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Abstract. The representation dimension of an artin algebra as introduced
by M. Auslander in his Queen Mary Notes is the minimal possible global dimen-
sion of the endomorphism ring of a generator-cogenerator. The following report
is based on two texts written in 2008 in connection with a workshop at Bielefeld.
The first part presents a full proof that any torsionless-finite artin algebra has
representation dimension at most 3, and provides a long list of classes of algebras
which are torsionless-finite. In the second part we show that the representation
dimension is adjusted very well to forming tensor products of algebras. In this way
one obtains a wealth of examples of artin algebras with large representation di-
mension. In particular, we show: The tensor product of n representation-infinite
path algebras of bipartite quivers has representation dimension precisely n+ 2.

Let Λ be an artin algebra. The representation dimension repdimΛ of Λ was introduced
1971 by M. Auslander in his Queen Mary Notes [A], it is the minimal possible global
dimension of the endomorphism ring of a generator-cogenerator (a generator-cogenerator

is a Λ-module M such that any indecomposable projective or injective Λ-module is a
direct summand of M); a generator-cogenerator M such that the global dimension of
the endomorphism ring of M is minimal will be said to be an Auslander generator. All
the classes of algebras where Auslander was able to determine the precise representation
dimension turned out to have representation dimension at most 3. Thus, he asked, on
the one hand, whether the representation dimension can be greater than 3, but also, on
the other hand, whether it always has to be finite. These questions have been answered
only recently: The finiteness of the representation dimension was shown by Iyama [I1] in
2003 (for a short proof using the notion of strongly quasi-hereditary algebras see [R4]).
For some artin algebras Λ, one knows that repdimΛ ≤ LL(Λ) + 1, where LL(Λ) is the
Loewy length of Λ. On the other hand, Rouquier [Rq] has shown that the representation
dimension of the exterior algebra of a vector space of dimension n ≥ 1 is n+ 1.

The name representation dimension was coined by Auslander on the basis of his ob-
servation that Λ is representation-finite if and only if repdimΛ ≤ 2. Not only Auslander,
but later also many other mathematicians were able to prove that the representation di-
mension of many well-known classes of artin algebras is bounded by 3. For artin algebras
with representation dimension at most 3, Igusa and Todorov [IT] have shown that the
finitistic dimension of these algebras is finite.
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Our report is based on two texts written in 2008 in connection with a Bielefeld work-
shop on the representation dimension [Bi].

Part I is a modified version of [R3] which was written as an introduction for the work-
shop, it aimed at a general scheme for some of the known proofs for the upper bound 3,
by providing the assertion 4.2 that any torsionless-finite artin algebra has representation

dimension at most 3. We recall that a Λ-module is said to be torsionless or divisible pro-
vided it is a submodule of a projective module, or a factor module of an injective module,
respectively. The artin algebra Λ is said to be torsionless-finite provided there are only
finitely many isomorphism classes of indecomposable torsionless Λ-modules. Two ingredi-
ents are needed for the proof of 4.2, one is the characterization 4.3 of Auslander generators
which was used already by Auslander (at least implicitly) in the Queen Mary notes, the
second is the bijection 3.2 between the isomorphism classes of the indecomposable tor-
sionless and the indecomposable divisible modules which can be found in the appendix of
Auslander-Bridger [AB].

In Part II we want to outline that the representation dimension is adjusted very
well to forming tensor products of algebras. It should be stressed that already in 2000,
Changchang Xi [X1] was drawing the attention to this relationship by showing that

repdimΛ⊗k Λ′ ≤ repdimΛ + repdimΛ′

for finite-dimensional k-algebras Λ,Λ′, provided k is a perfect field. In 2009, Oppermann
[O1] gave a lattice criterion for obtaining a lower bound for the representation dimension
(see 6.3) and we show (see 7.1) that this lattice construction is compatible with tensor
products; this fact was also noted by Oppermann [O4]. In this way one obtains a wealth of
examples with large representation dimension. These sections 6 and 7 are after-thoughts
to the workshop-lecture of Oppermann and a corresponding text was privately distributed
after the workshop. The last two sections show that sometimes one is able to determine the
precise value of the representation dimension. Namely, we will show in 9.4: Let Λ1, . . .Λn

be representation-infinite path algebras of bipartite quivers. Then the algebra Λ = Λ1 ⊗k

· · ·⊗kΛn has representation dimension precisely n+2. For quivers without multiple arrows,
this result was presented at the Abel conference in Balestrand, June 2011, the example
of the tensor product of two copies of the Kronecker algebra was exhibited already by
Oppermann at the Bielefeld workshop.

We consider an artin algebra Λ with duality functor D. Usually, we will consider left
Λ-modules of finite length and call them just modules. Always, morphisms will be written
on the opposite side of the scalars.

Given a classM of modules, we denote by addM the modules which are (isomorphic
to) direct summands of direct sums of modules inM. If M is a module, we write addM =
add{M}. We say that M is finite provided there are only finitely many isomorphism
classes of indecomposable modules in addM, thus provided there exists a module M with
addM = addM.

Acknowledgment. The author is indebted to Dieter Happel and Steffen Oppermann
for remarks concerning the presentation of the paper.
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Part I. Torsionless-finite artin algebras.

1. The torsionless modules for Λ and Λop

Let L = L(Λ) be the class of torsionless Λ-modules and P = P(Λ) the class of
projective Λ-modules. Then P(Λ) ⊆ L(Λ), and we may consider the factor category
L(Λ)/P(Λ) obtained from L(Λ) by factoring out the ideal of all maps which factor through
a projective module.

(1.1) Theorem. There is a duality

η : L(Λ)/P(Λ) −→ L(Λop)/P(Λop)

with the following property: If U is a torsionless module, and f : P1(U) → P0(U) is a

projective presentation of U , then for η(U) we can take the image of Hom(f,Λ).

In the proof, we will use the following definition: We call an exact sequence P1 →
P0 → P−1 with projective modules Pi strongly exact provided it remains exact when we
apply Hom(−,Λ). Let E be the category of strongly exact sequences P1 → P0 → P−1 with
projective modules Pi (as a full subcategory of the category of complexes).

(1.2) Lemma. The exact sequence P1
f
−→ P0

g
−→ P−1, with all Pi projective and

epi-mono factorization g = ue is strongly exact if and only if u is a left Λ-approximation.

Proof: Under the functor Hom(−,Λ), we obtain

Hom(P−1,Λ)
g∗

−→ Hom(P0,Λ)
f∗

−→ Hom(P1,Λ)

with zero composition. Assume that u is a left Λ-approximation. Given α ∈ Hom(P0,Λ)
with f∗(α) = 0, we rewrite f∗(α) = αf. Now e is a cokernel of f , thus there is α′ with
α = α′e. Since u is a left Λ-approximation, there is α′′ with α′ = α′′u. It follows that
α = α′e = α′′ue = α′′g = g∗(α′′).

Conversely, assume that the sequence (∗) is exact, let U be the image of g, thus
e : P0 → U, u : U → P−1. Consider a map β : U → Λ. Then f∗(βe) = βef = 0, thus there
is β′ ∈ Hom(P−1,Λ with g∗(β′) = βe. But g∗(β) = β′g = β′ue and βe = β′ue implies
β = β′u, since e is an epimorphism.

Proof of Theorem 1.1. Let U be the full subcategory of E of all sequences which
are direct sums of sequences of the form

P −→ 0 −→ 0, P
1
−→ P −→ 0, 0 −→ P

1
−→ P, 0 −→ 0 −→ P.

In order to define the functor q : E → L, let q(P1
f
−→ P0

g
−→ P−1) be the image of g. Clearly,

q sends U onto P, thus it induces a functor

q : E/U −→ L/P.
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Claim: This functor q is an equivalence.

First of all, the functor q is dense: starting with U ∈ L, let

P1
f
−→ P0

e
−→ U −→ 0

be a projective presentation of U , let u : U → P−1 be a left Λ-approximation of U , and
g = ue.

Second, the functor q is full. This follows from the lifting properties of projective
presentations and left Λ-approximations.

It remains to show that q is faithful. We will give the proof in detail (and it may
look quite technical), however we should remark that all the arguments are standard; they
are the usual ones dealing with homotopy categories of complexes. Looking at strongly

exact sequences P1
f
−→ P0

g
−→ P−1, one should observe that the image U of g has to be

considered as the essential information: starting from U , one may attach to it a projective

presentation (this means going from U to the left in order to obtain P1
f
−→ P0) as well as a

left Λ-approximation of U (this means going from U to the right in order to obtain P−1).

In order to show that q is faithful, let us consider the following commutative diagram

P1
f

−−−−→ P0
g

−−−−→ P−1

h1





y

h0





y

h−1





y

P ′
1

f ′

−−−−→ P ′
0

g′

−−−−→ P ′
−1

with strongly exact rows. We consider epi-mono factorizations g = eu, g′ = e′u′ with
e : P0 → U, u : U → P−1, e

′ : P ′
0 → U ′, u′ : U ′ → P ′

−1, thus q(P•) = U, q(P ′
•) = U ′. Assume

that q(h•) = ab, where a : U → X, b : X → U ′ with X projective. We have to show that
h• belongs to U .

The factorizations g = eu, g′ = e′u′, q(h•) = ab provide the following equalities:

eab = h0e
′, uh1 = abu′.

Since u : U → P−1 is a left Λ-approximation and X is projective, there is a′ : P−1 → X
with ua′ = a. Since e′ : P ′

0 → U ′ is surjective and X is projective, there is b′ : X → P ′
0

with b′e′ = b.

Finally, we need c : P0 → P ′
1 with cf ′ = h0 − eab′. Write f ′ = w′v′ with w′ epi and v′

mono; in particular, v′ is the kernel of g′. Note that eab′g′ = eab′e′u′ = eabu′ = h0e
′u′ =

h0g
′, thus (h0 − eab′)g′ = h0g

′ − eab′g′ = h0g
′ − h0g

′ = 0, thus h0 − eab′ factors through
the kernel v′ of g′, say h0 − eab′ = c′v′. Since P0 is projective and w′ is surjective, we find
c : P0 → P ′

1 with cw′ = c′, thus cf ′ = cw′v′ = c′v′ = h0 − eab′.
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Altogether, we obtain the following commutative diagram

P1
f

−−−−→ P0
g

−−−−→ P−1

[ 1 f ]





y





y

[ 1 ea ]





y

[ a′ h1−a
′bu′ ]

P1 ⊕ P0

[

0 0

1 0

]

−−−−→ P0 ⊕X

[

0 0

1 0

]

−−−−→ X ⊕ P ′
−1

[

h1−fc

c

]





y





y

[

h0−eab′

b′

]





y

[

bu′

1

]

P ′
1

f ′

−−−−→ P ′
0

g′

−−−−→ P ′
−1

which is the required factorization of h• (here, the commutativity of the four square has
to be checked; in addition, one has to verify that the vertical compositions yield the maps
hi; all these calculations are straight forward).

Now consider the functor Hom(−,Λ), it yields a duality

Hom(−,Λ): E(Λ) −→ E(Λop)

which sends U(Λ) onto U(Λop). Thus, we obtain a duality

E(Λ)/U(Λ) −→ E(Λop)/U(Λop).

Combining the functors considered, we obtain the following sequence

L(Λ)/P(Λ)
q
←−− E(Λ)/U(Λ)

Hom(−,Λ)
−−−−−−→ E(Λop)/U(Λop)

q
−−→ L(Λop)/P(Λop),

this is duality, and we denote it by η.
It remains to show that η is given by the mentioned recipe. Thus, let U be a torsionless

module. Take a projective presentation

P1
f
−→ P0

e
−→ U −→ 0

of U , and let m : U → P−1 be a left P-approximation of U and g = eu. Then

P• = (P1
f
−→ P0

g
−→ P−1)

belongs to E and q(P•) = U. The functor Hom(−,Λ) sends P• to

Hom(P•,Λ) = (Hom(P−1,Λ)
Hom(g,Λ)
−−−−−−→ Hom(P0,Λ)

Hom(f,Λ)
−−−−−−→ Hom(P1,Λ))

in E(Λop). Finally, the equivalence

E(Λop)/U(Λop)
q
−−→ L(Λop)/P(Λop)
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sends Hom(P•,Λ) to the image of Hom(f,Λ).

2. Consequences

(2.1) Corollary. There is a canonical bijection between the isomorphism classes of the

indecomposable torsionless Λ-modules and the isomorphism classes of the indecomposable

torsionless Λop-modules.

Proof: The functor Hom(−,Λ) provides a bijection between the isomorphism classes of
the indecomposable projective Λ-modules and the isomorphism classes of the indecompos-
able projective Λop-modules. For the non-projective indecomposable torsionless modules,
we use the duality η given by Theorem 1.

Remark. As we have seen, there are canonical bijections between the indecomposable
projective Λ-modules and and the indecomposable projective Λop-modules, as well between
the indecomposable non-projective torsionless Λ-modules and the indecomposable non-
projective torsionless Λop-modules, both bijections being given by categorical dualities,
but these bijections do not combine to a bijection with nice categorical properties. We will
exhibit suitable examples below.

(2.2) Corollary. If Λ is torsionless-finite, also Λop is torsionless-finite.

Whereas corollaries 2.1 and 2.2 are of interest only for non-commutative artin algebras,
the theorem itself is also of interest for Λ commutative.

(2.3) Corollary. For Λ a commutative artin algebra, the category L/P has a self-

duality.

For example, consider the factor algebra Λ = k[T ]/〈Tn〉 of the polynomial ring k[T ]
in one variable, with k is a field. Since Λ is self-injective, all the modules are torsionless.
Note that in this case, η coincides with the syzygy functor Ω.

3. The torsionless and the divisible Λ-modules

Let K = K(Λ) be the class of divisible Λ-modules. Of course, the duality functor D
provides a bijection between the isomorphism classes of divisible modules and the isomor-
phism classes of torsionless right modules.

We denote by Q = Q(Λ) the class of injective modules. Clearly, D provides a duality

D : L(Λop)/P(Λop) −→ K(Λ)/Q(Λ).

Thus, we can reformulate theorem 1 as follows: The categories L(Λ)/P(Λ) and K(Λ)/Q(Λ)
are equivalent under the functor Dη. It seems to be worthwhile to replace the functor Dη
by the functor Στ . Here, τ is the Auslander-Reiten translation and Σ is the suspension
functor (defined by Σ(V ) = I(V )/V, where I(V ) is an injective envelope of V ). Namely,
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in order to calculate τ(U), we start with a minimal projective presentation f : P1 → P0

and take as τ(U) the kernel of

DHom(f,Λ): DHom(P1,Λ) −→ DHom(P0,Λ).

Now the kernel inclusion τ(U) ⊂ DHom(P1,Λ) is an injective envelope of τ(U); thus
Στ(U) is the image of DHom(f,Λ), but this image is Dη(U). Thus we see that Theorem
1.1 can be formulated also as follows:

(3.1) Theorem. The categories L(Λ)/P(Λ) and K(Λ)/Q(Λ) are equivalent under

the functor γ = Στ .

(3.2) Corollary. If Λ is torsionless-finite, the number of isomorphism classes of

indecomposable divisible modules is equal to the number of isomorphism classes of inde-

composable torsionless modules.

(3.3) Examples. We insert here four examples so that one may get a feeling about
the bijection between the isomorphism classes of indecomposable torsionless modules and
those of the indecomposable divisible modules.

(1) The path algebra of a linearly oriented quiver of type A3 modulo the square of its
radical.

◦ ◦ ◦................................................................... ...................................................................
..
....

.......

We present twice the Auslander-Reiten quiver. Left, we mark by + the indecomposable
torsionless modules and encircle the unique non-projective torsionless module. On the
right, we mark by ∗ the indecomposable divisible modules and encircle the unique non-
injective divisible module:

◦+

+

+

+

.......
.................................................
...

.........
.........
.........
.........
.............
............ ................................................. ........

....
.........
.........
.........
.........
.............
............ ................................................. ........

....

......... .........
L

◦

∗

∗

∗

∗.......
.................................................
...

.........
.........
.........
.........
.............
............ ................................................. ........

....
.........
.........
.........
.........
.............
............ ................................................. ........

....

......... .........
K

(2) Next, we look at the algebra Λ given by the following quiver with a commutative
square; to the right, we present its Auslander-Reiten quiver Γ(Λ) and mark the torsionless
and divisible modules as in the previous example. Note that the subcategories L and K
are linearizations of posets.

◦

◦

◦

◦

◦

............................................
.....
............

.........
.........

.........
.........

.........................

.........
.........

.........
.........

.........................
............................................

.....
............

.........
.........

.........
.........

.........................

. . . . . . . . .

Λ

◦

◦

◦

◦

◦

◦ ◦

+

+

+

+

+ +

∗

∗

∗

∗

∗

∗.......
.................................................
... .......

.................................................
...

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............

.........
.........
.........
.........
.............
............................................................. ........

....

................................................. ........
....

................................................. ........
....

................................................. ........
....

................................................. .......
.....

................................................. .......
.....

................................................. .......
.....

................................................. .......
.....

................................................. .......
.....

................................................. .......
.....

................................................. .......
.....

....................................... ............ ....................................... ............ ....................................... ................................................... .......
.....

....................................... .......
.....

....................................... .......
.....

Γ(Λ)

•

•

•

•

• •............................................................
.........

.........
.........

.........
..........
.........
.........
.........
.........
.........
..

.................................................................................................................................................
........................................
..

L

• •

•

•

•

•.....................................................................
.........

.........
.........

..........

.........
.........
.........
.........
.........
..

......................................................................................................................................... ........
........................................
..

K
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(3) The local algebra Λ with generators x, y and relations x2 = y2 and xy = 0. In
order to present Λ-modules, we use here the following convention: the bullets represent base
vectors, the lines marked by x or y show that the multiplication by x or y, respectively,
sends the upper base vector to the lower one (all other multiplications by x or y are
supposed to be zero). The upper line shows all the indecomposable modules in L, the
lower one those in K.

•

• •

• •

................................................................
........
.........
........
........
........
..........
........
........
........
.........
.........
........
...................................................................................................................

x

x

y

y
x

ΛΛ

• •

•

•........
........
........
........
........
........
........................................................

x y
•

•

....................................................
x

• •

• •..........
........
........
........
........
........
..............................................................

........
........
........
........
........
....

x
x

y

•

• •

•

•

................................................................
........
.........
........
........
........
..........
........
........
........
.........
.........
........
...................................................................

........
.........
.........
........
........
......

y

y

x

x

y
ΛDΛ •

•

•............................................................
........
........
........
........
........
....

x y • •

•

........
........
........
........
........
........
....

y

•

•

•

•

........
........
........
........
........
........
................................................................

........
........
........
........
........
....

y x
y

L

K

Let us stress the following: All the indecomposable modules in L \ P as well as those in
K \ Q are Λ′-modules, where Λ′ = k[x, y]/〈x, y〉2. Note that the category of Λ′-modules is
stably equivalent to the category of Kronecker modules, thus all its regular components are
homogeneous tubes. In L we find two indecomposable modules which belong to one tube,
in K we find two indecomposable modules which belong to another tube. The algebra Λ′

has an automorphism which exchanges these two tubes; this is an outer automorphism,
and it cannot be lifted to an automorphism of Λ itself.

(4) In the last example to be presented here, L (and therefore also K) will be infinite.
We consider the quiver

◦

◦

◦

◦

....................................................................
.....
............

................................................................................... ........
....

................................................................................... .......
.....

................................................................................... ........
....

................................................................................... ........
....

.....................................................................
....
............

1

2 3

4

α

β

β′

β

β′

α

with the relations αβ = βα and αβ′ = β′α, thus we deal with the tensor product Λ of
the Kronecker algebra and the path algebra of the quiver of type A2 (note that tensor
products of algebras will be discussed in the second part of this paper in more detail).
For any vertex i, we denote by S(i), P (i), Q(i) the simple, or indecomposable projective
or indecomposable injective Λ-module corresponding to i, respectively.

The categories L and K can be described very well using the category of Kronecker
modules. By definition, the Kronecker quiver K has two vertices, a source and a sink, and
two arrows going from the source to the sink. Thus a Kronecker module is a quadruple
(U, V, w, w′) consisting of two vector spaces U, V and two linear maps w,w′ : U → V . We
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define functors η, η′ : mod kK → modΛ, sending M = (U, V, w, w′) to the representations

.................................................................................
....
............

........................................................................................... ........
....

................................................................................................. ........
....

........................................................................................... ........
....

................................................................................................. ........
....

.................................................................................
....
............

0

V U

V ⊕ V

[

1

0

]

[

0

1

]

[w w′ ]

η(M) =

.................................................................................
....
............

........................................................................................... ........
....

..................................................................................... ........
....

........................................................................................... .......
.....

................................................................................................. .......
.....

................................................................................
.....
............

U ⊕ U

V U

0

[ 1 0 ]

[ 0 1 ]
[ w

w′

]

η′(M) =

these functors η, η′ are full embeddings.
Let us denote by I the indecomposable injective Kronecker module of length 3, by T

the indecomposable projective Kronecker module of length 3, then clearly

η(I) = radP (1) and η′(T ) = Q(4)/ soc,

and the dimension vector of η(I) is
0

1 2
2 , that of η′(T ) is

2
2 1
0 . If M is an indecomposable

Kronecker module, then either M is simple injective and η(M) = S(3), or else M is
cogenerated by I, and η(M) is cogenerated by radP (1), thus η(M) is a torsionless Λ-
module. Similarly, either M is simple projective and η′(M) = S(2), or else M is generated
by T and η′(M) is generated by Q(4)/ soc, so that η′(M) is divisible.

On the other hand, nearly all indecomposable torsionless Λ-modules are in the im-
age of the functor η, the only exceptions are the indecomposable projective modules
P (1), P (3), P (4). Similarly, nearly all indecomposable divisible Λ-modules are in the
image of the functor η′, the only exceptions are the indecomposable injective modules
Q(1), Q(2), Q(4).

Altogether, one sees that the category L has the following Auslander-Reiten quiver

P (4)

P (2)

P (3)

P (1)

0
2 1
4

0
3 2
6

0
4 8
3

0
3 4
6

0
2 3
4

0
1 2
2

..........
..........
..........
..........
...............
............

..........
..........
..........
..........
...............
............

....................................................... ........
....

....................................................... ........
....

....................................................... ........
....

..........
..........
..........
..........
...............
............

..........
..........
..........
..........
...............
............

..........
..........
..........
..........
...............
............ ....................................................... ........

....

....................................................... ........
....

..........
..........
..
..........
..........
.. .........

..........
...............
............
.........
..........
...............
............ ....................................................... ........

....

....................................................... ........
....

..........
..........
..........
..........
...............
............

..........
..........
..........
..........
...............
............

..........
..........
..........
..........
...............
............

tubes

...................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.....................................................................

...........................................................................................

........................................................
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.

.
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.
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.

.

.
.
.
.
.
.

where the dotted part are the torsionless modules which are in the image of the functor
η. The category L/P is equivalent under η to the category of Kronecker modules without
simple direct summands.

Dually, the category K has the following Auslander-Reiten quiver:
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here, the dotted part are the divisible modules which are in the image of the functor η′

and we see that now the functor η′ furnishes an equivalence between the category K/Q
and the category of Kronecker modules without simple direct summands.

Let us add an interesting property of the functor γ.

(3.4) Proposition. Let M be indecomposable, torsionless, but not projective. Then

topM and soc γM are isomorphic.

Proof: In order to calculate γM = ΣτM , we start with a minimal projective presen-
tation f : P1 → P0, apply the functor ν = DHom(−,Λ) to f and take as γM the image of
ν(f). Here, the embedding of γM into νP0 is an injective envelope. Since P0 is a projective
cover of M , we have topP0 ≃ topM ; since νP0 is an injective envelope of γM , we have
soc γM ≃ soc νP0. And of course, we have topP0 ≃ soc νP0.

This property of γ is nicely seen in the last example! Of course, the canonical bijection
between the indecomposable projective and the indecomposable injective modules has also
this property.

4. The representation dimension of a torsionless-finite artin algebra

(4.1) Theorem. Let Λ be a torsionless-finite artin algebra. Let M be the direct

sum of all indecomposable Λ-modules which are torsionless or divisible, one from each

isomorphism class. Then the global dimension of End(M) is at most 3.

Note that such a module M is a generator-cogenerator, thus we see: If Λ is in

torsionless-finite and representation-infinite, then the direct sum of all Λ-modules which

are torsionless or divisible is an Auslander generator. In particular:

(4.2) Corollary. If Λ is a torsionless-finite artin algebra, then repdimΛ ≤ 3.

For the proof of Theorem 4.1, we need the following lemma which goes back to Aus-
lander’s Queen Mary notes [A] where is was used implicitly. The formulation is due to
[EHIS] and [CP]. Given modules M,X , denote by ΩM (X) the kernel of a minimal right
addM -approximation gMX : M ′ → X . By definition, the M -dimension M -dimX of X is
the minimal value i such that Ωi

M (X) belongs to addM .

(4.3) Auslander-Lemma. Let M be a Λ-module. If M -dimX ≤ d for all Λ-modules

X, then the global dimension of End(M) is less or equal d + 2. If M is a generator-
cogenerator, then also the converse holds: if the global dimension of End(M) is less or
equal d+ 2 with d ≥ 0, then M -dimX ≤ d for all Λ-modules X .

Let us outline the proof of the first implication. Thus, let us assume M -dimX ≤ d
for all Λ-modules X . Given any End(M)-module Y , we want to construct a projective
End(M)-resolution of length at most d + 2. The projective End(M)-modules are of the
form Hom(M,M ′) with M ′ ∈ addM. Consider a projective presentation of Y , thus an
exact sequence

Hom(M,M ′′)
φ
−→ Hom(M,M ′)→ Y → 0,
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with M ′,M ′′ ∈ addM . Note that φ = Hom(M, f) for some map f : M ′′ →M ′. Let X be
the kernel of f , thus Hom(M,X) is the kernel of Hom(M, f) = φ. Inductively, we construct
minimal right addM -approximations

Mi
gi
−→ Ωi

M (X),

starting with Ω0
M (X) = X , so that the kernel of gi is just Ωi+1

M , say with inclusion map
ui+1 : Ω

i+1
M →Mi. Thus, we get a sequence of maps

0→ Ωd
M (X)

ud−→Md−1
ud−1gd−1
−−−−−−→Md−2 −→ · · · −→M1

u1g1
−−−→M0

f0
−→ X −→ 0

If we apply the functor Hom(M,−) to this sequence, we get an exact sequence

0→ Hom(M,Ωd
M (X))→ Hom(M,Md−1)→ · · · → Hom(M,M0)→ Hom(M,X)→ 0

(here we use that we deal with right M -approximations and that Hom(M,−) is left exact).
Since we assume that Ωd

M (X) is in addM , we see that we have constructed a projective
resolution of Hom(M,X) of length d. Combining this with the exact sequence

0→ Hom(M,X)→ Hom(M,M ′′)
φ
−→ Hom(M,M ′)→ Y → 0,

we obtain a projective resolution of Y of length d+ 2. This completes the proof.

(4.4) Proof of Theorem 4.1. As before, let L be the class of torsionless Λ-modules,
and K be the class of divisible Λ-modules. Since Λ is torsionless-finite there are Λ-modules
K,L with addK = K, and addL = L. Let M = K ⊕ L. We use the Auslander Lemma.

Let X be a Λ-module. Let U be the trace of K in X (this is the sum of the images
of maps K → X). Since K is closed under direct sums and factor modules, U belongs
to K (it is the largest submodule of X which belongs to K). Let p : V → X be a right
L-approximation of X (it exists, since we assume that L is finite). Since L contains all the
projective modules, it follows that p is surjective. Now we form the pullback

V
p

−−−−→ X

u′

x





x





u

W −−−−→
p′

U

where u : U → X is the inclusion map. With u also u′ is injective, thus W is a submodule
of V ∈ L. Since L is closed under submodules, we see that W belongs to L. On the other
hand, the pullback gives rise to the exact sequence

0 −→W
[p′ −u′ ]
−−−−−−−→ U ⊕ V

[

u
p

]

−−−→ X −→ 0

(the right exactness is due to the fact that p is surjective). By construction, the map
[

u
p

]

is a right M -approximation, thus ΩM (X) is a direct summand of W and therefore in

L ⊆ addM. This completes the proof.
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5. Classes of torsionless-finite artin algebras

In the following, let Λ be an artin algebra with radical J .

Before we deal with specific classes of torsionless-finite artin algebras, let us mention
two characterizations of torsionless-finite artin algebras:

(5.1) Proposition. An artin algebra Λ is torsionless-finite if and only if there exists

a faithful module M such that the subcategory of modules cogenerated by M is finite.

Proof. If Λ is torsionless-finite, we can take M = ΛΛ. Conversely, assume that M
is faithful and that the subcategory of modules cogenerated by M is finite. Since M is
faithful, the regular representation ΛΛ itself is cogenerated by M , thus all the torsionless-
finite Λ-modules are cogenerated by M . This shows that Λ is torsionless-finite.

Actually, also non-faithful modules can similarly be used in order to characterize
torsionless-finiteness, for example we can take radΛ (note that for a non-zero artin algebra,
radΛ is never faithful, since it is annihilated by the right socle of Λ):

(5.2) Proposition. An artin algebra Λ is torsionless-finite if and only if the subcat-

egory of modules cogenerated by J is finite.

Proof: On the one hand, modules cogenerated by radΛ are torsionless. Conversely,
assume that there are only finitely many isomorphism classes of indecomposable Λ-modules
which are cogenerated by radΛ. Then Λ is torsionless-finite, according to following lemma.

(5.3) Lemma. Let N be an indecomposable torsionless Λ-module. Then either N is

projective or else N is cogenerated by J.

Proof: Let N be indecomposable and torsionless, but not cogenerated by J . We claim
that N is projective. Since N is torsionless, there is an inclusion map u : N → P =

⊕

Pi

with indecomposable projective modules Pi. Let πi : P → Pi be the canonical projection
onto the direct summand Pi of P and ǫi : Pi → Si the canonical projection of Pi onto its
top. If ǫπiu = 0 for all i, then N is contained in the radical of P , thus cogenerated by
radΛ, a contradiction. Thus there is some index i with ǫπiu 6= 0, but this implies that πiu
is surjective. Since this is a surjective map onto a projective module, we see that πiu is a
split epimorphism. But we assume that N is indecomposable, thus πiu is an isomorphism.
This shows that N ≃ Pi is projective. Altogether, we see that there are only finitely many
isomorphism classes of indecomposable torsionless Λ-modules, namely those cogenerated
by radΛ, as well as some additional ones which are projective.

Here are now some classes of torsionless-finite artin algebras:

(5.4) Artin algebras Λ with Λ/ soc(ΛΛ) representation-finite. Let N be an
indecomposable torsionless Λ-module which is not projective. By Lemma 5.3, there is an
embedding u : N → J t for some t. Let I = soc(ΛΛ). Then u(IN) = Iu(N) ⊆ I(J t) =
0, thus IN = 0. This shows that N is a Λ/I-module. Thus N belongs to one of the
finitely many isomorphism classes of indecomposable Λ/U -modules. This shows that Λ is
torsionless-finite.
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If Jn = 0 and Λ/Jn−1 is representation-finite, then Λ is torsionless-finite. Namely,
Jn−1 ⊆ soc(ΛΛ), thus, if Λ/J

n−1 is representation-finite, also its factor algebra Λ/ soc(ΛΛ)
is torsionless-finite. This shows: If Jn = 0 and Λ/Jn−1 is representation-finite, then the

representation dimension of Λ is at most 3. (Auslander [A], Proposition, p.143)

(5.5) Artin algebras with radical square zero. Following Auslander (again [A],
Proposition, p.143) This is the special case J2 = 0 of 5.4. Of course, here the proof of the
torsionless-finiteness is very easy: An indecomposable torsionless module is either projec-
tive or simple. Similarly, an indecomposable divisible module is either injective or simple,
and any simple module is either torsionless or divisible. Thus the module M exhibited
in Theorem 4.1 is the direct sum of all indecomposable projective, all indecomposable
injective, and all simple modules.

(5.6) Minimal representation-infinite algebras. Another special case of 5.4 is
of interest: We say that Λ is minimal representation-infinite provided Λ is representation-
infinite, but any proper factor algebra is representation-finite. If Λ is minimal representation-
infinite, and n is minimal with Jn = 0, then Λ/Jn−1 is a proper factor algebra, thus
representation-finite.

(5.7) Hereditary artin algebras. If Λ is hereditary, then the only torsionless
modules are the projective modules and the only divisible modules are the injective ones,
thus the module M of Theorem 4.1 is the direct sum of all indecomposable modules which
are projective or injective. In this way, we recover Auslander’s result ([A], Proposition, p.
147).

(5.8) Artin algebras stably equivalent to hereditary algebras. Let Λ be stably
equivalent to a hereditary artin algebra. Then an indecomposable torsionless module
is either projective or simple ([AR1], Theorem 2.1), thus there are only finitely many
isomorphism classes of torsionless Λ-modules. Dually, an indecomposable divisible module
is either injective or simple. Thus, again we see the structure of the module M of Theorem
4.1 and we recover Proposition 4.7 of Auslander-Reiten [AR2].

(5.9) Right glued algebras (and similarly left glued algebras): An artin algebra Λ is
said to be right glued, provided the functor Hom(DΛ,−) is of finite length, or equivalently,
provided almost all indecomposable modules have projective dimension equal to 1. The
condition that Hom(DΛ,−) is of finite length implies that there are only finitely many
isomorphism classes of divisible Λ-modules. Also, the finiteness of the isomorphism classes
of indecomposable modules of projective dimension greater than 1 implies torsionless-
finiteness. We see that right glued algebras have representation dimension at most 3 (a
result of Coelho-Platzeck [CP]).

(5.10) Special biserial algebras without indecomposable projective-injective
modules. In order to show that these artin algebras are torsionless-finite, we need the
following Lemma.

Lemma. Let Λ be special biserial and M a Λ-module. The following assertions are

equivalent.

(i) M is a direct sum of local string modules.
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(ii) αM ∩ βM = 0 for arrows α 6= β.

Proof: (i) =⇒ (ii). We can assume that M is indecomposable, but then it should
condition (ii) is satisfied.

(ii) =⇒ (i): We can assume that M is indecomposable. For a band module, condition
(ii) is clearly not satisfied. And for a string module M , condition (ii) is only satisfied in
case M is local.

Proof that special biserial algebras without indecomposable projective-injective mod-
ules are torsionless-finite: Assume that Λ is special biserial and that there is no indecom-
posable projective-injective module. Then all the indecomposable projective modules are
string modules (and of course local). Thus any projective module satisfies the condition
(i) and therefore also the condition (ii). But if a module M satisfies the condition (ii),
also every submodule of M has this property. This shows that all torsionless modules sat-
isfy the condition (ii). It follows that indecomposable torsionless modules are local string
modules, and the number of such modules is finite.

It follows from 5.10 that all special biserial algebras have representation dimension at

most 3, as shown in [EHIS]. For the proof one uses the following general observation (due
to [EHIS] in case the representation dimension is 3):

(5.11) Proposition. Let Λ be an artin algebra. Let P be indecomposable projective-

injective Λ-module. There is a minimal two-sided ideal I such that IP 6= 0. Let Λ′ = Λ/I.
Then either Λ′ is semisimple or else repdimΛ ≤ repdimΛ′.

Proof: Note that all the indecomposable Λ-modules not isomorphic to P are annihi-
lated by I, thus they are Λ′-modules.

First assume that Λ is representation finite, thus repdimΛ ≤ 2. Now Λ′ is also rep-
resentation finite, and by assumption not semisimple, thus repdimΛ′ = 2. This yields
the claim. (Actually, Λ cannot be semisimple, since otherwise also Λ′ semisimple, thus
repdimΛ = 2 and therefore repdimΛ = repdimΛ′.)

Now assume that Λ is not representation finite, with representation dimension d. Let
M ′ be an Auslander generator for Λ′, thus, according the second assertion of the Auslander-
Lemma asserts that M ′-dimX ≤ d for all Λ′-modules X . Let M = M ′⊕P . This is clearly
a generator-cogenerator. We want to show the any indecomposable Λ-module has M -
dimension at most d (then End(M) has global dimension at most d and therefore the
representation dimension of Λ is at most d).

Let X be an indecomposable Λ-module. Now X may be isomorphic to P , then X is
in addM , thus its M -dimension is 0.

So let us assume that X is not isomorphic to P , thus a Λ′-module. Let g : M ′′ → X
be a minimal right M ′-approximation of X . We claim that g is even a minimal right M -

approximation. Now M ′′ is in addM , thus we only have to show that any map f : Mi → X
factors through g, where Mi is an indecomposable direct summand of M . This is clear
in case Mi is a direct summand of M ′, thus we only have to look at the case Mi = P .
But since X is a annihilated by I, the map f : P → X vanishes on IP , thus f factors
through the projection map p : P → P/IP , say f = f ′p with f ′ : P/IP → X. Since P/IP
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is an indecomposable projective Λ′-module, it belongs to addM ′, thus f ′ factors through
g, say f ′ = gf ′′ for some f ′′ : P/IP → M ′′. Thus f = f ′p = gf ′′p factors through g. This
concludes the proof that g is a minimal right M -approximation.

Now ΩM (X) is the kernel of g, thus ΩM (X) = ΩM ′(X), in particular, this is again
a Λ′-module. Thus, inductively we see that Ωi

M (X) = Ωi
M ′(X) for all i. But we know

that Ωd
M (X) = Ωd

M ′(X) is in addM ′, and addM ′ ⊆ addM . This shows that X has
M -dimension at most d.

There are many other classes of artin algebras studied in the literature which can be
shown to be torsionless-finite, thus have representation dimension at most 3 (note that also
Theorem 5.1 of [X1] deals with artin algebras which are divisible-finite, thus torsionless-
finite).

(5.12) Further algebras with representation dimension 3. We have seen that
many artin algebras of interest are torsionless-finite and thus their representation dimension
is at most 3. But we should note that not all artin algebras with representation dimension
at most 3 are torsionless-finite.

Namely, it is easy to construct special biserial algebras which are not torsionless-
finite. And there are also many tilted algebras as well as canonical algebras which are
not torsionless-finite, whereas all tilted and all canonical algebras have representation-
dimension at most 3, see Assem-Platzeck-Trepode [APT] and Oppermann [O3]. Actually,
as Happel-Unger [HU] have shown, all piecewise hereditary algebras have representation
dimension at most 3 (an algebra Λ is said to be piecewise hereditary provided the de-
rived category Db(modΛ) is equivalent as a triangulated category to the bounded derived
category of some hereditary abelian category), but of course not all are torsionless-finite.
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Part II. The Oppermann dimension
and tensor products of algebras.

We consider now k-algebras Λ, where k is a field.

6. Oppermann dimension.

(6.1) Let R = k[T1, . . . , Td] be the polynomial ring in d variables with coefficients in
k and MaxR its maximal spectrum, this is the set of maximal ideals of R endowed with
the Zariski topology. For example, given α = (α1, . . . , αd) ∈ kd, there is the maximal ideal
mα = 〈Ti−αi | 1 ≤ i ≤ d〉. In case k is algebraically closed, we may identify in this way kd

with MaxR, otherwise kd yields only part of MaxR. In general, we will denote an element
of MaxR by α (or also by mα, if we want to stress that we consider α as a maximal
ideal), and Rα will denote the corresponding localization of R, whereas Sα = R/mα is the
corresponding simple R-module (note that all simple R-modules are obtained in this way).
For any ring A, let finA be the category of finite length A-modules.

By definition, a Λ ⊗k R-lattice L is a finitely generated Λ ⊗k R-module which is
projective (thus free) as an R-module, we also will say that L is a d-dimensional lattice for
Λ. Given a Λ⊗k R-lattice L, we may look at the functor

L⊗R − : finR −→ modΛ.

Since LR is projective, this is an exact functor. This means that given an exact sequence
of R-modules, applying L⊗R− we obtain an exact sequence of Λ-modules. Thus, if M,N
are R-modules, and d is a natural number, then looking at an element of ExtdR(M,N), we
may interprete this element as the equivalence class [ǫ] of a long exact sequence ǫ starting
with N and ending in M , and we may apply L ⊗R − to ǫ. We obtain in this way a long
exact sequence L⊗R ǫ starting with L⊗R N and ending with L⊗R M and its equivalence
class [L⊗R ǫ] in ExtdΛ(L⊗RM,L⊗RN). Since this equivalence class [L⊗R ǫ] only depends
on [ǫ], we obtain the following function, also denoted by L⊗R −:

L⊗R − : ExtdR(M,N) −→ ExtdΛ(L⊗R M,L⊗R N), with (L⊗R −)[ǫ] = [L⊗R ǫ].

We say that L is a d-dimensional Oppermann lattice for Λ provided the set of α ∈
MaxR such that

(L⊗R −)
(

ExtdR(finRα, finRα)
)

6= 0,

is dense in MaxR; this means that for these α ∈ MaxR, there are modules M,N ∈ finRα

with
(L⊗R −)

(

ExtdR(M,N)
)

6= 0.

Actually, instead of looking at all the modules in finRα, it is sufficient to deal with
the simple module Sα. One knows that ExtdR(Sα, Sα) is generated as a k-space by the
equivalence class of a long exact sequence of the form

ǫα : 0→ Sα →M1 → · · · →Md → Sα → 0
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with Rα-modules Mi which are indecomposable and of length 2. If we tensor this exact
sequence with L, we obtain an exact sequence

L⊗R ǫα : 0→ L⊗R Sα → L⊗R M1 → · · · → L⊗R Md → L⊗R Sα → 0

which yields an equivalence class [L ⊗R ǫα] in ExtdΛ(L ⊗R Sα, L ⊗R Sα). It is easy to see
that the following conditions are equivalent:

(i) (L⊗R −)
(

ExtdR(finRα, finRα)
)

6= 0,

(ii) [L⊗R ǫα] 6= 0 as an element of ExtdΛ(L⊗R Sα, L⊗R Sα).

Thus we see: The d-dimensional lattice L is an Oppermann lattice for Λ provided the

set of α ∈ MaxR such that [L ⊗R ǫα] is a non-zero element of ExtdR(Sα, Sα) is dense in

MaxR.

By definition, the Oppermann dimension OdimΛ of Λ is the supremum of d such that
there exists a d-dimensional Oppermann lattice L for Λ.

(6.2) Examples.
(a) Let Λ be the path algebra of a representation-infinite quiver. Then OdimΛ = 1.
(b) Let Λ be a representation-infinite k-algebra, where k is an algebraically closed field.

Then OdimΛ ≥ 1.

Proof. (a) The usual construction of one-parameter families of indecomposable Λ-
modules for a representation-infinite quivers shows that OdimΛ ≥ 1. On the other hand,
the path algebra of a quiver is hereditary, thus Ext2Λ = 0. This shows that the Oppermann
dimension can be at most 1.

(b) This follows from the proof of the second Brauer-Thrall conjecture by Bautista
[Bt] and [Bo], see also [Bo2] and [R5], [R6].

The following result of Oppermann ([O1], Corollary 3.8) shows that OdimΛ is always
finite and that one obtains in this way an interesting lower bound for the representation
dimension:

(6.3) Theorem (Oppermann). Let Λ be a finite-dimensional k-algebra which is

not semisimple. Then

OdimΛ + 2 ≤ repdimΛ.

One may ask whether one always has the equality OdimΛ + 2 = repdimΛ, this
can be considered as a formidable extension of the assertion of the second Brauer-Thrall
conjecture.

7. Tensor products of artin algebras.

Quite a long time ago, Changchang Xi [X1] has shown the following inequality: Given
finite-dimensional k-algebras Λ,Λ′,

repdimΛ⊗k Λ′ ≤ repdimΛ + repdimΛ′,
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provided k is a perfect field. This provides an upper bound for the representation dimension
of Λ⊗k Λ

′. But there is also a lower bound, which uses the Oppermann dimension. Let us
draw attention to the following fact:

(7.1) Theorem. Let Λ,Λ′ be finite-dimensional k-algebras. Let L be an Oppermann

lattice for Λ and L′ an Oppermann lattice for Λ′. Then L⊗k L′ is an Oppermann lattice

for Λ⊗k Λ′.

Proof: Theorem 7.1 is an immediate consequence of Theorem 3.1 in Chapter XI of
Cartan-Eilenberg [CE].

Namely, let L be a d-dimensional Oppermann lattice for Λ and L′ a d′-dimensional
Oppermann lattice for Λ′. Thus, L is an R-lattice with R = k[T1, . . . , Td] and say L′ is an
R′-lattice, where R′ = k[T ′

1, . . . , T
′
d′ ] (with new variables T ′

i ). For α ∈ MaxR we choose an

exact sequence ǫα such that its equivalence class [ǫα] generates Ext
d
R(Sα, Sα); similarly, for

α′ ∈ MaxR′ we choose an exact sequence ǫα′ such that its equivalence class [ǫα′ ] generates
ExtdR(Sα′ , Sα′);

Since L is an Oppermann lattice for Λ, the set of elements α ∈ MaxR such that
[L ⊗R ǫα] 6= 0 is dense in MaxR. Similarly, since L′ is an Oppermann lattice for Λ′, the
set of elements α′ ∈ MaxR′ such that [L⊗R ǫα′ ] 6= 0 is dense in MaxR′.

Now L⊗k L′ is a Λ′ ⊗k Λ′ ⊗k R⊗k R′-lattice and we may look at

(L⊗k L′)⊗R⊗R′ (ǫα ∨ ǫα′).

We claim that its equivalence class is non-zero in Extd+d′

Λ⊗Λ′(S(α,α′), S(α,α′)). This is a special
case of Theorem XI.3.1 of Cartan-Eilenberg which asserts the following: Let Λ,Λ′ be left
noetherian k-algebras, where k is a semisimple commutative ring. Let M be a finitely
generated Λ-module and M ′ a finitely generated Λ′-module. Then the canonical map

∨ : ExtdΛ(M,N)⊗k Extd
′

Λ′(M ′, N ′) −→ Extd+d′

Λ⊗kΛ′(M ⊗k M ′, N ⊗k N ′)

is an isomorphism for any Λ-module N , Λ′-module N ′ and all d, d′ ∈ N.

It remains to note that for dense subsets X of MaxR and X ′ of MaxR′, the product
X ×X ′ is of course dense in MaxR⊗k R′.

(7.2) Corollary. Let Λ,Λ′ be finite-dimensional k-algebras. Then

OdimΛ⊗k Λ′ ≥ OdimΛ + OdimΛ′.

Note that it is easy to provide examples where we have strict inequality: just take
representation-finite algebras Λ,Λ′ such that the Oppermann dimension of Λ ⊗k Λ′ is at
least 1, for example consider Λ = Λ′ = k[T ]/〈T 2〉, or take Λ,Λ′ path algebra of quivers of
type An with n ≥ 3. Note that the representation type of the tensor product of any two
nonsimple connected k-algebras with k an algebraically closed field, has been determined
by Leszczyński and A.Skowroński [LS].
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The combination of the inequalities 6.3 and 7.2 yields:

(7.3) Corollary. Let Λ1, . . . ,Λn be finite-dimensional k-algebras. Then

repdimΛ1 ⊗k · · · ⊗k Λn ≥ 2 +
∑n

i=1
OdimΛi.

In particular, we see: Let Λ be the tensor product of n k-algebras with Oppermann

dimension greater or equal to 1. Then rep dimΛ ≥ n+ 2. Using 6.2, we see:

(7.4) Corollary.
(a) If Λ is the tensor product of n path algebras of representation-infinite quivers, then

repdimΛ ≥ n+ 2.
(b) If k is an algebraically closed field and Λ is the tensor product of n representation-

infinite k-algebras, then repdimΛ ≥ n+ 2.

As Happel has pointed out, the following remarkable consequence should be stressed:
If Λ1,Λ2 are representation-infinite path algebras, then Λ1 ⊗ Λ2 is never a tilted algebra.
After all, tilted algebras have representation dimension at most 3, whereas we have shown
that repdimΛ1 ⊗k Λ2 ≥ 4.

8. Nicely tiered algebras.

Let Q be a finite connected quiver. We say that Q is tiered with n+ 1 tiers provided
there is a surjective function l : Q0 → [0, n] = {z ∈ Z | 0 ≤ z ≤ n} such that for any arrow
x → y one has l(x) = l(y) + 1. Such a function l, if it exists, is uniquely determined and
is called the tier function for Q and l(x) is said to be the tier (or the tier number) of the
vertex x. We say that Q is nicely tiered with n + 1 tiers provided Q is tiered with n + 1
tiers, say with tier function l such that l(x) = 0 for all sinks x, and l(x) = n for all sources
x. Clearly, Q is nicely tiered if and only if Q has no oriented cyclic paths and any maximal
path has length n. The tier function l of a nicely tiered quiver Q can be characterized as
follows: the tier number l(x) of a vertex x is the length of any maximal path starting in x.

Let Q be a nicely tiered quiver and M a representation of Q. We denote by M |[a, b]
the restriction of M to the subquiver of all vertices x with a ≤ l(x) ≤ b. We say that
a module lives in the interval [a, b] provided M = M |[a, b]. We say that a module M is
generated in tier a provided its top lives in [a, a]. Dually, M is said to be cogenerated in
tier a provided its socle lives in [a, a]. Given a module M , and t ∈ N0, let tM be its t-th
socle (thus, there is the sequence of submodules

0 = 0M ⊆ 1M ⊆ · · · ⊆ tM ⊆M

such that tM/t−1M = socM/t−1M for all t ≥ 1).

We say that an algebra is nicely tiered provided it is given by a nicely tiered quiver and
a set of commutativity relations. Let Λ be nicely tired. Then it follows: local submodules of
projective modules are projective, colocal factor modules of injective modules are injective.
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In particular: the socle of any projective modules has support at some of the sinks, the
top of any injective module has support at some of the sources. The Loewy length of a
nicely tiered algebra with n+1 tiers is precisely n+1. Of special interest is the following:
For a nicely tiered algebra, any indecomposable module which is projective or injective is

solid (an indecomposable module over an artin algebra is said to be solid provided its socle
series coincides with its radical series).

(8.1) Proposition. Let Λ be nicely tiered algebra with n + 1 tiers. Assume that the

following conditions are satisfied for all indecomposable projective modules P, P ′ of Loewy

length at least 3:
(P1) The module 2P is a brick (this means that any non-zero endomorphism is an auto-

morphism).
(P2) If Hom(2P, 2P

′) 6= 0, then P can be embedded into P ′.

Let M be the direct sum of the modules tP with P indecomposable projective and t ≥ 2
as well as the modules tQ with Q indecomposable injective, and t ≥ 1. Then End(M) has
global dimension at most n+ 2.

Remark. Note that the module M considered in 8.1 is both a generator and a cogener-
ator, thus the number n+2 is an upper bound for the representation dimension of Λ. Here
we encounter again a class of algebras Λ where one now knows that repdimΛ ≤ LL(Λ)+1.

The proof of Proposition 8.1 follows the strategy of Iyama’s proof [I] of the finiteness
of the representation dimension, as well as subsequent considerations by Oppermann [O1],
Corollary A1 (but see already [A] as well as several joint papers with Dlab). It relies on
the following lemma shown in [R4]:

(8.2) Lemma. Let

∅ =M−1 ⊆M0 ⊆ · · · ⊆ Mn+1 =M

be finite sets of indecomposable Λ-modules. Let M be a Λ-module with addM = addM
and Γ = End(M).

Assume that for any N ∈ Mi there is a monomorphism u : αN → N with αN ∈
addMi−1 such that any radical map φ : N ′ → N with N ′ ∈ Mi factors through u.

Then the global dimension of Γ is at most n+ 2.

Let us outline the proof of 8.2. We consider the indecomposable projective Γ-modules
Hom(M,N), where N is indecomposable in M. Assume that N belongs to Mi and not
toMi−1, for some i. Since N is not inMi−1, we see that u is a proper monomorphism.
Let ∆(N) be the cokernel of Hom(M,u), thus we deal with the exact sequence

0→ Hom(M,αN)
Hom(M,u)
−−−−−−−→ Hom(M,N)→ ∆(N)→ 0.

We see that ∆(N) is the factor space of Hom(M,N) modulo those maps M → N which
factor through u, thus through addMi−1.

The assumption that any radical map φ : N ′ → N with N ′ ∈ Mi factors through
u means the following: if we consider ∆(N) as a Γ-module, then it has one composition
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factor of the form S(N) = topHom(M,N), all the other composition factors are of the
form S(N ′) = topHom(M,N ′) with N ′ an indecomposable module inM which does not
belong toMi.

Since αN belongs to addMi−1, the projective Γ-module Hom(M,αN) is a direct sum
of modules Hom(M,N ′) with N ′ inMi−1.

This shows that Γ is left strongly quasi-hereditary with n + 2 layers, thus has global
dimension at most n+ 2, according to [R4].

(8.3) Proof of 8.1. Let Λ be a nicely tiered algebra with n + 1 tiers such that the
conditions (P1) and (P2) are satisfied.

The conditions (P1) and (P2) imply that corresponding properties are satisfied for tP
with t > 2.

(P1t) The module tP is a brick.
(P2t) If Hom(tP, tP

′) 6= 0, then P can be embedded into P ′.

Proof: Let f : tP → tP
′ be a non-zero homomorphism. Then also f |2P is non-zero,

since otherwise f would vanish at the tier 0, but the socle of P lives at the tier 0. Thus,
any non-zero endomorphism of tP yields a non-zero endomorphism of 2P , by (P1) this
is an isomorphism; but if f |2P has zero kernel, the same is true for f : 2P → 2P ; thus
f is a mono endomorphism, therefore an automorphism. This shows (P1t). Similarly, if
f : tP → tP

′ is non-zero, then also f |2P is non-zero, therefore P can be embedded into P ′

by (P2).

We define sets of indecomposable modules Pi,Qi as follows:
Let Pi be the set of modules tP , where P is indecomposable projective, t ≥ 2 and

LL(P )−t = i. The modules in Pi are indecomposable, according to condition (P1), see 8.1.
The non-empty sets Pi are P0,P1, . . . ,Pn−1; the modules in P0 are the indecomposable
projective modules which are not simple, those in Pn−1 are the modules of the form 2P
with P generated at tier n.

Let us collect some properties of the modules N in Pi. Such a module is generated at
tier g with 1 ≤ g ≤ n− i. (Namely, if P is indecomposable projective, then tP is of Loewy
length t, thus generated at g = t − 1. Since t ≥ 2, we have g ≥ 1. Since P is of length
l ≤ n + 1, we have t = l − i ≤ n + 1− i, thus g = t − 1 ≤ n − i.) The module N lives in
[0, n− i] (since it is generated at tier g ≤ n− i), its socle lives at the vertices with tier 0,
and the Loewy length of such a module N satisfies 2 ≤ LL(N) ≤ n− i+ 1.

Let Qi be the set of non-zero modules iQ with Q indecomposable injective and i ≤
LL(Q). If Q is cogenerated at tier j, where 0 ≤ j ≤ n, then LL(Q) = n − j + 1, thus
1 ≤ i ≤ n− j+1 implies that 0 ≤ j ≤ n− i+1. The non-empty sets Qi are Q1, . . . ,Qn+1.
The modules in Q1 are just all the simple modules.

Since i ≥ 1, the module iQ is a non-zero submodule of Q, thus has simple socle
and therefore is indecomposable. And again, we mention some additional properties for a
module N in Qi. It is generated at tier g with i − 1 ≤ g ≤ n, it lives in [i− 1, n] and its
Loewy length is precisely i.

Claim: If N is in Pi, then either radN belongs to Pi+1, or else radN is semisimple

and thus belongs to addQ1. If N in Qi with i ≥ 2, then radN belongs to Qi−1.
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Proof: Let P be indecomposable projective of length l. If t = l − i ≥ 3, then N = tP
belongs to Pi and radN = t−1P belongs to Pi+1. If t = l− i = 2, then N = tP has Loewy
length 2, thus radN = 1P is semisimple, and thus belongs to addQ1.

On the other hand, for N = iQ, we have radN = i−1Q, and n− i+1 < n− (i−1)−1.

Now, letMi be the union of all the sets Pj with j ≥ n+ 2− i as well as the sets Qj

with j ≤ i. Thus,

Mn+2 = P0 ∪Mn+1

Mn+1 = P1 ∪ Qn+1 ∪Mn

Mn = P2 ∪ Qn ∪Mn−1

· · ·

Mi = P
n+2−i ∪Qi ∪Mi−1

· · ·

M3 = Pn−1 ∪ Q3 ∪M2

M2 = Q2 ∪M1

M1 = Q1

M0 = ∅

As we have shown: If N belongs toMi for some i, then radN is in addMi−1. Thus, let
αN = radN and u : αN → N the inclusion map. We want to verify that we can apply
Lemma 8.2.

Thus, we have to show that for N ∈ Mi any non-zero radical map f : N ′ → N with
N ′ ∈ Mi maps into radN . We can assume that N /∈ Mi−1, thus N belongs either to
Pn+2−i or to Qi.

First, let us assume that N ∈ Qi, thus N has Loewy length i. If N ′ ∈ Pn+2−j with
j ≤ i, then, N ′ has Loewy length at most n − (n + 2 − j) + 1 = j − 1 ≤ i− 1. Similarly,
if N ′ ∈ Qj , with j < i, then the Loewy length of N ′ is at most i − 1. In both cases, we
see that the image of any map f : N ′ → N lies in radN . Thus, it remains to consider the
case that N ′ ∈ Qi, so that N ′ has also Loewy length i. Now N ′ has a simple socle. If f
vanishes on the socle, then again the image of f has socle length at most i − 1 and thus
lies in radN . If f does not vanish on the socle, then f is a monomorphism. But N ′ is
relative injective in the subcategory of all modules of Loewy length at most i, thus f is a
split monomorphism, thus not a radical morphism.

Second, we assume that N ∈ Pn+2−i. First, consider the case that N ′ ∈ Qj with
j ≤ i. Now the socle of N lives at tier 0, thus the image of f (and therefore N ′ itself)
must have a composition factor at tier 0. This shows that N ′ = jQ with Q the injective
envelope of a simple at tier 0 and that f is injective. Assume that the image of f does not
lie in radN , then the Loewy length of N has to be equal to j. But jQ is relative injective
in the subcategory of all modules of Loewy length at most j, thus f : N ′ → N is a split
mono, thus not a radical map.

Finally, there is the case that N ′ ∈ Pn+2−j with j ≤ i. Let N = tP and N ′ = t′P
′

with P of Loewy length l and P ′ of Loewy length l′. If t′ < t, then f : t′P
′ → tP maps

22



into the radical of tP. If t
′ > t, then Hom(t′P

′, tP ) = 0, since t′P
′ is generated at the

tier t′, and tP lives at the tiers [0, t]. Thus, we can assume that t′ = t. Since j ≤ i, we
see that LL(P ′) = n + 2 − j + t ≥ n + 2 − i + t = LL(P ). If Hom(tP

′, tP ) 6= 0, then P ′

can be embedded into P , according to condition (P1), thus LL(P ′) ≤ LL(P ) and therefore
LL(P ′) = LL(P ). But if P ′ is isomorphic to a submodule of P and both have the same
Loewy length, then P ′ and P are isomorphic and therefore also tP

′ and tP are isomorphic.
But then we use (P1t) in order to see that any non-zero homomorphism tP

′ → tP is
an isomorphism. This contradicts the assumption that there is a non-zero radical map

tP
′ → tP .

Remark. One should be aware that the classes Pj and Qi are not necessarily disjoint.
A typical example is the fully commutative square

......................................................................
.........
.........
.........
.........
.........
..........
.........

.........
.........

.........
.........

.........
.................................................................•

•

•

•

(say with arrows pointing downwards). This is a nicely tiered algebra with 3 tiers. There
is an indecomposable module P which is projective-injective, it belongs both to P0 and to
Q3.

(8.4) Let us add some examples of nicely tiered algebras which do not satisfy the
conditions (P1), (P2), respectively. Again, we present the quivers by just indicating the
corresponding edges; all the arrows are supposed to point downwards.

.......

.......

.......

......

.......

.......

........
.......
.......
.......
.......
.......
..................................................................................................•

•

•

•

•

c

....................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.........
.........
.........
.........
.........
.........
.............................................................................................

..

•

•

•

•

•

• a′a ............................................................
........
........
........
........
........
....

...........................................•

•

• •a′a

In the example left, 2P (c) is decomposable. In the middle example, we consider the path
algebra of the quiver with the commutativity relation. Then both 2P (a) and 2P (a′) are
indecomposable. We see that Hom(2P (a), 2P (a′)) 6= 0, but P (a) cannot be embedded
into P (a′). On the right, we see a further example where the condition (P1), but not the
condition (P2) is satisfied.

9. Tensor products of path algebras of bipartite quivers.

Recall that a finite quiver is said to be bipartite if and only if every vertex is a sink or
a source. Thus, a quiver Q is bipartite if and only if its path algebra is a finite dimensional
algebra with radical square zero.

(9.1) Theorem. Let Λ1, . . .Λn be path algebras of bipartite quivers. Then the algebra

Λ = Λ1 ⊗k · · · ⊗k Λn has representation dimension at most n+ 2.

For the proof, we want to use Proposition 8.1. Of course, we can assume that all the
algebras Λi are connected and not simple, thus tiered with precisely 2 tiers. In order to
show that Λ is tiered with n+ 1 tiers, we use induction and the following general result:
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(9.2) The tensor product of nicely tiered algebras with n1 +1 and n2 +1 tiers respec-

tively is nicely tiered with n1 + n2 + 1 tiers.

Proof. Let Λ1 and Λ2 be nicely tiered algebras with n1+1 and n2+1 tiers, respectively.
Let Q(1) be the quiver of Λ1 and Q(2) that of Λ2. Then the quiver of Λ1 ⊗k Λ2 is Q =

Q(1) ⊗ Q(2), this is the quiver with vertex set Q
(1)
0 × Q

(2)
0 , and with arrow set (Q

(1)
1 ×

Q
(2)
0 ) ∪ (Q

(1)
0 × Q

(2)
1 ); here, given an arrow α1 : x1 → y1 in Q(1), and a vertex z2 of Q(2),

there is the arrow α1z2 : x1z2 → y1z2, and similarly, given a vertex x1 of Q(1) and an
arrow β2 : y2 → z2 in Q(2), there is the arrow x1β2 : x1y2 → x1z2. (When writing down an
element of a product U × V , we just write uv instead of (u, v), for u ∈ U and v ∈ V .)

For example, in case we consider the tensor product of two copies of the Kronecker
algebra, say with quivers Q(1) and Q(2), we obtain the following quiver Q = Q(1) ⊗Q(2):

x1

z1

......................................................................... ........
....

......................................................................... ........
....
α′

1α1

Q(1)

x2

z2

....................................................

....................................................

α2
α′

2

Q(2)

x1x2

x1z2 z1x2

z1z2

......................................................................... .......
.....

......................................................................... ........
....

......................................................................... .......
.....

......................................................................... ........
....

...........................................
.
........

....................................................

...........................................
.
........

....................................................

x1α2
x1α

′

2 α1x2

α′

1x2

α1z2

α′

1z2 z1α2

z1α
′

2

Q = Q(1) ⊗Q(2)

Here, the arrows of Q(1) as well as those of Q which belong to Q
(1)
1 × Q

(2)
0 are shown as

solid arrows, those of Q(2) as well as those of Q which belong to Q
(1)
0 ×Q

(2)
1 are shown as

dashed ones.
Now suppose that Q(1), Q(2) are nicely tiered, with n1 + 1 and n2 + 1 tiers, and

tier functions l1, l2 respectively. Given vertices x1 ∈ Q
(1)
0 and x2 ∈ Q

(2)
0 , define l(x1x2) =

l1(x1)+l2(x2). This defines a function Q
(1)
0 ×Q

(2)
0 → Z with values in the interval [0, n+n′].

For a sink x1x2 of Q(1) ⊗Q(2), we have l(x1x2) = 0, for a source (x1x2) of Q
(1) ⊗Q(2), we

have l(x1x2) = n1 + n2 and given an arrow of Q(1) ⊗ Q(2), the value of l decreases by 1.
This shows that we obtain a tier function for a nicely tiered quiver.

Finally, we have to note that the relations of Λ1⊗k Λ2 are obtained from the relations
of Λ1 and Λ2 and adding commutativity relations; thus, if Λ1 and Λ2 are defined by using
only commutativity relations, the same is true for Λ1 ⊗k Λ2.

(9.3) Let Λ1, . . .Λn be path algebras of bipartite quivers. Then Λ = Λ1 ⊗k · · · ⊗k Λn

satisfies the conditions (P1) and (P2).

Proof. Let us introduce some notation concerning tensor products Λ = Λ1⊗k · · ·⊗kΛn,
where any Λi is the path algebra of a finite directed quiver Q(i). The quiver Q of Λ is given

as follows: The set of vertices is the set Q
(1)
0 × · · · × Q

(n)
0 , an element of this set will be

denoted by x = x1x2 · · ·xn with xi ∈ Q
(i)
0 for 1 ≤ i ≤ n. Given such a vertex x, we are

interested in the corresponding indecomposable projective module P (x).

Let W (xi, yi) be the set of paths in Q(i) starting in xi and ending in yi, this may be
considered as a basis of P (xi)yi

and therefore we may take as basis of P (x)y, where x, y
are vertices of Q, the product set W (x, y) = W (x1, y1)× · · · ×W (xn, yn); we call this the
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path basis of P (x). In particular, we see: a vertex y belongs to the support of P (x) if and
only if there are paths starting at xi and ending in yi, for 1 ≤ i ≤ n.

Now assume that Q(i) a bipartite, thus any path in Q(i) is of length at most 1, thus
either a vertex or an arrow. We want to describe the representation 2P (x) for any vertex
x = x1 . . . xn of Q. Note that the support quiver of 2P (x) will again be bipartite. We can
assume that t of the vertices xi are sources, and the remaining ones sinks. Thus, up to
a permutation we can assume that x = x1 · · ·xn with sources xi for 1 ≤ j ≤ t and sinks
xj = zj for t + 1 ≤ j ≤ n. The support S of the socle of P (x) consists of the vertices
z = z1 · · · zn where zi is a sink in the quiver Q(i) such that there is a path from xi to zi,
for any 1 ≤ i ≤ t.

Given an n-tuple u1u2 · · ·un where the ui are elements of some sets (say of ver-
tices or arrows of some quivers), and vj is a further element, then we denote by u[vj =
u1 . . . uj−ivjuj+1 · · ·un the element obtained from u by replacing its entry at the position
j by vj .

Using this notation, the vertices in the support of 2P (x) with tier number 1 are of the
form y = z[xj and the arrows of the support are of the form z[αj , always with z ∈ S, and
with arrows αj : xj → zj , and 1 ≤ j ≤ t.

If we are interested in the structure of P (x), we may assume that all the vertices xj are
sources, thus that t = n (namely, if for example xn is a sink, then P (xn) is one-dimensional
and thus P (x) = P (x1 · · ·xn−1)⊗k P (xn) can be identified with the (Λ1 ⊗k · · · ⊗k Λn−1)-
module P (x1 · · ·xn−1)).

Given a vertex x of Q, we may look at the coefficient quiver Θ(x) of P (x) with
respect to its path basis (for the definition, see [R2]). If we look at our example of the
tensor product of two copies of the Kronecker algebra, and consider the unique source
x = x1x2 of Q, then the coefficient quiver Θ(x) of P (x) with respect to the path basis
looks as shown on the right:

x1x2

z[x1 z[x2

z

......................................................................... ........
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......................................................................... ........
....

.................................................................................... ........
....

.................................................................................... ........
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....................................................

....................................................

.........................................................

.........................................................

x1α2
x1α

′

2 α1x2

α′

1x2

z[α1

z[α′

1 z[α2

z[α′

2

Q

x1x2

x1α2 x1α
′
2 α1x2 α′

1x2

α1α2 α1α
′
2 α′

1α2 α′
1α

′
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............................................................................................................ .........
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Θ(x)

On the left, we present again the quiver of Q = Q(1) ⊗ Q(2), but now using the notation
z[? for the vertices with tier number 1 as well as the arrows ending in z.

Now we are going to look at 2P (x) Let z ∈ S and take an arrow αj : xj → zj , let
y = z[xj , this is a vertex with tier number 1. The vector spaces P (x)y, P (x)z and the
linear map P (x)z[αj

are given as follows: Since z belongs to S, there is an arrow xi → zi
for any i and W (x, z) is a basis of P (x)z (note that here W (xi, zi) is the set of arrows
xi → zi for all i). Similarly, for y = z[xj , the space P (x)y has as a basis the set of elements
of the form α[xj with α ∈ W (x, z), and the linear map z[αj : P (x)y → P (y)z sends α[xj

to α[αj.
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In the coefficient quiver 2Θ(x) of 2P (x), any sink α is the end point of precisely n
arrows, namely the arrows labeled z[αj : z[xj → z, where αj ∈ W (xj , zj). It follows that
the one-dimensional vector space kα generated by α is the intersection of the images of
the maps

kα =
n
⋂

j=1

Im
(

z[αj : P (x)z[xj
−→ P (x)z

)

.

As a consequence, any endomorphism of 2P (x) will map the element α of P (x)z onto a
multiple of α.

We claim that the coefficient quiver 2Θ(x) of 2P (x) with respect to the path basis is

connected. Namely, given a sink α = α1 · · ·αn of 2Θ(x), and any arrow α′
j : xj → z′j in

Q(j) different from αj , there is a path of length 2 in 2Θ(x) starting in α and ending in
α[α′

j, namely

α

α[xj

α[α′
j

.....................................................................
....
............

......................................................................... ........
....

Thus, given two sinks of 2Θ(x), say α = α1 · · ·αn and α′ = α′
1 · · ·α

′
n, we may replace

successively αj by α′
j and obtain a path of length at most 2n starting in α and ending in

α′.

In order to deal with the conditions (P1) and (P2), we consider maps f : 2P (x)→M
with M = P (x′) for some vertex x′. Actually, the essential property of M which we will
need is that all the maps used in M are injective. Thus, let M be the set of Λ-modules
M such that all the maps used are injective. Clearly, all the indecomposable projective
Λ-modules, and even all their submodules belong toM.

Consider f : 2P (x)→ M with M ∈ M. We show: Given any arrow α[xj → α in the

coefficient quiver, then f(α) = 0 if and only if f(α[xj) = 0.
Proof: Clearly, if f(α[xj) = 0, then also f(α) = 0, since α is a multiple of α[xj. Thus,

conversely, let us assume that f(α) = 0. There is the following commutative diagram

P (x)z[xj

fz[xj

−−−−→ Mz[xj

P (x)z[αj





y





y

Mz[αj

P (x)z
fz

−−−−→ Mz,

with α[xj being sent by the left vertical map to α. Since the right vertical map is injective,
the vanishing of fz(α) implies that also f(α[xj) = 0.

As a consequence of the connectivity of the coefficient quiver of 2P (x) we conclude:
If f(α) = 0 for some α, then f = 0.

Condition (P1). Let f be an endomorphism of 2P (x). Assume that f is not a
monomorphism. Since f maps any basis vector α of the socle of 2P (x) onto a multi-
ple of itself, we see that there has to be such a basis element α with f(α) = 0. But then
f = 0.
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Condition (P2). Assume there is given a non-zero homomorphism f : 2P (x) → M
with M ∈ M. Assume that f(P (x)z[xj

) = 0. Of course, then also f(P (x)z) = 0. Thus, it
follows again that f = 0.

Thus we see: if there is a non-zero homomorphism f : 2P (x) → P (x′), then all the
elements z[xj with 1 ≤ j ≤ t are in the support of P (x′), and therefore x′

j = xj . It follows
that P (x) is a submodule of P (x′).

Remark: An alternative way for proving Theorem 9.1 is as follows. First, consider the
special case where none of the quivers Q(i) has multiple arrows. Under this assumptions
all the indecomposable projective Λ-modules are thin, thus we do not have to worry about
bases. The general case can then be obtained from this special case using covering theory.

(9.4) Corollary. Let Λ1, . . .Λn be path algebras of representation-infinite bipartite

quivers. The algebra Λ = Λ1 ⊗k · · · ⊗k Λn has representation dimension precisely n+ 2.

Proof. This follows directly from the inequalities 7.5 and and 9.1.

The special case of the 2-fold tensor power of the Kronecker algebra has been exhibited
by Oppermann in [O2], when he considered one-point extensions of wild algebras. This
example was the starting point for our investigation.
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