ON THE ADJUNCT OF AN ENDOMORPHISM

MARKUS ROST

Contents

Introduction 1

1. The endomorphisms $A_{k}(f)$ 2
1.1. Notation for elements in the exterior algebra 2
1.2. Multiplication and co-multiplication of the exterior algebra 2
1.3. The operator Φ 3
1.4. The endomorphisms P_{n} 3
1.5. The endomorphisms $A_{k}(f)$ 4
1.6. The adjunct 5
1.7. Example: The case $n=2$ 6
2. The Cayley-Hamilton theorem 6
2.1. The endomorphisms $L_{n, k}(f)$ 6
2.2. The Cayley-Hamilton theorem 7
3. The endomorphisms $A_{k, h}(f)$ 8
3.1. The endomorphisms $A_{k, h}(f)$ 8
3.2. More relations 9

Introduction

Let R be a ring (unital, commutative), let M be a R-module and let $f \in \operatorname{End}(M)$ be an endomorphism.

For $k \geq 0$ we consider endomorphisms

$$
A_{k}(f) \in \operatorname{End}\left(M \otimes \Lambda^{k+1} M\right)
$$

defined linearly from $\Lambda^{k} f$ with (co)-product operations of the exterior algebra.
For an explicit description of $A_{k}(f)$ see (2). For $A_{1}(f)$ see 1.7.
If M is a locally free R-module of rank n, then $A_{n-1}(f)$ yields the adjunct $f^{\#}$ of f. In short, this text is based on a simple observation: When the adjunct is considered as element of

$$
\operatorname{End}\left(M \otimes \Lambda^{n} M\right)
$$

rather than of $\operatorname{End}(M)$, there is no duality needed and the definition and proofs of basic properties extend smoothly to arbitrary R-modules.

The resulting generalization of the standard relation $\operatorname{det}(f)=f f^{\#}=f^{\#} f$ to the $A_{k}(f)$ is formulated in Proposition 2. The proof is immediate from the definition and the functoriality of the product and the co-product of the exterior algebra.

[^0]The Cayley-Hamilton theorem generalizes accordingly, see Corollary 5. Here we follow the standard method of expanding $A_{k}\left(f-t \cdot 1_{M}\right)$ as polynomial in t.

Corollary 8 generalizes the standard expression of $f^{\#}$ as a polynomial in f.
The proofs are formulated on a quite formal functorial level and worked out in detail, even when a inspection of explicit formulas might appear simpler.

1. The endomorphisms $A_{k}(f)$

Let M be a R-module.
1.1. Notation for elements in the exterior algebra. Let K be a finite ordered set. For an K-tuple

$$
x \in M^{K}
$$

and a subset I of K of length r we use the notation

$$
x_{I}=x_{i_{1}} \wedge \cdots \wedge x_{i_{r}} \in \Lambda^{r} M
$$

where $i_{1}<\cdots<i_{r}$ are the elements of I.
For instance, if $K=\{0,1, \ldots, n\}$, then

$$
\begin{aligned}
x_{K} & =x_{0} \wedge \cdots \wedge x_{n} \\
& =(-1)^{i} x_{i} \wedge x_{K \backslash\{i\}}=(-1)^{n-i} x_{K \backslash\{i\}} \wedge x_{i}
\end{aligned}
$$

1.2. Multiplication and co-multiplication of the exterior algebra. For the exterior algebra of M

$$
\Lambda M=\bigoplus_{k \geq 0} \Lambda^{k} M
$$

we denote by

$$
\begin{gathered}
\mu: \Lambda M \otimes \Lambda M \rightarrow \Lambda M \\
\delta: \Lambda M \rightarrow \Lambda M \hat{\otimes} \Lambda M
\end{gathered}
$$

its product and co-product and by

$$
\begin{gathered}
\mu_{m, n}: \Lambda^{m} M \otimes \Lambda^{n} M \rightarrow \Lambda^{m+n} M \\
\delta_{m, n}: \Lambda^{m+n} M \rightarrow \Lambda^{m} M \otimes \Lambda^{n} M
\end{gathered}
$$

the corresponding components.
The product μ is given by

$$
\mu(\omega \otimes \eta)=\omega \wedge \eta
$$

and the co-product δ is the R-algebra homomorphism to the graded tensor product with

$$
\delta(x)=x \otimes 1+1 \otimes x \quad(x \in M)
$$

Explicitly one has

$$
\delta_{m, n}\left(x_{K}\right)=\sum_{I \subset K,|I|=m} \varepsilon_{I} x_{I} \otimes x_{K \backslash I} \quad\left(\varepsilon_{I} x_{I} \wedge x_{K \backslash I}=x_{K}\right)
$$

with $K=\{1, \ldots, n+m\}$ and appropriate signs ε_{I} as indicated on the right.
Note that

$$
\mu_{m, n} \circ \delta_{m, n}=\binom{m+n}{m}
$$

The (co-)product is (co)-associative. We use the following notations:

$$
\begin{aligned}
\mu_{m, n, k} & =\mu_{m+n, k} \circ\left(\mu_{m, n} \otimes 1_{\Lambda^{k} M}\right)=\mu_{m, n+k} \circ\left(1_{\Lambda^{m} M} \otimes \mu_{n, k}\right) \\
\delta_{m, n, k} & =\left(\delta_{m, n} \otimes 1_{\Lambda^{k} M}\right) \circ \delta_{m+n, k}=\left(1_{\Lambda^{m} M} \otimes \delta_{n, k}\right) \circ \delta_{m, n+k}
\end{aligned}
$$

Remark 1. If M is locally free of finite rank, the homomorphism $\delta_{m, n}$ is the "functorial dual" of $\mu_{m, n}$. This means that with respect to the canonical isomorphisms $\left(\Lambda^{k} M\right)^{\vee}=\Lambda^{k}\left(M^{\vee}\right)$ the dual of $\delta_{m, n}$ is the homomorphism $\mu_{m, n}$ for the dual of M :

$$
\left(\left(\delta_{m, n}\right)_{M}\right)^{\vee}=\left(\mu_{m, n}\right)_{\left(M^{\vee}\right)}
$$

1.3. The operator Φ. Let

$$
\begin{gathered}
\Phi: \operatorname{End}\left(\Lambda^{k} M\right) \rightarrow \operatorname{End}\left(M \otimes \Lambda^{k+1} M\right) \\
\Phi(\varphi)=\left(1_{M} \otimes \mu_{1, k}\right) \circ(\tau \otimes \varphi) \circ\left(1_{M} \otimes \delta_{1, k}\right)
\end{gathered}
$$

where $\tau \in \operatorname{End}(M \otimes M)$ is the switch involution. Thus

$$
\Phi(\varphi)\left(x \otimes s_{L}\right)=\sum_{i=0}^{k}(-1)^{i} s_{i} \otimes x \wedge \varphi\left(s_{L \backslash\{i\}}\right)
$$

for $x \in M$ and $s \in M^{L}, L=\{0, \ldots, k\}$.
Sometimes it is convenient to use the following variants. Let

$$
\begin{aligned}
& \Psi: \operatorname{End}\left(\Lambda^{k} M\right) \rightarrow \operatorname{Hom}\left(M \otimes \Lambda^{k+1} M, \Lambda^{k+1} M \otimes M\right) \\
& \Psi(\varphi)=\left(\mu_{1, k} \otimes 1_{M}\right) \circ\left(1_{M} \otimes \varphi \otimes 1_{M}\right) \circ\left(1_{M} \otimes \delta_{k, 1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Psi^{t}: \operatorname{End}\left(\Lambda^{k} M\right) \rightarrow \operatorname{Hom}\left(\Lambda^{k+1} M \otimes M, M \otimes \Lambda^{k+1} M\right) \\
& \Psi^{t}(\varphi)=\left(1_{M} \otimes \mu_{k, 1}\right) \circ\left(1_{M} \otimes \varphi \otimes 1_{M}\right) \circ\left(\delta_{1, k} \otimes 1_{M}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\Psi(\varphi)\left(x \otimes s_{L}\right) & =\sum_{i=0}^{k}(-1)^{k-i} x \wedge \varphi\left(s_{L \backslash\{i\}}\right) \otimes s_{i} \\
\Psi^{t}(\varphi)\left(s_{L} \otimes x\right) & =\sum_{i=0}^{k}(-1)^{i} s_{i} \otimes \varphi\left(s_{L \backslash\{i\}}\right) \wedge x
\end{aligned}
$$

Then

$$
\sigma \circ \Psi(\varphi)=\Psi^{t}(\varphi) \circ \sigma=(-1)^{k} \Phi(\varphi)
$$

where

$$
\sigma: \Lambda^{k+1} M \otimes M \rightarrow M \otimes \Lambda^{k+1} M
$$

is the switch.
1.4. The endomorphisms P_{n}. For $n \geq 1$ let

$$
P_{n}=\Phi\left(1_{\Lambda^{n-1} M}\right) \in \operatorname{End}\left(M \otimes \Lambda^{n} M\right)
$$

Thus

$$
\begin{equation*}
P_{n}\left(x \otimes s_{N}\right)=\sum_{i=1}^{n}(-1)^{i-1} s_{i} \otimes x \wedge s_{N \backslash\{i\}} \tag{1}
\end{equation*}
$$

for $x \in M$ and $s \in M^{N}, N=\{1, \ldots, n\}$. We put $P_{0}=0$.

Let further Q_{n} be the composite of

$$
M \otimes \Lambda^{n} M \xrightarrow{\mu} \Lambda^{n+1} M \xrightarrow{\delta} M \otimes \Lambda^{n} M
$$

that is,

$$
Q_{n}=\delta_{1, n} \circ \mu_{1, n} \in \operatorname{End}\left(M \otimes \Lambda^{n} M\right)
$$

Obviously, if $\Lambda^{n+1} M=0$, then $Q_{n}=0$.
Lemma 1. One has

$$
P_{n}+Q_{n}=1_{M \otimes \Lambda^{n} M}
$$

In particular, if $\Lambda^{n+1} M=0$, then P_{n} is the identity morphism.
Proof. This is a consequence of the basic axiom for graded bialgebras. Explicitly:

$$
Q_{n}\left(x \otimes s_{N}\right)=\delta_{1, n}\left(x \wedge s_{N}\right)=x \otimes s_{N}+\sum_{i=1}^{n}(-1)^{i} s_{i} \otimes x \wedge s_{N \backslash\{i\}}
$$

Remark 2. Since $\mu_{1, n} \circ \delta_{1, n}=n+1$ one has

$$
Q_{n}^{2}=(n+1) Q_{n}
$$

and

$$
\left(P_{n}-1\right)\left(P_{n}+n\right)=0
$$

Moreover

$$
\mu_{1, n} \circ P_{n}=-n \mu_{1, n}
$$

1.5. The endomorphisms $A_{k}(f)$. Let

$$
f \in \operatorname{End}(M)
$$

be an endomorphism of M.
We define

$$
A_{k}(f)=\Phi\left(\Lambda^{k} f\right) \in \operatorname{End}\left(M \otimes \Lambda^{k+1} M\right)
$$

Hence

$$
\begin{equation*}
A_{k}(f)\left(x \otimes s_{L}\right)=\sum_{i=0}^{k}(-1)^{i} s_{i} \otimes x \wedge\left(\Lambda^{k} f\right)\left(s_{N \backslash\{i\}}\right) \tag{2}
\end{equation*}
$$

for $x \in M$ and $s \in M^{L}, L=\{0, \ldots, k\}$.
Proposition 2. For $n \geq 1$ one has

$$
\begin{aligned}
& P_{n} \circ\left(1_{M} \otimes \Lambda^{n} f\right)=\left(f \otimes 1_{\Lambda^{n} M}\right) \circ A_{n-1}(f) \\
& \left(1_{M} \otimes \Lambda^{n} f\right) \circ P_{n}=A_{n-1}(f) \circ\left(f \otimes 1_{\Lambda^{n} M}\right)
\end{aligned}
$$

Proof. This follows quickly by inspection of the explicit expressions (1) and (2). For a formal proof it is convenient consider instead of P_{n} and $A_{n-1}(f)$ the endomorphisms

$$
\begin{aligned}
P_{n}^{\prime} & =\Psi\left(1_{\Lambda^{n-1} M}\right)=(-1)^{n-1} \sigma^{-1} \circ P_{n} \\
& =\left(\mu_{1, n-1} \otimes 1_{M}\right) \circ\left(1_{M} \otimes \delta_{n-1,1}\right) \\
A_{n-1}^{\prime}(f) & =\Psi\left(\Lambda^{n-1} f\right)=(-1)^{n-1} \sigma^{-1} \circ A_{n-1}(f) \\
& =\left(\mu_{1, n-1} \otimes 1_{M}\right) \circ\left(1_{M} \otimes \Lambda^{n-1} f \otimes 1_{M}\right) \circ\left(1_{M} \otimes \delta_{n-1,1}\right)
\end{aligned}
$$

respectively. Then the first claim follows from the functoriality of the co-product:

$$
\begin{aligned}
P_{n}^{\prime} \circ\left(1_{M} \otimes \Lambda^{n} f\right) & =\left(\mu_{1, n-1} \otimes 1_{M}\right) \circ\left(1_{M} \otimes \delta_{n-1,1}\right) \circ\left(1_{M} \otimes \Lambda^{n} f\right) \\
& =\left(\mu_{1, n-1} \otimes 1_{M}\right) \circ\left(1_{M} \otimes \Lambda^{n-1} f \otimes f\right) \circ\left(1_{M} \otimes \delta_{n-1,1}\right) \\
& =\left(1_{\Lambda^{n} M} \otimes f\right) \circ A_{n-1}^{\prime}(f)
\end{aligned}
$$

Similarly for the second claim:

$$
\begin{aligned}
\left(\Lambda^{n} f \otimes 1_{M}\right) \circ P_{n}^{\prime} & =\left(\Lambda^{n} f \otimes 1_{M}\right) \circ\left(\mu_{1, n-1} \otimes 1_{M}\right) \circ\left(1_{M} \otimes \delta_{n-1,1}\right) \\
& =\left(\mu_{1, n-1} \otimes 1_{M}\right) \circ\left(f \otimes \Lambda^{n-1} f \otimes 1_{M}\right) \circ\left(1_{M} \otimes \delta_{n-1,1}\right) \\
& =A_{n-1}^{\prime}(f) \circ\left(f \otimes 1_{\Lambda^{n} M}\right)
\end{aligned}
$$

1.6. The adjunct. To simplify notation, we consider f and $\Lambda^{n} f$ as endomorphisms of $M \otimes \Lambda^{n} M$ by the action on the first resp. second factor.
Corollary 3. Suppose $\Lambda^{n+1} M=0$. Then

$$
\Lambda^{n} f=f \circ A_{n-1}(f)=A_{n-1}(f) \circ f
$$

in $\operatorname{End}\left(M \otimes \Lambda^{n} M\right)$.
Proof. Follows from Proposition 2 and Lemma 1.
Suppose M is a locally free R-module of rank n. Then $\Lambda^{n} M$ is an invertible R module. A standard definition of the adjunct of f

$$
f^{\#} \in \operatorname{End}(M)
$$

is to take the adjoint of

$$
\Lambda^{n-1} f \in \operatorname{End}\left(\Lambda^{n-1} M\right)
$$

with respect to the non-degenerate pairing

$$
M \otimes \Lambda^{n-1} M \xrightarrow{\mu} \Lambda^{n} M
$$

Hence $f^{\#}$ is characterized by
(\#)

$$
f^{\#}(x) \wedge \eta=x \wedge\left(\Lambda^{n-1} f\right)(\eta) \quad\left(x \in M, \eta \in \Lambda^{n-1} M\right)
$$

The basic property
(\#\#)

$$
\operatorname{det}(f) \cdot 1_{M}=f f^{\#}=f^{\#} f
$$

follows then from

$$
\left(f^{\#} f\right)(x) \wedge \eta=f(x) \wedge\left(\Lambda^{n-1} f\right)(\eta)=\left(\Lambda^{n} f\right)(x \wedge \eta)
$$

and $\left(f^{\#}\right)^{\vee}=\left(f^{\vee}\right)^{\#}$.
Lemma 4. If M is a locally free R-module of rank n, then

$$
A_{n-1}(f)=f^{\#} \in \operatorname{End}\left(M \otimes \Lambda^{n} M\right)=\operatorname{End}(M)
$$

Proof. It suffices to verify (\#) with $f^{\#}$ replaced by $A_{n-1}(f)$. Instead of $A_{n-1}(f)$ we use again

$$
A_{n-1}^{\prime}(f)=\left(\left(\mu_{1, n-1} \circ\left(1_{M} \otimes \Lambda^{n-1} f\right)\right) \otimes 1_{M}\right) \circ\left(1_{M} \otimes \delta_{n-1,1}\right)
$$

(cf. proof of Proposition 2). Note the general rule

$$
\delta_{n-1,1}(\omega) \wedge \eta=(-1)^{n-1} \eta \otimes \omega \quad\left(\omega \in \Lambda^{n} M, \eta \in \Lambda^{n-1} M\right)
$$

for locally free R-modules of rank n. Therefore

$$
\begin{aligned}
A_{n-1}^{\prime}(f)(x \otimes \omega) \wedge \eta & =(-1)^{n-1}\left(\left(\mu_{1, n-1} \circ\left(1_{M} \otimes \Lambda^{n-1} f\right)\right) \otimes 1_{\Lambda^{n} M}\right)(x \otimes \eta \otimes \omega) \\
& =(-1)^{n-1} x \wedge\left(\Lambda^{n-1} f\right)(\eta) \otimes \omega
\end{aligned}
$$

which was to be shown.
Remark 3. Lemma 4 follows also from Corollary 3 , since f \# is uniquely determined by (\#\#) as a functor on triples (R, M, f).
1.7. Example: The case $n=2$. The general expression for $A_{1}(f)$ is

$$
A_{1}(f)(x \otimes s \wedge t)=s \otimes x \wedge f(t)-t \otimes x \wedge f(s)
$$

It is easy to see that $A_{1}(f)$ and $f \otimes 1_{\Lambda^{2} M}$ do not commute in general. On other hand suppose that M is locally free of rank 2 . Then one gets indeed

$$
\begin{aligned}
\left(f A_{1}(f)\right)(x \otimes s \wedge t) & =f(s) \otimes x \wedge f(t)-f(t) \otimes x \wedge f(s) \\
& =x \otimes f(s) \wedge f(t) \\
& =(x \otimes s \wedge t) \operatorname{det}(f)
\end{aligned}
$$

using $x \wedge f(s) \wedge f(t)=0$ and

$$
\begin{aligned}
\left(A_{1}(f) f\right)(x \otimes s \wedge t) & =s \otimes f(x) \wedge f(t)-t \otimes f(x) \wedge f(s) \\
& =(s \otimes x \wedge t-t \otimes x \wedge s) \operatorname{det}(f) \\
& =(x \otimes s \wedge t) \operatorname{det}(f)
\end{aligned}
$$

using $x \wedge s \wedge t=0$.

2. The Cayley-Hamilton theorem

In this section we exploit Proposition 2 using a standard method: Replace f by $f-t \cdot 1_{M}$ and take the coefficients of the resulting polynomials in t.
2.1. The endomorphisms $L_{n, k}(f)$. Let

$$
\begin{aligned}
& \Theta_{r}: \operatorname{End}\left(\Lambda^{k} M\right) \rightarrow \operatorname{End}\left(\Lambda^{k+r} M\right) \\
& \begin{array}{l}
\Theta_{r}(\varphi)=\mu_{k, r} \circ\left(\varphi \otimes 1_{\Lambda^{r} M}\right) \circ \delta_{k, r} \\
\quad=\mu_{r, k} \circ\left(1_{\Lambda^{r} M} \otimes \varphi\right) \circ \delta_{r, k}
\end{array}
\end{aligned}
$$

and for $f \in \operatorname{End}(M)$ and $0 \leq k \leq n$ let

$$
L_{n, k}(f)=\Theta_{n-k}\left(\Lambda^{k} f\right) \in \operatorname{End}\left(\Lambda^{n} M\right)
$$

Particular cases are

$$
\begin{aligned}
& L_{n, 0}(f)=1_{\Lambda^{n} M} \\
& L_{n, n}(f)=\Lambda^{n} f
\end{aligned}
$$

Explicitly one has

$$
\begin{equation*}
L_{n, k}(f)\left(x_{N}\right)=\sum_{I \subset N,|I|=k} f^{I(1)}\left(x_{1}\right) \wedge \cdots \wedge f^{I(n)}\left(x_{n}\right) \tag{3}
\end{equation*}
$$

with $N=\{1, \ldots, n\}$ and

$$
I(i)= \begin{cases}1 & i \in I \\ 0 & i \notin I\end{cases}
$$

It follows easily that

$$
\begin{equation*}
\Lambda^{n}\left(f+t \cdot 1_{M}\right)=\sum_{k=0}^{n} L_{n, k}(f) t^{n-k} \tag{4}
\end{equation*}
$$

in $\operatorname{End}\left(\Lambda^{n} M\right)[t]$.
In particular, if M is locally free of rank n, the elements

$$
L_{n, k}(f) \in \operatorname{End}\left(\Lambda^{n} M\right)=R
$$

are the (unsigned) coefficients of the characteristic polynomial of f.
2.2. The Cayley-Hamilton theorem. Here is a general form of the CayleyHamilton theorem.

Corollary 5. For any R-module M, any $f \in \operatorname{End}(M)$ and $n \geq 0$ one has

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{k} f^{n-k} P_{n} L_{n, k}(f)=0 \\
& \sum_{k=0}^{n}(-1)^{k} L_{n, k}(f) P_{n} f^{n-k}=0
\end{aligned}
$$

in $\operatorname{End}\left(M \otimes \Lambda^{n} M\right)$
Proof. Follows from Proposition 2 and the expansion (4) with a standard argument used in proofs of the Cayley-Hamilton theorem. For instance, write the first relation of Proposition 2 as

$$
\beta(f)=f \alpha(f)
$$

Then

$$
\beta(f-t)=(f-t) \alpha(f-t)
$$

gives

$$
\left(\sum_{k=0}^{n} f^{n-k} t^{k}\right) \beta(f-t)=\left(f^{n+1}-t^{n+1}\right) \alpha(f-t)
$$

Comparing the coefficients of t^{n} yields

$$
\sum_{k=0}^{n} f^{n-k} \beta_{k}(f)=0
$$

with

$$
\beta(f-t)=\sum_{k=0}^{n} t^{n-k} \beta_{k}(f), \quad \alpha(f-t)=\sum_{k=0}^{n-1} t^{n-1-k} \alpha_{k}(f)
$$

and

$$
\beta_{k}(f)=-\alpha_{k}(f)+f \alpha_{k-1}(f)
$$

Note that f and $L_{n, k}(f)$ commute as they act separately on the factors of $M \otimes$ $\Lambda^{n} M$. If $\Lambda^{n+1} M=0$, then $P_{n}=1$ and the two statements of Corollary 5 coincide. In particular, one gets the classical Cayley-Hamilton theorem:

Corollary 6. If M is a locally free R-module of rank n, then

$$
\sum_{k=0}^{n}(-1)^{k} f^{n-k} L_{n, k}(f)=0
$$

in $\operatorname{End}\left(M \otimes \Lambda^{n} M\right)=\operatorname{End}(M)$.
Remark 4. Let us make the first relation of Corollary 5 in the case $n=2$ explicit. With

$$
U=x \otimes s \wedge t
$$

one has

$$
\begin{aligned}
P_{2}(U) & =s \otimes x \wedge t-t \otimes x \wedge s \\
L_{2,1}(f)(U) & =x \otimes(f(s) \wedge t+s \wedge f(t))
\end{aligned}
$$

and

$$
\begin{aligned}
f^{2} P_{2} L_{2,0}(f)(U)= & f^{2}(s) \otimes x \wedge t-f^{2}(t) \otimes x \wedge s \\
f P_{2} L_{2,1}(f)(U)= & f^{2}(s) \otimes x \wedge t-f(t) \otimes x \wedge f(s) \\
& +f(s) \otimes x \wedge f(t)-f^{2}(t) \otimes x \wedge s \\
P_{2} L_{2,2}(f)(U)= & f(s) \otimes x \wedge f(t)-f(t) \otimes x \wedge f(s)
\end{aligned}
$$

The terms just cancel each other out. The same happens in general when expanding the relations of Corollary 5 with the explicit expressions (1) and (3).

The significance of Corollary 5 comes from fact that in the formulation

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{k} f^{n-k} L_{n, k}(f)=\sum_{k=0}^{n}(-1)^{k} f^{n-k} Q_{n} L_{n, k}(f) \\
& \sum_{k=0}^{n}(-1)^{k} L_{n, k}(f) f^{n-k}=\sum_{k=0}^{n}(-1)^{k} L_{n, k}(f) Q_{n} f^{n-k}
\end{aligned}
$$

all terms on the right hand sides factor through $\Lambda^{n+1} M$.

3. The endomorphisms $A_{k, h}(f)$

Finally we consider the endomorphisms $A_{k, h}(f)$ determined by the " t-expansion" of $A_{k}(f)$. They appear when computing $P_{n} L_{n, k}(f), L_{n, k}(f) P_{n}$ and showed already up in the proof of Corollary 5. We also compute $Q_{n} A_{n-1, k}(f), A_{n-1, k}(f) Q_{n}$.

3.1. The endomorphisms $A_{k, h}(f)$. For $0 \leq h \leq k$ let

$$
A_{k, h}(f)=\Phi\left(L_{k, h}(f)\right) \in \operatorname{End}\left(M \otimes \Lambda^{k+1} M\right)
$$

Note that

$$
A_{k, h}(f)=\left(1_{M} \otimes \mu_{1, h, k-h}\right) \circ\left(\tau \otimes \Lambda^{h} f \otimes 1_{\Lambda^{k-h} M}\right) \circ\left(1_{M} \otimes \delta_{1, h, k-h}\right)
$$

and

$$
\begin{equation*}
A_{k, h}(f)=\left(1_{M} \otimes \mu_{h+1, k-h}\right) \circ\left(A_{h}(f) \otimes 1_{\Lambda^{k-h} M}\right) \circ\left(1_{M} \otimes \delta_{h+1, k-h}\right) \tag{5}
\end{equation*}
$$

We understand $A_{k, h}(f)=0$ for $h<0$ or $h>k$.
Particular cases are

$$
\begin{aligned}
& A_{k, 0}(f)=P_{k+1} \\
& A_{k, k}(f)=A_{k}(f)
\end{aligned}
$$

From (4) it is clear that

$$
\begin{equation*}
A_{k}\left(f+t \cdot 1_{M}\right)=\sum_{h=0}^{k} A_{k, h}(f) t^{k-h} \tag{6}
\end{equation*}
$$

in $\operatorname{End}\left(M \otimes \Lambda^{k+1} M\right)[t]$.
Lemma 7. For $0 \leq k \leq n$ one has

$$
\begin{aligned}
& P_{n} L_{n, k}(f)=A_{n-1, k}(f)+f A_{n-1, k-1}(f) \\
& L_{n, k}(f) P_{n}=A_{n-1, k}(f)+A_{n-1, k-1}(f) f
\end{aligned}
$$

Proof. Follows from Proposition 2 by replacing f with $f+t \cdot 1_{M}$ and comparing the coefficients in t. See also the relation at the end of the proof of Proposition 2.

Corollary 8. For $0 \leq k<n$ one has

$$
A_{n-1, k}(f)=\sum_{h=0}^{k}(-f)^{k-h} P_{n} L_{n, h}(f)=\sum_{h=0}^{k} L_{n, h}(f) P_{n}(-f)^{k-h}
$$

3.2. More relations. First we need a supplement for the endomorphisms $L_{n, k}(f)$.

Lemma 9. One has

$$
L_{n, k}\left(f+t \cdot 1_{M}\right)=\sum_{h=0}^{k}\binom{n-h}{k-h} L_{n, h}(f) t^{k-h}
$$

Proof. Follows from the definitions and

$$
\begin{aligned}
& \mu_{h, k-h, n-k} \circ\left(\Lambda^{h} f \otimes 1_{\Lambda^{k-h} M} \otimes 1_{\Lambda^{n-k} M}\right) \circ \delta_{h, k-h, n-k}= \\
& \qquad\binom{n-h}{k-h} \mu_{h, n-h} \circ\left(\Lambda^{h} f \otimes 1_{\Lambda^{n-h} M}\right) \circ \delta_{h, n-h}
\end{aligned}
$$

Lemma 9 yields the following generalization of (6).
Corollary 10. For $0 \leq k \leq m$ one has

$$
A_{m, k}\left(f+t \cdot 1_{M}\right)=\sum_{h=0}^{k}\binom{m-h}{k-h} A_{m, h}(f) t^{k-h}
$$

Lemma 11. For $n \geq 1$ one has

$$
\begin{aligned}
& P_{n} A_{n-1}(f)=L_{n, n-1}(f)-f A_{n-1, n-2}(f) \\
& A_{n-1}(f) P_{n}=L_{n, n-1}(f)-A_{n-1, n-2}(f) f
\end{aligned}
$$

Proof. We prove only the first claim. One has

$$
\begin{aligned}
P_{n} A_{n-1}(f) & =\Psi^{t}\left(1_{\Lambda^{n-1}}\right) \circ \Psi\left(\Lambda^{n-1} f\right) \\
& =\left(1 \otimes \mu_{n-1,1}\right) \circ\left(Q_{n-1} \Lambda^{n-1} f \otimes 1\right) \circ\left(1 \otimes \delta_{n-1,1}\right)
\end{aligned}
$$

Since

$$
Q_{n-1} \Lambda^{n-1} f=\Lambda^{n-1} f-f A_{n-2}(f)
$$

by Proposition 2, one gets

$$
P_{n} A_{n-1}(f)=L_{n, n-1}(f)-(f \otimes 1) \circ\left(1 \otimes \mu_{n-1,1}\right) \circ\left(A_{n-2}(f) \otimes 1\right) \circ\left(1 \otimes \delta_{n-1,1}\right)
$$

The claim follows from (5).
Lemma 11 generalizes as follows.
Corollary 12. For $0 \leq k \leq n-1$ one has

$$
\begin{aligned}
Q_{n} A_{n-1, k}(f) & =(n-k)\left[A_{n-1, k}(f)+f A_{n-1, k-1}(f)-L_{n, k}(f)\right] \\
A_{n-1, k}(f) Q_{n} & =(n-k)\left[A_{n-1, k}(f)+A_{n-1, k-1}(f) f-L_{n, k}(f)\right]
\end{aligned}
$$

Proof. Follows from Lemma 11, Lemma 9 and Corollary 10.
Remark 5. Proposition 2 shows that

$$
P_{n}\left(\Lambda^{n} f\right) P_{n}=f A_{n-1}(f) P_{n}=P_{n} A_{n-1}(f) f
$$

is divisible by f from the left and from the right. With Lemma 11 one can make this more precise:

$$
P_{n}\left(\Lambda^{n} f\right) P_{n}=f L_{n, n-1}(f)-f A_{n-1, n-2}(f) f
$$

(f and $L_{n, n-1}(f)$ commute).

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

E-mail address: rost at math.uni-bielefeld.de
$U R L$: www.math.uni-bielefeld.de/~rost

[^0]: Date: February 28, 2017.

