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Abstract. For any finite-dimensional algebra over a finite field, the corresponding
Hall algebra has been introduced in order to handle the possible filtrations of modules
with fixed factors. For the path algebra of a Dynkin diagram with a fixed orientation,
it has been shown that the Hall algebra satisfies relations which are similar to the
Drinfeld-Jimbo relations defining quantum groups, but they depend on the chosen
orientation. The purpose of this note is to adjust the multiplication of a Hall algebra
in order to obtain the Drinfeld-Jimbo relations themselves. The additional factor
introduced in our change of multiplication involves the Euler characteristic, in this
way we eliminate the dependence on the orientation.

Given a finite-dimensional connected hereditary algebra A of finite representation
type, say with Dynkin diagram ∆, the indecomposable A-modules correspond
bijectively to the positive roots of the simple complex Lie-algebra g of type ∆.
Thus, the Grothendieck group G(A, C) of the category of finitely generated A-
modules relative to split exact sequences and with coefficients in C may be identified
with n+, where g = n−⊕h⊕n+ is a triangular decomposition of g. Hall algebras
have been introduced in order to recover the Lie multiplication on G(A, C) using
the representation theory of A. The Hall algebra H(A, C[q]) is rather similar to the
Drinfeld-Jimbo quantization Uq(n+) of the universal enveloping algebra U(n+),
however it depends on the orientation on ∆ given by A. Our aim is to change the
multiplication slightly in order to remove this dependence. We will explain the
change of multiplication dealing with the integral Hall algebra H(A), where A is
any finite-dimensional hereditary k-algebra with center k, with k a finite field.

1. Change of multiplication for graded rings

Let R =
⊕

g∈G Rg be a graded ring, say with multiplication ·, where G is an
abelian group (written additively). Let c be an invertible central element of R of
degree 0, and let α : G×G → Z be a bilinear form. On the underlying graded group
of R, we define a new multiplication ∗ = ∗

α
as follows: Given non-zero elements

r ∈ Rg, s ∈ Rh, let

r ∗ s = cα(g,h)r · s,

the ring obtained in this way will be denoted by R[α,c]. It is easy to check that R[α,c]

is again an associative ring, with the same unit element as R. Using induction, one
shows:
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Lemma 1. Let ri ∈ Rgi
, for 1 ≤ i ≤ n. Then

r1 ∗ r2 ∗ · · · ∗ rm = car1 · r2 · . . . · rm,

where a =
∑

i<j α(gi, gj).

We denote by r∗t = r ∗ · · · ∗ r the tth power of an element r in R[α,c].

2. Hall algebras

Let A be a finite-dimensional hereditary k-algebra, with center k, and let
E1, . . . , En be the simple A-modules.

Let K0(A) be the Grothendieck group of all finite-dimensional A-modules
relative to all exact sequences. For any A-module M, the corresponding element
in K0(A) will be denoted by dimM, thus K0(A) may be identified with the free
abelian group with basis dimE1, . . . ,dimEn. Let ε be the Euler characteristic on
K0(A), thus given A-modules M1, M2,

ε(dimM1,dimM2) =
∑

t≥0

(−1)t dimk Extt(M1, M2)

= dimk Hom(M1, M2) − dimk Ext1(M1, M2).

Let us assume that k is a finite field, let v =
√

|k|. Let H = H(A)⊗Z[v, v−1]; it
is a K0(A)-graded ring. We consider the ring H∗ = H[ε,v]. We will exhibit a direct
description of H∗ below. Given an A-module M, we denote its isomorphism class
by [M ] and the corresponding element in H(A) and in H by u[M ]. Let ui = u[Ei].

The Hall algebra H∗ may be defined directly as follows: Given A-modules
N1, N2, M, let FM

N1N2
be the number of submodules M ′ of M such that M/M ′ is

isomorphic to N1, whereas M ′ is isomorphic to N2. Let H∗ be the free Z[v, v−1]-
module with basis (u[M ])[M ], indexed by the set of isomorphism classes of finite
A–modules. We define on H∗ a multiplication ∗ by the following rule

u[N1] ∗ u[N2] = vε(dimN1,dim N2)
∑

[M ]

FM
N1N2

u[M ].

For any i, let fi = dimk End(Ei). Fix some pair i 6= j, with Ext1(Ei, Ej) = 0.
Let

aij = −dim Ext1(Ej, Ei)End(Ei)

aji = −dimEnd(Ej) Ext1(Ej, Ei),

thus fiaij = fjaji. Let qi = v2fi .

Recall the Drinfeld-Jimbo relations

ρn(q, X, Y ) =

n
∑

t=0

(−1)t

[

n
t

]

q

q−
t(n−t)

2 XtY Xn−t,
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they have been introduced in order to define the quantizations of the universal
enveloping algebras of the semisimple complex Lie algebras, and, more general, of
the Kac-Moody Lie algebras.

Proposition. In H∗, we have

ρ1−aij
(qi, ui, uj) = 0, and ρ1−aji

(qj , uj, ui) = 0.

Proof. We consider a pair i 6= j, with Ext1(Ei, Ej) = 0. Let

εij = ε(dimEi,dimEj),

thus
εii = fi, εij = 0, εji = fiaij = fjaji.

Let m = 1− aij . We have to consider products of the form u∗t
i ∗ uj ∗ u

∗(m−t)
i , and

Lemma 1 shows that

u∗t
i ∗ uj ∗ u

∗(m−t)
i = vaut

iuju
m−t
i ,

where

a =

(

m

2

)

εii + tεij + (m − t)εji

=

(

m

2

)

fi + (m − t)fiaij

= fi(
m(m − 1)

2
+ (m − t)(1 − m))

= fi(−

(

m

2

)

+ tm − t).

It follows that

−fit(m − t) + a = fi(−tm + t2 −

(

m

2

)

+ tm − t) = fi(−

(

m

2

)

+ 2

(

t

2

)

).

As a consequence

q
−

t(m−t)
2

i u∗t
i ∗ uj ∗ u

∗(m−t)
i = q

− 1
2 (

m

2 )
i q

(t

2)
i ut

iuju
m−t
i ,

thus

ρm(qi, ui, uj) =
m

∑

t=0

(−1)t

[

m
t

]

qi

q
−

t(m−t)
2

i u∗t
i ∗ uj ∗ u

∗(m−t)
i

=

m
∑

t=0

(−1)t

[

m
t

]

qi

q
− 1

2 (
m

2 )
i q

(t

2)
i ut

iuju
m−t
i

= q
− 1

2 (
m

2 )
i

m
∑

t=0

(−1)t

[

m
t

]

qi

q
(t

2)
i ut

iuju
m−t
i ,
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and according to [R3] we know that the latter sum vanishes.
Similarly, let m′ = 1 − aji. Observe that

u
∗(m′−t)
j ∗ ui ∗ u∗t

j = vbum′−t
j uiu

t
j ,

with

b =

(

m′

2

)

εjj + (m′ − t)εji + tεij = fj(−

(

m′

2

)

+ tm′ − t),

therefore

ρm′(qj , uj, ui) = (−1)m′

m′

∑

t=0

(−1)t

[

m′

t

]

qj

q
−

t(m′
−t)

2
j u

∗(m′−t)
j ∗ ui ∗ u∗t

j

= (−1)m′

m′

∑

t=0

(−1)t

[

m′

t

]

qj

q
− 1

2 (
m′

2 )
j q

(t

2)
j um′−t

j uiu
t
j

= (−1)m′

q
− 1

2 (
m′

2 )
j

m′

∑

t=0

(−1)t

[

m′

t

]

qj

q
(t

2)
j um′−t

j uiu
t
j ,

and again the latter sum vanishes according to [R3]. This completes the proof.

In a similar way, we may change the multiplication for the generic Hall
algebras, and for the Loewy and composition algebras as defined in [R2,3,4].

3. The Euler characteristic for a quiver

Let Q = (Q0, Q1, s, t) be a quiver, with Q0 the set of vertices, Q1 the set of
arrows; these arrows are of the form α : s(α) → t(α). If we allow the existence
of cyclic paths, the path algebra kQ will not be finite-dimensional, however the
Hall algebra H(kQ) still is defined provided we assume that there are only finitely
many arrows between any pair of vertices, see [R2]. We consider H(kQ) as a
graded G-ring, where G = ZQ0 . Note that dim furnishes a surjective map from
the Grothendieck group K0(kQ) of all finite-dimensional kQ-modules modulo exact
sequences onto G, but this map is bijective only in case there are no cyclic paths.

We consider the bilinear form

ε(x, y) =
∑

i∈Q0

xiyi −
∑

α∈Q1

xs(α)yt(α),

for x, y ∈ G, it satisfies

ε(dimM1,dimM2) = dimk Hom(M1, M2) − dimk Ext1(M1, M2),

for finite-dimensional kQ-modules M1, M2, see [R1]. The quadratic form obtained
from the Euler characteristic ε may be described also in terms of algebraic geometry:
Given m1, m2 ∈ N, let M(m1, m2) be the set of (m1×m2)-matrices with entries in k,
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and Gl(m1) the group of invertible (m1×m1)-matrices. For d ∈ N
Q0 , the affine space

M(d) =
⊕

α∈Q1
M(ds(α), dt(α)) may be considered as the set of representations M

with dimM = d using fixed vector spaces; the group G(d) =
∏

i∈Q0
Gl(di) operates

on M(d) so that the orbits are just the isomorphism classes. Then

ε(d, d) = dimk G(d) − dimk M(d).

One particular quiver should be mentioned explicitly, the quiver with one vertex
and one arrow: its path algebra is the polynomial ring k[T ] in one variable, thus
its Hall algebra H(k[T ]) is the tensor product of classical Hall algebras (one for
each maximal ideal of k[T ]) as studied by Steinitz and Ph. Hall. In this case, the
bilinear form ε is the zero form, thus in forming H∗, the multiplication is not
changed at all.

4. Other bilinear forms

The deviation of the multiplication in the Hall algebra H as compared to
Uq(n+) was considered by Lusztig in [L1] when he worked with Hall algebras in
order to exhibit canonical bases for Uq(n+). The process of changing multiplication
is implizitly used by Lusztig in [L2], see in particular 10.2. He stresses the cocycle
condition, but does not indicate the nature of the bilinear form. In fact, the
bilinear form he works with differs from the Euler characteristic ε by diagonal
entries. However, bilinear forms α, β which differ only by diagonal entries lead to
isomorphic rings R[α,c], R[β,c], as we are going to show.

Lemma 2. Let G be a free abelian group with basis e1, . . . , en. Let α, β be

bilinear forms on G with values in Z such that α(ei, ej) = β(ei, ej) for all i 6= j.
Let R be a G-graded ring, and let c ∈ R0 be an invertible central element. Then

the map η : R[α,c] → R[β,c] defined for r ∈ Rg, g =
∑

i giei, by

η(r) = cδ(g)r, with δ(g) =
∑

i

(

gi

2

)

(β(ei, ei) − α(ei, ei)),

is an isomorphism of rings.

Let us stress that the restriction of η to Rei
is the identity, for all i.

Proof. Clearly, η is additive, thus, let us consider r ∈ Rg, s ∈ Rh where
g =

∑

i giei, h =
∑

i hiei. We have

η(r ∗
α

s) = cδ(g+h)r ∗
α

s = cδ(g+h)+α(g,h)r · s,

η(r) ∗
β

η(s) = cδ(g)+δ(h)r ∗
β

s = cδ(g)+δ(h)+β(g,h)r · s.

The equality
(

gi + hi

2

)

−

(

gi

2

)

−

(

hi

2

)

= gihi
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implies that

δ(g + h) − δ(g) − δ(h) =
∑

i

gihi(α(ei, ei) − β(ei, ei))

= α(g, h) − β(g, h)

since we assume that α(ei, ej) − β(ei, ej) = 0 for i 6= j.
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