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1. Quiver Grassmannians and Auslander varieties.

Let k be an algebraically closed field and Λ a finite-dimensional k-algebra. Let
modΛ be the category of left Λ-modules of finite length (we call them just mod-
ules). A dimension vector d for Λ is a function defined on the set of isomorphism
classes of simple modules S with non-negative integral values dS . IfM is a module,
its dimension vector dimM attaches to the simple module S the Jordan-Hölder
multiplicity (dimM)S = [M : S].

Given a module M , let GeM be the set of all submodules of M with dimension
vector e, this is called a quiver Grassmannian, it is always a projective variety.
If we denote by SM be the set of the submodules of M , then SM is the disjoint
union of (finitely many) subsets GeM . Note that SM is a lattice with respect
to intersection and sum, and the subsets GeM consist of pairwise incomparable
elements.

If C, Y are modules, then we consider Hom(C, Y ) as a Γ(C)-module, where
Γ(C) = End(C)op. The easiest way to define the Auslander varieties for Λ is to
say that they are just the quiver Grassmannians GeHom(C, Y ). This is the fast
track definition, but it conceales the relevance of the Auslander varieties.

In order to provide the motivation, we have to outline Auslander’s theory of
C-determination of morphisms, developed already in 1974 (see [1], and also [4]).
We assume now only that Λ is an artin algebra. The aim of Auslander’s theory is
to describe the global directedness of the category modΛ.

Let Y be a module. Let
⋃

X Hom(X,Y ) be the class of all morphisms ending
in Y . We define a preorder � on this class as follows: Given f : X → Y and
f ′ : X ′ → Y , we write f � f ′ provided there is a morphism h : X → X ′ with
f = f ′h. As usual, such a preorder defines an equivalence relation by saying that
f, f ′ are right equivalent provided we have both f � f ′ and f ′ � f .

The object studied by Auslander is the set [→ Y 〉 of right equivalence
classes of maps ending in Y (it should be stressed that it is a set, not only
a class). Using the preorder �, this set [→ Y 〉 is a poset, even a lattice (for the
joins, one uses direct sums, for the meets, one uses pullbacks). The map 0 → Y is
the zero element of [→ Y 〉, the identity map Y → Y is its unit element.

Recall that a map f : X → Y is said to be right minimal provided any direct
summand X ′ of X with f(X ′) = 0 is equal to zero. Every right equivalence class
in [→ Y 〉 contains a right minimal morphism.

Let f : X → Y be a morphism and C a module. Then f is said to be right C-

determined provided the following condition is satisfied: given any morphism f ′ :
X ′ → Y such that f ′φ factors through f for all φ : C → X ′, then f ′ itself factors
through f . We denote by C [→ Y 〉 the subset of [→ Y 〉 of sll right equivalence
classes of right C-determined morphisms.

Here are the main assertions of Auslander:
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(1) The set [→ Y 〉 is the union of the subsets C [→ Y 〉. If C,C′ are modules,

both C [→ Y 〉 and C′

[→ Y 〉 are contained in C⊕C′

[→ Y 〉, thus we deal with a
filtered union. The essential assertion is that any morphism is right determined
by some module.

(2) Let C, Y be modules. There is a lattice isomorphism

ηCY : C [→ Y 〉 −→ S Hom(C, Y )

defined as follows: if f : X → Y , then ηCY (f) is the image of Hom(C, f) :
Hom(C,X) → Hom(C, Y ). The essential assertion is again the surjectivity of ηCY ,
thus to say that any Γ(C)-submodule of Hom(C, Y ) is of the form ℑHom(C, f).
The isomorphisms ηCY are called the Auslander bijections.

The isomorphism ηCY allows to shift properties from S Hom(C, Y ) to C [→ Y 〉.
Many properties of submodule lattices are known, all can be transfered via ηCY to
C [→ Y 〉. It is a modular lattice (thus C [→ Y 〉 is a modular lattice): The modules
M we are dealing with have finite length, we denote the length of M by |M |. The
Jordan-Hölder theorem asserts that all composition series have the same length
and given two composition series, there is a bijection between the composition
factors. Via the transfer, we have a corresponding Jordan-Hölder theorem for
C [→ Y 〉: given a right C-determined map f ending in Y , we can define its C-
length |f |C = |Hom(C, Y )| − |ηCY (f)|. The C-length of f can also be defined
directly, looking at suitable factorizations of f . Given a factorization f = f ′h,
where f, f ′ are right C-determined maps ending in Y with |f |C = |f ′|C + 1, then
ηCY (f) ⊂ ηCY (f

′) and the factor ηCY (f
′)/ηCY (f) is a simple Γ(C)-module. Thus,

the Jordan-Hölder theorem for C [→ Y 〉 allows to attach to any right C-determined
map its C-dimension vector.

Let us return to the case where Λ is a finite-dimensional k-algebra and k is
an algebraically closed field. If C, Y are modules, we use the Auslander bijection
ηCY : C [→ Y 〉 −→ S Hom(C, Y ). Given a dimension vector e for Γ(C), the
elements of the Auslander variety GeHom(C, Y ). correspond under ηCY to the
right equivalence classes of maps ending in Y with C-dimension vector e.

2. (Controlled) wildness

According to Drozd, any finite dimensional k-algebra is either tame or wild (and
most algebras are wild). It has been conjectured that wild algebras are actually
controlled wild (as defined below). A proof of this conjecture has been announced
by Drozd [2] in 2007, but apparently it has not yet been published.

Let rad be the radical of modΛ, this is the ideal generated by all non-invertible
maps between indecomposable modules. If U is a collection of objects of modΛ,
we denote by addU the closure under direct sums and direct summands. For every
pair X,Y of modules, Hom(X,U , Y ) denotes the subgroup of Hom(X,Y ) given by
the maps X → Y which factor through a module in addU .

The algebra Λ is said to be controlled wild provided for any finite-dimensional
k-algebra Γ (or, equivalently, just for the algebra Γ = k[T1, T2, T3]/(T1, T2.T3)

2)
there is an exact embedding functor F : modΓ → modΛ and a full subcategory U
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of modΛ (called the control class) such that for all Γ-modules X,Y , the subgroup
Hom(FX,U , FY ) is contained in rad(FX,FY ) and

Hom(FX,FY ) = F Hom(X,Y )⊕Hom(FX,U , FY ).

3. Quiver Grassmannians

A recent paper of Reineke [3] asserts: Every projective variety is a quiver Grass-

mannian GeM for a module M with endomorphism ring k.
Let us outline a construction. Let V be a projective variety, say a closed subset

of the projective space Pn, defined by the vanishing of homogeneous polynomials
f1, . . . , fm of degree 2. Let ∆ be the quiver with 3 vertices a, b, c, with n+1 arrows
b → a labeled x0, . . . , xn as well as n+1 arrows c → b, also labeled x0, . . . , xn. The
path algebra of ∆ with all possible relations xixj = xjxi is called the Beilinson
algebra B. Let Λ be the factor algebra of B taking the elements f1, . . . , fm as
additional relations (considered as linear combinations of paths of length 2). Let
I be the indecomposable injective B-module corresponding to the vertex a, and
take e = (1, 1, 1). Now GeI is the set of all serial submodules of I of length 3 (a
module is serial, provided it has a unique composition series). There is an obvious
identification of this set GeI with P

n. Let M be the indecomposable injective
Λ-module corresponding to the vertex a. Then M is a submodule of I. Also, a
submodule W of I is a submodule of M if and only if W is a Λ-module. Thus the
serial submodules W of M of length 3 correspond just to the elements of V . One
may say that this construction is really tautological.

Here are some remarks on the history: The 2-page paper by Reineke attracted
a lot of interest, see for example blogs by L. Le Bruyn and by J. Baez. The
construction given above was presented by M. Van den Bergh in Le Bruyn’s blog,
but actually, it is much older: it has been used before by B. Huisgen-Zimmermann
(1998) and L. Hille (1996) dealing with related problems.

There are controlled wild algebras Λ such that not every projective variety can

be realized as a quiver Grassmannian of a Λ-module.

As an example, take Λ = k[T1, T2, T3]/(T1, T2, T3)
2. One can show that GiM is

rationally connected, for every module M and any 0 ≤ i ≤ dimM.

4. Auslander varieties

Theorem. Let Λ be a finite-dimensional k-algebra which is controlled wild.

Let V be any projective variety. Then there are Λ-modules C, Y and a dimension

vector e for Γ(C) such that GeHom(C, Y ) is of the form V.

Outline of proof. Let V be a projective variety. There is a finite-dimensional
algebra Γ, a Γ-module M and a dimension vector g for Γ such that GgM is of the
form V , as we have seen in section 3. Since Λ is controlled wild, there is a controlled
embedding F : modΓ → modΛ, say with control class U . Let G = F (ΓΓ) and
Y = F (M). There is U ∈ addU such that Hom(G,U,G) = Hom(G,U , G) and
Hom(G,U, Y ) = Hom(G,U , Y ). Let C = G ⊕ U and R = End(C)op. Let eG be
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the projection of C onto G with kernel U and e = eU the projection of C onto U
with kernel G, both eG, eU considered as elements of R. Note that

R = F (Hom(Γ,Γ))⊕Hom(G⊕U,U , G⊕U)⊕Hom(G,U)⊕Hom(U,G)⊕Hom(U,U),

and

ReR = Hom(G⊕ U,U , G⊕ U)⊕Hom(G,U)⊕Hom(U,G)⊕Hom(U,U).

It follows that the map γ 7→ F (γ) ∈ eGReG yields an isomorphism Γ → R/ReR.
Consider the R-module

N = Hom(G⊕ U, Y ) = Hom(Γ,M)⊕Hom(G⊕ 0, U, Y )⊕Hom(0⊕ U, Y ).

If we multiply N with the element e = eU ∈ R, we obtain eN = Hom(0 ⊕ U, Y ),
thus

ReN = RHom(0⊕ U, Y ) = Hom(G⊕ 0, U, Y )⊕Hom(0 ⊕ U, Y ).

This shows that N/ReN is canonically isomorphic to F Hom(Γ,M) as an R-
module. Of course, these modules are annihilated by e, thus they are R/ReR-
modules and as we know R/ReR = Γ, thus SΓ(N/ReN) can be identified with
SRM .

Let c = dimReN. If g is a dimension vector and W belongs to Gg+cN , then
W ⊇ ReN , and W/ReN is an element of Gg(N/ReN). As a consequence, the
varieties Gg+cN and Gg(N/ReN) = GgM = V can be identified.
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