are trace and determinant of a ⊗ 1, they are called the reduced trace

and the reduced norm of a, and are obtained as polynomials with coefficients in k: RS(a) =
s1(a), RN(a) = sm(a), hence RS : A −→ k is k-linear and RN : A −→ k is multiplicative.

In our example above, A = Mr+1(D).
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Hence we have rankk SLr+1(D) = r, and rank SLr+1(D) = (r + 1)d− 1.

We see in this case that rankk SLr+1(D) = rank SLr+1(D) if and only if
d = 1, i.e., if and only if D = k.

The other extreme case is rankk SLr+1(D) = 0, which means that r = 0,
hence our group is SL1(D), the group of elements in D which are of
reduced norm 1.

Definition

The group G is called isotropic if it contains a non trivial k-split torus (i.e., if
rankk G > 0), and anisotropic otherwise.

Examples:

i) LetD/k be as above andG = SLr+1(D). As we have seen, this is isotropic
if and only if r > 0.

ii) Let q be a regular quadratic form over k. Then we have a Witt decom-
position

q = qan ⊥ H
r

into the “anisotropic kernel” qan of q and a direct sum of r ≥ 0 hyperbolic
planes. The anisotropic kernel qan is uniquely determined by q up to
isometry. r is called the Witt index of q and is of course also uniquely
determined by q.

We have SO(H) ∼= Gm, hence SOq admits the embedding of a split k-
torus S ∼= G

i
m (one for each summand H), and in fact this is maximal:

rankk SOq = r.

Over ks the number of H-summands in the Witt decomposition attains
the maximal possible value [dim q/2].

Hence we have rank SOq = [dim q/2], and SOq is anisotropic if and only
if q is anisotropic as a quadratic form.

Arbitrary semisimple k-groups behave similarly as quadratic forms do under
the Witt decomposition as seen in the preceding example.

In order to understand the following construction it is helpful to think of the
example SOq as being represented using the Witt decomposition.

We introduce the following notation for certain k-subgroups of G:

Z(S) the centralizer of S in G (= reductive)
DZ(S) = [Z(S),Z(S)] its derived group (= semisimple)
Za max. anisotropic subtorus of center(Z(S))
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If we “visualize” these groups for SOq by matrices with respect to a basis
aligned along a Witt decomposition for q as above, q = qan ⊥ Hr, the matrices
for Z(S) look as follows:














DZ(S) 0 · · · · · · · · · 0

0 s1 0
...

... 0 s−1
1

...
...

. . .
...

... sr 0
0 · · · · · · · · · 0 s−1

r














DZ(S) is a dim qα × dim qα-matrix, and each si, s
−1
i pair is a torus component

and belongs to a copy of H. The torus Za is a maximal k-torus in DZ(S), hence
T = Za S as an almost direct product.

Definition

i) The group DZ(S) is called a semisimple anisotropic kernel of G,

ii) the group DZ(S) · Za is called a reductive anisotropic kernel of G.

Proposition 5.1 i) The semisimple anisotropic kernels of G are precisely the
subgroups occurring as derived group of the Levi-k-subgroups (=semi simple
parts) of the minimal parabolic k-subgroups. Any two such are conjugate under
G(k).

ii) The anisotropic kernels of G are anisotropic k-groups.

iii) The group G is quasi-split (i.e., has a k-Borel subgroup) if and only if its
semisimple anisotropic kernel is trivial.

The Tits index of a semisimple group G:

Let ∆ be a system of simple roots of G ×k ks with respect to T (and some
ordering) and define ∆0 = { α ∈ ∆ such that α|S = 0 }
Then ∆0 is the set of simple roots of DZ(S) with respect to T ∩ DZ(S).

The group Γ = Gal(ks/k) acts on ∆ as follows: To each α ∈ ∆, we associate
the maximal proper parabolic subgroup P∆\α (each represents one of these
conjugacy classes).
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The group Γ operates on the set of conjugacy classes of parabolic subgroups,
and thereby on ∆:

(γ, α) −→ γ ∗ α (γ ∈ ∆)

This operation is called the ∗-operation or star-operation.

Beware! This is not(!) the same as γα, as this root usually is not in ∆. Namely,
γ induces a switch of the ordering of ∆ (which is defined by its underlying Weyl
chamber), but then there is a unique w ∈ W with w(γ∆) = ∆, as W operates
simply transitively on the Weyl chambers. Hence γ ∗ α = w γα.

Definition (Tits index):

• The group G is said to be of inner type if the ∗-operation is trivial.

• The group G is said to be of outer type if not.

• The Tits index ofG is given by (∆,∆0) together with ∗-operation (leaving
∆0 invariant).

The subset ∆0 = { α ∈ ∆ such that α|S = 0 } is called the system of
distinguished roots of G.

Remark: Only the following Dynkin diagrams allow non-trivial automor-
phisms and therefore are candidates for the ∗-operation:

An(n≥2) ◦
α1

◦
α2

· · · ◦
αn

αi ↔ αn+1−i

(i = 1, . . . , n)
Aut(An)

∼= Z2

D4 ◦
α1

◦
α2

◦ α3

�
@◦ α4

Aut(D4)
∼= S3

Dn(n≥5) ◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

�
@◦ αn

αn−1 ↔ αn Aut(Dn)
∼= Z2

E6 ◦
α1

◦
α2

α6◦

◦
α3

◦
α4

◦
α5

α1 ↔ α5

α2 ↔ α4 Aut(D6)
∼= Z2
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Therefore, only groups with these Dynkin diagrams may allow outer types, all
the others are a priori of inner type.

Theorem 5.2 i) (Pre-classification Witt-type theorem, cf. [Sp], 16.4.2)
The group G is uniquely determined by its Tits index and by its
anisotropic kernel, if the semisimple anisotropic kernel is nontrivial (i.e.,
if G is not quasisplit).

Otherwise (in the split or quasi-split case) G is determined by its Tits
index and by its anisotropic kernel up to strict isogeny.

ii) (Pre-structural theorem, this is a special case of [Sp], 16.1.3) Let P be a
minimal parabolic subgroups of G, then there is a Bruhat decomposition

G(k) =
⋃

w∈∆\∆0

P (k)WP (k)

into pairwise disjoint cosets mod P .

Remarks:

ii) holds in fact for arbitrary k-parabolic subgroups, as [Sp] 16.1.3 says.
However, the case of a minimal parabolic gives most of the structural
information for G(k) and “burns everything down” to anisotropic groups,
which are structurally widely unknown.

All the results above don’t say anything about anisotropic groups or about
anisotropic kernels of G, since that kernel is hidden in the Levi-group of
P .

Notation for the Tits index of G:

The notation for the Dynkin type is enriched as follows: The symbol

gXt
n.r

is used in order to describe a group G over k of Dynkin type X , where
n = rank G, r = rankk G, g is the order of the outer automorphism
group employed by the ∗-operation (left out in case this is 1, i.e., if G
is of inner type), and t is either(for groups of type A, C, D) the index
of a central k-division algebra involved in the definition of G, or the
dimension of its anisotropic kernel (for the “exceptional” groups defined
by the exceptional root systems as explained in section 3). To distinguish
both cases, if t denotes an index of a division algebra, it is put between
parentheses.

In the Dynkin diagram, roots which are rational over k are marked as
bullets, the others, which occur over ks, are marked as circles.
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Examples:

• Type: 1A
(d)
n,r: simply connected group SLr+1(D), D/k a central division

algebra of degree d. Conditions: d(r + 1) = n+ 1.

Tits-Dynkin diagram:

d−1
︷ ︸︸ ︷

◦
α1

· · · ◦ •
αd

d−1
︷ ︸︸ ︷

◦ · · · ◦ •
α2d

◦ · · · · · · ◦ •
αrd

d−1
︷ ︸︸ ︷

◦ · · · ◦
αn

• Type: Bn,r: Special orthogonal groups of regular quadratic forms with
Witt index r and dimension 2n+ 1.

Tits-Dynkin diagram:

•
α1

•
α2

· · · •
αr

◦
αr+1

· · · ◦
αn−1

> ◦
αn

• Type: Cdn,r: Special unitary group SU2n/d(D,h), where D is a division
algebra of degree d over k, and H is a non degenerate antihermitian
sesquilinear form of index r relative to an involution of the first kind of
D. For d = 1 this group is just Sp2n(k).

Tits-Dynkin diagram:

d−1
z }| {

◦
α1

· · · ◦ •
αd

d−1
z }| {

◦ · · · ◦ •
α2d

◦ · · · ◦ •

d−1
z }| {

◦ · · · ◦ •
αrd

n−rd
z }| {

◦ · · · ◦
αn−1

< ◦
αn

• Type: 1Dd
n,r: chark 6= 2: Special unitary group SU2n/d(D,h), where D is

a division algebra of degree 2 over k, and H is a non degenerate hermitian
form of discriminant 1 and index r relative to an involution of the first
kind of D. In case d = 1 this becomes SOq(k) for a regular quadratic
form of Witt index r, dimension 2n and trivial discriminant.

Tits-Dynkin diagram:

d−1
z }| {

◦
α1

· · · ◦ •
αd

d−1
z }| {

◦ · · · ◦ •
α2d

◦· · ·◦ •

d−1
z }| {

◦ · · · ◦ •
αrd

n−rd
z }| {

◦ · · · ◦

◦
αn−1

◦
αn
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6 Further K-theoretic results for simple algebraic groups

Most K-theoretic results deal with so called ”classical groups”, these are the
groups SLn over a skew field, and unitary groups for various (skew)-hermitian
forms. These groups are not necessarily algebraic – for example, the group
SLn(D) as defined by the Dieudonné determinant, is in general not algebraic,
when D is not of finite dimension over its center. A very good accounting of
these results is given in the book by Hahn and O’Meara (”The classical groups
and K-theory”, [HO]).

The results are also mostly under the assumption that the groups under con-
sideration have “many” transvections. Insomuch the groups are algebraic, this
amounts to assuming that they are split (Chevalley groups) or at least quasi-
split (i.e., having a Borel group over the field of definition).

The methods are variations of classical K-theory methods as well as those used
by Steinberg-Matsumoto, but also, the study of generalized Witt groups plays
a big role.

However, a few results concern groups with a non-trivial anisotropic kernel,
which we will discuss here.

On K2 of skew fields:

For a skew field D, there is the ”Dieudonné Determinant”

det : GLn(D) −→ D∗/[D∗, D∗]

which has essentially the same properties as the determinants for fields (Np.
[Di], or for an alternative approach, [DK], Teil 1, 2. Vortrag). Its definition
specifies to the ordinary determinant if D is commutative. Its kernel En(D) is
generated by the elementary matrices uij(x) = 1 + xeij , i 6= j and x ∈ D.

Again we have for n ≥ 3 (we omit the technically more involved case n = 2):

(A) uij(x+ y) = uij(x)uij(y)

(B) [uij(x), ukl(y)] =







uil(xy) if i 6= l, j = k,
ujk(−yx) if i = l, j 6= k,
1 otherwise, provided (i, j) 6= (j, i)

(C) hij(xy) = hij(x)hij(y)

Please observe here the order of the factors x and y in the right hand side of (B).
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We have the standard definitions:

wij(x) = uij(x)uji(−x−1)uij(x) (x ∈ k, x 6= 0)

hij(x) = wij(x)wij(−1) (x ∈ k, x 6= 0)

By Milnor ([Mi], 5.10), the group Stn(D) presented by (A), (B) is a universal
central extension of the perfect group En(D), again its kernel is denoted by
K2(n,D).

(In [M], the universality of the central extension is only proved for n ≥ 5, for
n ≥ 3, compare [R], Kor. 1 and “Bemerkung”, p. 101.)

One also has a Bruhat double coset decomposition En(D) = UMU , here M
denotes the monomial matrices and U the upper triangular matrices.

Let π : Stn(D) −→ En(D) be the canonical map, let us denote the generators
of Stn(D) by ũij(x),w̃ij(x),and h̃ij(x). Now the elements

cij(xy) = h̃ij(xy)h̃ij(x)
−1
h̃ij(y)

−1 ∈ Stn(D)

are not any more in kernel π, as they map to the diagonal matrix














i

1
. . .

1
i xyx−1y−1

1
. . .

1














However, for xν , yν ∈ D∗ such that
∏

ν

[xν , yν ] = 1, one has obviously

∏

ν

cij(xν , yν) ∈ Ker π, and all elements of kerπ are of this type. It can

be shown that these elements are independent of the choice of (i, j), and one
has the following replacement for Matsumoto’s theorem ([R]):

Theorem 6.1 Let UD denote the group generated by c(x, y), x, y ∈ D∗, subject
to the following relations:

(U0) c(x, 1 − x) = 1 x 6= 0, 1
(U1) c(xy, z) = c(xy, xz) c(x, z)
(U2) c(x, yz) = c(x, y) c(yx, yx)
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(Here the abbreviation xy := xyx−1 is used.) Then the map

UD −→ [D∗, D∗] c(x, y) 7→ [x, y]

defines a central extension of [D⋆, D⋆].

Moreover, UD −→ Stn(D) injects via

c(x, y) 7→ c12(x, y) = h̃12(xy)h̃12(x)
−1h̃12(y)

−1

This implies that K2(n,D) = K2(D) for n ≥ 3.) Hence one has an exact
sequence

0 −→ K2(D) −→ UD −→ [D∗, D∗] −→ 0

Remarks:

• Obviously, this gives Matsumoto’s theorem for D commutative and in
general relates K2(D) to a central extension of [D∗, D∗].

• The relations U1, U2 together with the relations c(x, x) = 1 give a gen-
erating set for all formal commutator relations of an arbitrary group H
and x, y ∈ H .

Applying the Hochschild-Serre spectral sequence to the central extension
above we obtain the exact sequence:

H2(UD) −→ H2[D
∗, D∗] −→ K2(D) −→ H1(UD) −→ H1[D

∗, D∗] −→ 1

In general, En(D) is not an algebraic group; the Dieudonné determinant is not
a polynomial function.

However, in certain cases this becomes true if D is a finite central k-division
algebra: then both, D and Mn(D) are central simple k-algebras of finite di-
mension over k. The Dieudonné determinant factors through to the reduced
norm (see the previous section for the definition of the reduced norm). As this
is a polynomial, En(D) ⊂ SLn(D) in general, and we will below discuss some
conditions which guarantee equality.

The exact sequence above about K2(D) in this case should be understood as
a statement which relates the central extensions of G = SLr+1(D) to those of
the anisotropic kernel of G.

Therefore we will investigate this group in more detail here:

Let D/k be a finite central algebra of index d, then dimkD = d2. To under-
stand the structure of SLr+1(D) (up to its anisotropic kernel), we consider the
subgroup of upper triangular matrices which in this case is a minimal parabolic
subgroup:
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P :=

{



∗ ∗ ∗
. . . ∗

0 ∗



 ∈ SLr+1(D)

}

Its Levi decomposition looks as follows:

P = L⋉Rn(P ) =

{ 



∗ 0
. . .

0 ∗





}

⋉

{ 



1 ∗ ∗
. . . ∗

0 1





}

Each (∗) in the Levi-group L is a copy of D∗ = GL1(D) with a central torus
Gm (the center of D∗ = k∗, there are r + 1 copies, but with reduced norm 1,
hence the central torus in L has dimension r:

S =

{ 



a1 0
. . .

0 ar+1



 | ai ∈ k∗,

r+1∏

i=1

αi = 1

}

.

This is a maximal k-split torus of G = SLr+1(D), and obviously L is its cen-
tralizer.

The semi-simple anisotropic kernel consists of the diagonal matrices with r+ 1
copies of SL1(D).

The group SLr+1(D) is of inner type, because all roots are kept invariant under
Gal(ks/k), hence its type is 1Ad

n,r.

Since SLr+1(D) ×k ksep
∼= SLr+1(Md(ksep)) ∼= SL(r+1)d(ksep), we have

n = rank SLn(D) = (r + 1)d− 1.

The Tits Dynkin diagram for this group looks like this:

d−1
︷ ︸︸ ︷

◦
α1

· · · ◦ •
αd

d−1
︷ ︸︸ ︷

◦ · · · ◦ •
α2d

◦ · · · · · · ◦ •
αrd

d−1
︷ ︸︸ ︷

◦ · · · ◦
αn

The distinguished roots are: ∆0 = {αd, α2d, . . . , αrd}, and one has n + 1 =
(r + 1)d,

Consequences for the determination of K2(D):

There are results only for special classes of fields k:

Theorem 6.2 (Alperin/Dennis, cf. [AD]) Let H the skew field of Hamilton’s
quaternions over R. Then the natural embedding R −→ H induces an isomor-
phism K2(R)/c(−1,−1) −→ K2(H).
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For division algebras D over local or global fields k, several results have been
achieved by Rehmann and Stuhler in [RS]. The methods and results there are
as follows:

Define ND/k := Image(RN : D∗ −→ k∗), then there exists (under the as-
sumption that kernel(RN) = [D∗, D∗], which is true for local and global fields
– see the next section about this assumption) a bimultiplicative map ψ0 :
ND/k × k∗ −→ K2(D), defined by ψ0(RN(x), z) = c(x, z) for x ∈ D∗, z ∈ k∗.
(The right hand side indeed only depends on z and on RN(x), not on the choice
of x in the pre-image of RN(x).) Under certain conditions on D, which always
hold for local and global fields, ψ0 turns out to be a symbol, i.e., ψ0(α, 1−α) = 0
for any α ∈ ND/k.

We define Y (D/k) := ND/k ⊗ k∗/〈 c(a, 1 − α) | α ∈ ND/k 〉. Then we obtain a
homomorphism ψ : Y (D/k) −→ K2(D)

Of course there is also a natural map ι : Y (D/k) −→ K2(k) −→ K2(D), given
by x⊗ y 7→ c(x, y) ∈ K2(D). It turns out that

(∗) ψ = ιd for d = degree D.

Now if RN is an epimorphism (which is true for non-Archimedean local fields
or for global fields with no real places), then Y (D/k) = K2(k).

By another result of Alperin-Dennis ([AD]) it can be shown that for quaternion
algebras, ψ is always surjective.

If k is a global function field, then it is shown in [RS] that:

K2(D) = K2(k) × finite group,

and if D in addition is a quaternion division algebra (i.e., dimkD = 4), then:

K2(k) ∼= K2(D)

But it is important to realize that this isomorphism is not induced by the
natural embedding k −→ D – it is something like 1/d times this map, by the
fact (∗) above.

There are similar results of this type for number fields in [RS].

The map ψ seems to something like the inverse of the “reduced K2-norm” for
division algebras of square-free degree as constructed by Merkurjev and Suslin:

Theorem 6.3 (Merkurjev, Suslin, cf. [MS]): If D is of square-free degree,
then there exists a unique homomorphism RNK2

: K2(D) −→ K2(k), such that
for every splitting field L/k of D the transfer map NL/k : K2(L) −→ K2(k)
factorizes through RNK2

, such that the following diagram commutes:
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K2(L)
ι

//

NL|F
$$I

I

I

I

I

I

I

I

I

K2(D)

RNK2

��

K2(k)

Here ι denotes the map induced by some embedding of L into some Ml(D).

From this, the following is deduced:

Theorem 6.4 ( Merkurjev, Suslin, cf. [MS]) If D is a division algebra of
square-free degree over a local or global field, then the sequence

0 −→ K2(D)
RNK2−→ K2(F ) −→

⊕

v

Z/2Z −→ 0

is exact, where the sum is taken over all real places of k for which Dv is non-
trivial.

This generalizes some of the results from [RS] to a certain extent, but only
under the assumption of a square-free index. It is expected that, at least for
results on local or global fields, this restriction should not be necessary.

Results and open questions on SK1(D) :

We have SL1(D) = kernel(RN : D∗ −→ k∗), hence [D∗, D∗] is contained in
SL1(D).

The abelian quotient group SL1(D)/[D∗, D∗] is denoted by SK1(D)4

The question in general is still open: What is SK1(D)?

Wang(1950) proved ([Wa]):

4The reason for this is as follows: For an arbitrary ring R, one defines the groups GL(R) =
lim
−→
n

GLn(R), E(R) = lim
−→
n

En(R) as the inductive limits via the embeddings given by

GLn(R) ∋ a 7→

„

a 0
0 1

«

∈ GLn+1(R), (here En(R) being the group generated by the

elementary matrices 1n + x eij). Then K1(A) := GL(R)/E(R) is an abelian group. If R
is commutative, then one has as well the inductive limit SL(R) = lim

−→
n

SLn(R), and the

determinant gives an epimorphism det : K1(R) ։ R∗, since En(R) ⊂ SLn(R) with the
kernel SK1(R) := SL(R)/E(A). This map splits because of R∗ ∼= GL1(R) →֒ GL(R) ։ R∗,
hence we get K2(R) = SK1(R) ⊕ R∗.

If R = D is a division algebra over a field k, and if det is replaced by the re-
duced norm RN, then SLn(D) ⊃ En(D) and the above definitions amount to K1(D) =
lim
−→
n

GLn(D)/En(D), SK1(D) = lim
−→
n

SLn(D)/En(D). From the properties of the Dieudonné

determinant we obtain K1(D) ∼= D∗/[D∗, D∗] and SK1(D) = SL1(D)/[D∗, D∗].
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Theorem 6.5 For any finite dimensional central k-division algebra D of degree
d one has SK1(D) = 1, if

i) either k is arbitrary and d is square free,

ii) or k is local or global and d is arbitrary.

It was a long standing open question whether SK1(D) is always trivial, in fact
this was stated as the “Artin-Tannaka”-conjecture.

But around 1975, V. P. Platonov (in [P] and several subsequent articles) gave
first examples of a finite central algebra D/k and SK1(D) 6= 1, which were
constructed over a twofold valuated field k.

The theory was further developed by P. K. J. Draxl, who proved that, for any
finite abelian group A, there exists D such that SK1(D) = A (cf. [DK]).

A. Suslin conjectured in 1990 that only in the case of square free degree, SK1(D)
should “generically vanish”:

Conjecture: SK1(Dk(SL1(D)) = 1 if and only if the degree of D is square free.

So far, there is just this result:

Theorem 6.6 (Merkurjev, [Me]) Let D be a division algebra over a field k. If
the degree of D is divisible by 4, then SK1(Dk(SL1(D)) 6= 1.

In fact, in [Me] the assumption was that char k 6= 2, but this has meanwhile
been removed.

The main tool in the proof is a theorem by Rost, who had proved an exact se-
quence 0 −→ SK1(D) −→ H4(F,Z/2Z) −→ H4(F (q),Z/2Z) which compares
SK1(D) for a tensor product D of two quaternion algebras with the Galois co-
homology of a quadratic Albert q form which is related to the two quaternion
forms involved.

Further details can be obtained from the Book of Involutions [KMRT], §17.
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- (SGA 3) - vol. 1,2,3 (Lecture notes in mathematics 151, 152, 153)

[Di] Dieudonné, Jean Les déterminants sur un corps non commutatif.
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anneau principal.
C. R. Acad. Sci. Paris Sér. A-B 262 1966 A1040–A1042.
http://www.numdam.org/item?id=ASENS 1969 4 2 1 1 0

[Me] Merkurjev, A. S. Generic element in SK1 for simple algebras. K-
Theory 7 (1993), no. 1, 1–3.

[MS] Merkurjev, A. S.; Suslin, A. A.: K-cohomology of Severi-Brauer va-
rieties and the norm residue homomorphism.
Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–
1136

[Mi] Milnor, John: Introduction to algebraic K-theory.
Annals of Mathematics Studies, No. 72. Princeton University Press,
Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.

[Mo] Moore, Calvin C.: Group extensions of p-adic and adelic linear groups.
Inst. Hautes tudes Sci. Publ. Math. No. 35 1968 157–222
http://www.numdam.org/item?id=PMIHES 1968 35 5 0

[MR] Morita, Jun; Rehmann, Ulf: Symplectic K2 of Laurent polynomials,
associated Kac-Moody groups and Witt rings.
Math. Z. 206 (1991), no. 1, 57–66

[P] Platonov, V. P. The Tannaka-Artin problem, and groups of projective
conorms.
Dokl. Akad. Nauk SSSR 222 (1975), no. 6, 1299–1302.

[R] Rehmann, Ulf: Zentrale Erweiterungen der speziellen linearen Gruppe
eines Schiefkörpers.
J. Reine Angew. Math. 301 (1978), 77–104.

[RS] Rehmann, Ulf; Stuhler, Ulrich: On K2 of finite-dimensional division
algebras over arithmetical fields.
Invent. Math. 50 (1978/79), no. 1, 75–90.

[R2] Rehmann, Ulf: Central extensions of SL2 over division rings and some
metaplectic theorems.
Applications of algebraicK-theory to algebraic geometry and number
theory, Part I, II (Boulder, Colo., 1983), 561–607, Contemp. Math.,
55, Amer. Math. Soc., Providence, RI, 1986.

[T] Tits, J.: Classification of algebraic semisimple groups.
1966 Algebraic Groups and Discontinuous Subgroups (Proc. Sympos.



46 References

Pure Math., Boulder, Colo., 1965) pp. 33–62 Amer. Math. Soc., Prov-
idence, R.I., 1966
http://www.ams.org/online bks/pspum9
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algébriques.
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