CHAIN LEMMA FOR SPLITTING FIELDS OF SYMBOLS

MARKUS ROST
\section*{preliminary version}

Contents

1. An invariant 1
2. Preliminaries, Conventions, and Notations 2
3. The forms $\mathcal{A}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("algebras") 4
4. The forms $\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("relative algebras") 7
5. The forms $\mathcal{C}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (Chain lemma construction) 10
6. The forms $\mathcal{K}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (universal families of Kummer splitting fields) 15
7. Proof of the chain lemma 16
References 18

1. An invariant

We assume char $k=0$ (to have available resolution of singularities).
For a proper variety X we denote

$$
I(X)=\operatorname{deg}\left(\mathrm{CH}_{0}(X)\right) \subset \mathbb{Z}
$$

Let X be an proper variety of dimension d, let $X_{0} \subset X$ be closed subvariety, and let $U=X \backslash X_{0}$. We assume that U is smooth. Let $W \rightarrow U$ be a μ_{p}-torsor. We define

$$
\eta\left(W, X, X_{0}\right) \in \mathbb{Z} / I\left(X_{0}\right)
$$

as follows: Let L / U be the line bundle obtained as the image of $[W / U]$ via

$$
[W / U] \in H_{\mathrm{ett}}^{1}\left(U, \mu_{p}\right) \rightarrow H_{\mathrm{êt}}^{1}\left(U, \mathbb{G}_{\mathrm{m}}\right)=H_{\mathrm{Zar}}^{1}\left(U, \mathbb{G}_{\mathrm{m}}\right)=\operatorname{Pic}(U)
$$

The degree map induces a map

$$
\operatorname{deg}: \mathrm{CH}_{0}(U) \rightarrow \mathbb{Z} / I\left(X_{0}\right)
$$

We define

$$
\eta\left(W, X, X_{0}\right)=\operatorname{deg}\left(c_{1}(L)^{d}\right)
$$

Example 1.1. Let X be smooth, let $F=k(X)$ and let K / F be a Kummer extension of degree p. Let $\bar{W} \rightarrow X$ be the normal closure of K / F. Then $\bar{W} \rightarrow X$ is etale over an open subset $U=X \backslash X_{0}$ and we have an invariant

$$
\eta^{\prime}(K / F, X)=\eta\left(\bar{W} \mid U, X, X_{0}\right) \in \mathbb{Z} / I\left(X_{0}\right) .
$$

[^0]Passing to the limit over all modells X of F one may define an invariant of K / F in \mathbb{Z} / \ldots where \ldots can be expressed in terms of valuations on F. But this is not important at the moment.

Proposition 1.2 (Degree formula). Let $W \rightarrow U=X \backslash X_{0}$ as above with X irreducible and let Y be proper and irreducible of dimension $\operatorname{dim} Y=\operatorname{dim} X=d$. Let $f: Y \rightarrow X$ be morphism, let $Y_{0}=f^{-1}\left(X_{0}\right)$, let $U^{\prime}=Y \backslash Y_{0}$ and $W^{\prime}=W \times_{U} U^{\prime}$. Then

$$
\eta\left(W^{\prime}, Y, Y_{0}\right)=(\operatorname{deg} f) \eta\left(W, X, X_{0}\right) \bmod I\left(X_{0}\right)
$$

Note that

$$
I\left(Y_{0}\right) \subset I\left(X_{0}\right)
$$

Proof. This is pretty obvious: Let $\hat{f}: U^{\prime} \rightarrow U$ be the restriction of f. Then the line bundle L^{\prime} given by W^{\prime} / U^{\prime} is $\hat{f}^{*} L$, whence

$$
c_{1}\left(L^{\prime}\right)^{d}=\hat{f}^{*} c_{1}(L)^{d}
$$

and

$$
\hat{f}_{*}\left(c_{1}\left(L^{\prime}\right)^{d}\right)=(\operatorname{deg} \hat{f}) c_{1}(L)^{d} .
$$

Now apply the degree map.
Example 1.3. Suppose that in Proposition 1.2 one has $I\left(X_{0}\right) \subset p Z$ and suppose further $\eta\left(W^{\prime}, Y, Y_{0}\right) \not \equiv 0 \bmod p$. Then $\operatorname{deg} f$ is prime to p.

2. Preliminaries, Conventions, and Notations

- The ground field k has characteristic 0 . We fix a prime p. We assume $\mu_{p} \subset k$.
- By a scheme or a variety X (over k) we mean a separated scheme of finite type $\pi_{X}: X \rightarrow \operatorname{Spec} k$.
- If X is a smooth variety, then $T X$ denotes the tangent bundle of X.
- Let V be vector bundle over X. We denote by $\pi_{V}: \mathbb{P}(V) \rightarrow X$ the projective bundle associated to V. Moreover

$$
\mathbb{L}(V) \rightarrow \pi_{V}^{*} V
$$

denotes the tautological line bundle on $\mathbb{P}(V)$.
For the fiber tangent bundle $T(\mathbb{P}(V) / X)$ one has

$$
T(\mathbb{P}(V) / X)=\pi_{V}^{*} V \otimes \mathbb{L}(V)^{\vee} / \mathcal{O}_{\mathbb{P}(V)}
$$

- Let V be vector (or an affine) bundle over X. We denote by $\mathbb{A}(V) \rightarrow X$ the associated scheme V.
- By a form we understand a triple $(T / S, L, \alpha)$ where $T \rightarrow S$ are schemes, L is line bundle on T and $\alpha \in H^{0}\left(T, L^{\otimes-p}\right)$ is a form of degree p on L.

There is a natural homomorphism $\mu_{p} \rightarrow \operatorname{Aut}(T / S, L, \alpha)$ induced from the standard action of \mathbb{G}_{m} on L.

- Let (Spec $k, L, \alpha)$ be a nonzero form and let $u \in L$ be a basis vector. Then the p-power class

$$
\{\alpha\}=\{\alpha(u)\} \in K_{1} k / p=k^{*} /\left(k^{*}\right)^{p}
$$

is independent on the choice of u.

- Let $(T / S, L, \alpha)$ and let Γ be a finite group acting on $(T / S, L, \alpha)$ (i.e., there is given a homomorphism $\Gamma \rightarrow \operatorname{Aut}(T / S, L, \alpha))$. We say that $(T / S, L, \alpha)$ is an admissable Γ-form if the following conditions hold:
$-\alpha$ is nonzero on an open dense subscheme of T.
- Γ has only finitely many fixed points on T (a fixed point is a point $P \in T$ with $g P=P$ for all $g \in G$).
- At each fixed point P the form α is nonzero.
- For vector bundles V, V^{\prime} on schemes X / S resp. X^{\prime} / S we denote by $V \boxplus_{S} V^{\prime}$ the exterior direct sum, given by the sum of the pull backs to $X \times_{S} X^{\prime}$. Similarly we denote by $V \boxtimes_{S} V^{\prime}$ the exterior tensor product, given by the tensor product of the pull backs.
- For forms $(T / S, L, \alpha)$ and $\left(T^{\prime} / S, L^{\prime}, \alpha^{\prime}\right)$ we denote by

$$
(T / S, L, \alpha) \boxtimes_{S}\left(T^{\prime} / S, L^{\prime}, \alpha^{\prime}\right)=\left(\left(T \times_{S} T^{\prime}\right) / S, L \boxtimes_{S} L^{\prime}, \alpha \boxtimes_{S} \alpha^{\prime}\right)
$$

their exterior product, with the form defined by

$$
\left(\alpha \boxtimes_{S} \alpha^{\prime}\right)\left(u \boxtimes_{S} u^{\prime}\right)=\alpha(u) \alpha^{\prime}\left(u^{\prime}\right)
$$

for sections u, u^{\prime} of L, L^{\prime}, respectively.
If $(T / S, L, \alpha)$ and $\left(T^{\prime} / S, L^{\prime}, \alpha^{\prime}\right)$ are admissable Γ-forms, then $(T / S, L, \alpha) \boxtimes_{S}$ ($\left.T^{\prime} / S, L^{\prime}, \alpha^{\prime}\right)$ is an admissable Γ-form.

- Let $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n$, be admissable Γ-forms and let $P \in S$ be a k-rational fixed point. We say that P is twisting for the family $\left(S, H_{i}, \alpha_{i}\right)_{i}$, if the homomorphism

$$
\Gamma \rightarrow \mu_{p}^{n}=\prod_{i=1}^{n} \operatorname{Aut}\left(H_{i}\left|P, \alpha_{i}\right| P\right)
$$

is surjective.

- By a cellular variety we mean a variety which admits a stratification by affine spaces. The motive of a cellular variety is the direct sum of powers of the Tate motive L, with a summand $L^{\otimes i}$ for each i-cell. If X and Y are cellular, then $X \times Y$ is cellular and one has

$$
\mathrm{CH}_{*}(X \times Y)=\mathrm{CH}_{*}(X) \otimes_{\mathbb{Z}} \mathrm{CH}_{*}(Y) .
$$

- Let L be a line bundle L on a smooth and proper variety X over k of dimension $d \geq 0$. We write

$$
\delta(L)=\operatorname{deg}\left(c_{1}(L)^{d}\right) \in \mathbb{Z}
$$

Here

$$
\operatorname{deg}: \mathrm{CH}_{0}(X) \rightarrow \mathrm{CH}_{0}(\operatorname{Spec} k)=\mathbb{Z}
$$

is the degree map. If $d=0$ we understand by $\delta(L)$ the degree of X as a finite extension of k.

If V is a vector space of dimension n, then

$$
\delta(\mathbb{L}(V))=\operatorname{deg}\left(c_{1}(\mathbb{L}(V))^{n-1}\right)=(-1)^{n-1}
$$

- The index I_{X} of a proper variety is

$$
I_{X}=\operatorname{deg}\left(\mathrm{CH}_{0}(X)\right) \subset \mathbb{Z}
$$

- If p is a prime, a field k is called p-special if $\operatorname{char} k \neq p$ and if k has no finite field extensions of degree prime to p.
- Let (S, L, α) be a form. We consider the bundle of algebras

$$
A=A(S, L, \alpha)=T L / I
$$

over R. Here $T L$ is the tensor algebra of L and I is the ideal subsheaf generated by

$$
\lambda^{\otimes p}-\alpha(\lambda)
$$

for local sections λ of $L . A$ a is bundle of commutative algebras of degree p. Note that

$$
A=\bigoplus_{i=0}^{p-1} L^{\otimes i}
$$

as vector bundles. We denote by

$$
N_{A}: A \rightarrow \mathcal{O}_{S}
$$

the norm of the algebra A.

- We use the notation

$$
\operatorname{Cyclic}^{p}(Z)=\left(Z^{p}\right) /(\mathbb{Z} / p) .
$$

3. The forms $\mathcal{A}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("Algebras")

Given a scheme S and forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, m$, we define forms

$$
\mathcal{A}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(P_{n} / S, K_{n}, \Phi_{n}\right), \quad 0 \leq n \leq m
$$

For $n=0$ we put

$$
\begin{aligned}
P_{0} & =S \\
K_{0} & =\mathcal{O}_{S}, \\
\Phi_{0}(t) & =t^{p} .
\end{aligned}
$$

Suppose ($P_{n-1} / S, K_{n-1}, \Phi_{n-1}$) is defined. We consider the 2-dimensional vector bundle

$$
V_{n}=\mathcal{O}_{P_{n-1}} \oplus H_{n} \boxtimes_{S} K_{n-1}
$$

on P_{n-1}, and the form

$$
\varphi_{n}: V_{n} \rightarrow \mathcal{O}_{P_{n-1}}
$$

on V_{n} defined by

$$
\varphi_{n}(t-u \otimes v)=t^{p}-\alpha_{n}(u) \Phi_{n-1}(v)
$$

for sections t, u, v of $\mathcal{O}_{P_{n-1}}, H_{n}, K_{n-1}$, respectively.
Let $\left(P_{n-1, j}, V_{n, j}, \varphi_{n, j}\right), j=1, \ldots, p-1$ be copies of $\left(P_{n-1}, V_{n}, \varphi_{n}\right)$. We put

$$
\left(P_{n} / S, K_{n}, \Phi_{n}\right)=\left(P_{n-1} / S, K_{n-1}, \Phi_{n-1}\right) \boxtimes_{S} \bigotimes_{j=1}^{p-1}\left(\mathbb{P}\left(V_{n, j}\right), \mathbb{L}\left(V_{n, j}\right), \varphi_{n, j}\right)
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(P_{n}, K_{n}, \Phi_{n}\right)$.

Lemma 3.1. The variety P_{n} is smooth, proper, cellular, connected, and of dimension $p^{n}-1$.

Proof. Indeed, P_{n} is an iterated projective bundle. The computation of the dimension is clear for $n=0$ and for $n>0$ we find

$$
\begin{aligned}
\operatorname{dim} P_{n} & =\operatorname{dim} P_{n-1}+(p-1)\left(1+\operatorname{dim} P_{n-1}\right) \\
& =\left(p^{n-1}-1\right)+(p-1) p^{n-1}=p^{n}-1
\end{aligned}
$$

by induction on n.
Lemma 3.2. $\delta\left(K_{n}\right)=(-1)^{n} \bmod p$.
Proof. This is clear for $n=0$. Let

$$
\begin{array}{rlrl}
u_{n} & =c_{1}\left(K_{n}\right) & \in \mathrm{CH}^{1}\left(P_{n}\right), & \\
u_{n-1, j} & =c_{1}\left(K_{n-1, j}\right) & \in \mathrm{CH}^{1}\left(P_{n-1, j}\right), & \\
z_{n, j} & =c_{1}\left(\mathbb{L}\left(V_{n, j}\right)\right) & \in \mathrm{CH}^{1}\left(\mathbb{P}\left(V_{n, j}\right)\right), j=1, \ldots, p-1, \\
z_{n} & n \geq 1, j=1, \ldots, p-1 .
\end{array}
$$

For $n \geq 1$ let

$$
\widehat{P}_{n}=P_{n-1} \times \prod_{j=1}^{p-1} P_{n-1, j}
$$

Then

$$
\mathrm{CH}^{*}\left(\widehat{P}_{n}\right)=\mathrm{CH}^{*}\left(P_{n-1}\right) \otimes \bigotimes_{j=1}^{p-1} \mathrm{CH}^{*}\left(P_{n-1, j}\right)
$$

and

$$
\mathrm{CH}^{*}\left(P_{n}\right)=\frac{\mathrm{CH}^{*}\left(\widehat{P}_{n}\right)\left[z_{n, j} ; j=1, \ldots, p-1\right]}{\left\langle z_{n, j}^{2}-z_{n, j} u_{n-1, j} ; j=1, \ldots, p-1\right\rangle} .
$$

Moreover

$$
u_{n}=u_{n-1}+\bar{z}_{n}, \quad \text { with } \quad \bar{z}_{n}=\sum_{j=1}^{p-1} z_{n, j} .
$$

Note that

$$
u_{n-1}^{p^{n-1}}=u_{n-1, j}^{p^{n-1}}=0, \quad z_{n, j}^{p^{n-1}+1}=0
$$

by dimension reasons. Hence, calculating $\bmod p$,

$$
u_{n}^{p^{n-1}}=\left(u_{n-1}+\bar{z}_{n}\right)^{p^{n-1}}=u_{n-1}^{p^{n-1}}+\bar{z}_{n}^{p^{n-1}}=\bar{z}_{n}^{p^{n-1}} .
$$

One finds (using Lemma 3.3 below)

$$
\begin{aligned}
u_{n}^{p^{n}-1} & =u_{n}^{p^{n-1}-1} u_{n}^{p^{n-1}(p-1)}=u_{n}^{p^{n-1}-1} \bar{z}_{n}^{p^{n-1}(p-1)} \\
& =u_{n}^{p^{n-1}-1}\left(z_{n, 1}^{p^{n-1}}+z_{n, 2}^{p^{n-1}}+\cdots+z_{n, p-1}^{p^{n-1}}\right)^{p-1} \\
& =-u_{n-1}^{p^{n-1}-1} z_{n, 1}^{p^{n-1}} z_{n, 2}^{p^{n-1}} \cdots z_{n, p-1}^{p^{n-1}} \\
& =-u_{n-1}^{p^{n-1}-1} z_{n, 1} u_{n, 1}^{p^{n-1}-1} z_{n, 2} u_{n, 2}^{p^{n-1}-1} \cdots z_{n, p-1} u_{n, p-1}^{p^{n-1}-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\delta\left(K_{n}\right) & =-\delta\left(K_{n-1}\right)\left(-\delta\left(K_{n-1,1}\right)\right)\left(-\delta\left(K_{n-1,2}\right)\right) \cdots\left(-\delta\left(K_{n-1, p-1}\right)\right) \\
& =-\delta\left(K_{n-1}\right) \bmod p .
\end{aligned}
$$

whence the claim.
Lemma 3.3. Let R be a ring over \mathbb{F}_{p} and let $v_{1}, v_{2}, \ldots, v_{p-1} \in R$, be elements with $v_{1}^{2}=v_{2}^{2}=\cdots=v_{p-1}^{2}=0$. Then

$$
\left(v_{1}+v_{2}+\cdots+v_{p-1}\right)^{p-1}=-v_{1} v_{2} \cdots v_{p-1} .
$$

Proof. Note that $(p-1)!=-1 \bmod p$.
The construction of (P_{n}, K_{n}, Φ_{n}) is functorial in the forms $\left(S, H_{i}, \alpha_{i}\right)$. In particular the group

$$
\Gamma_{n}=\mu_{p}^{n} \subset \prod_{i=1}^{n} \operatorname{Aut}\left(S, H_{i}, \alpha_{i}\right)
$$

acts on $\left(P_{n}, K_{n}, \Phi_{n}\right)$.
From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n$.
Lemma 3.4. The triple $\left(P_{n}, K_{n}, \Phi_{n}\right)$ is an admissable Γ_{n}-form. All fixed points are k-rational.

Proof. By induction on n. Suppose that $\left(P_{n-1}, K_{n-1}, \Phi_{n-1}\right)$ is an admissable $\Gamma_{n-1^{-}}$ form. It suffices to show that $\left(\mathbb{P}\left(V_{n}\right), \mathbb{L}\left(V_{n}\right), \varphi_{n}\right)$ is an admissable Γ_{n}-form. It is easy to see that φ_{n} is generically nonzero. Every Γ_{n}-fixed point on $\mathbb{P}\left(V_{n}\right)$ lies over a $\Gamma_{n-1^{-}}$ fixed point $P \in P_{n-1}$. It suffices to show that the fibre ($\left.\operatorname{Spec} \kappa(P), \mathbb{L}\left(V_{n}\right)\left|P, \varphi_{n}\right| P\right)$ is an admissable Γ-form where

$$
\Gamma=\operatorname{Aut}\left(S, H_{n}, \alpha_{n}\right)=\operatorname{ker}\left(\Gamma_{n} \rightarrow \Gamma_{n-1}\right)
$$

This is easy to see: If ($\operatorname{Spec} k, H, \alpha$) is a nonzero form over k, then

$$
\mu_{p}=\operatorname{Aut}(\operatorname{Spec} k, H, \alpha)
$$

has in $\mathbb{P}(k \oplus H)$ only the two fixed points $\mathbb{P}(0 \oplus H)$ and $\mathbb{P}(k \oplus 0)$. The form $\varphi(t-u)=t^{p}-\alpha(u)$ is nonzero on the lines $t=0$ and $u=0$.

Lemma 3.5. Let $\eta_{n} \in P_{n}$ be the generic point. Then

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}, \Phi_{n}\left(\eta_{n}\right)\right\}=0 \in K_{n+1}^{M} k\left(P_{n}\right) / p
$$

Proof. By induction on n. Suppose that

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-1}, \Phi_{n-1}\left(\eta_{n-1}\right)\right\}=0 \in K_{n}^{M} k\left(P_{n-1}\right) / p
$$

One has

$$
\Phi_{n}\left(\eta_{n}\right)=\Phi_{n-1}\left(\eta_{n-1}\right) \cdot \prod_{j=1}^{p-1}\left(1-\alpha_{n} \Phi_{n-1, j}\left(\eta_{n-1, j}\right)\right)
$$

Hence it suffices to show

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}, 1-\alpha_{n} \Phi_{n-1, j}\left(\eta_{n-1, j}\right)\right\} \in K_{n+1}^{M} k\left(P_{n}\right) / p
$$

for each $j=1, \ldots, p-1$. This follows from $\{a, 1-a b\}=-\{b, 1-a b\}$.
Remark 3.6. Given the forms (Spec k, H_{i}, α_{i}), form the vector space

$$
A_{n}=\bigoplus_{j_{1}, \ldots, j_{n}=0}^{p-1} H_{1}^{\otimes j_{1}} \otimes \cdots \otimes H_{n}^{\otimes j_{n}}
$$

One has $\operatorname{dim} A_{n}=p^{n}$. On A_{n} there is the form

$$
\Theta_{n}=\bigoplus_{j_{1}, \ldots, j_{n}=0}^{p-1}\left(-\alpha_{1}\right)^{\otimes j_{1}} \otimes \cdots \otimes\left(-\alpha_{n}\right)^{\otimes j_{n}}
$$

Consider the form $\left(\mathbb{P}\left(A_{n}\right), \mathbb{L}\left(A_{n}\right), \Theta_{n}\right)$. If $p=2$, this form satisfies all the properties of $\left(P_{n}, K_{n}, \Phi_{n}\right)$ listed above (up to a sign in the computation of $\delta\left(\mathbb{L}\left(A_{n}\right)\right)$). If $p>2$, all properties of $\left(P_{n}, K_{n}, \Phi_{n}\right)$ are also valid, except for the splitting of the symbol. If $n=1, n=2$, or $n=p=3$, one may define on A_{n} an algebra structure with norm form Θ_{n}^{\prime} in such a way that $\left(\mathbb{P}\left(A_{n}\right), \mathbb{L}\left(A_{n}\right), \Theta_{n}^{\prime}\right)$ satisfies all the properties. The $\left(P_{n}, K_{n}, \Phi_{n}\right)$ form an approximation to these algebras, with the advantage, that $\left(P_{n}, K_{n}, \Phi_{n}\right)$ can be constructed for all p and n.

4. The forms $\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("Relative algebras")

Let $n \geq 1$. Given forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1$, and $\left(S^{\prime} / S, L, \beta\right)$, we define a form

$$
\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta\right)=\left(P_{n}^{\prime} / S^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)
$$

as follows. Let ($P_{n-1} / S, K_{n-1}, \Phi_{n-1}$) be as in section 3. Put

$$
\bar{P}_{n-1}=S^{\prime} \times_{S} P_{n-1}
$$

We consider the 2-dimensional vector bundle

$$
\bar{V}_{n}=\mathcal{O}_{\bar{P}_{n-1}} \oplus L \boxtimes_{S} K_{n-1}
$$

on \bar{P}_{n-1}, and the form

$$
\bar{\varphi}_{n}: \bar{V}_{n} \rightarrow \mathcal{O}_{\bar{P}_{n-1}}
$$

on \bar{V}_{n} defined by

$$
\bar{\varphi}_{n}(t-u \otimes v)=t^{p}-\beta(u) \Phi_{n-1}(v)
$$

for sections t, u, v of $\mathcal{O}_{\bar{P}_{n-1}}, L, K_{n-1}$, respectively.
Let

$$
\left(\bar{P}_{n-1, j}, \bar{V}_{n, j}, \bar{\varphi}_{n, j}, K_{n-1, j}, P_{n-1, j}\right), j=1, \ldots, p-1
$$

be copies of $\left(\bar{P}_{n-1}, \bar{V}_{n}, \bar{\varphi}_{n}, K_{n-1}, P_{n-1}\right)$. We put

$$
\left(P_{n}^{\prime} / S^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)=\bigotimes_{j=1}^{p-1}\left(\mathbb{P}\left(\bar{V}_{n, j}\right), \mathbb{L}\left(\bar{V}_{n, j}\right), \bar{\varphi}_{n, j}\right)
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(P_{n}^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)$.
Lemma 4.1. The variety P_{n}^{\prime} is smooth and proper over S^{\prime}, and of relative dimension $p^{n}-p^{n-1}$. If S^{\prime} is cellular, so is P_{n}^{\prime}. The fibres of S / S^{\prime} are connected.

Proof. Note that $P_{n}^{\prime} / S^{\prime}$ is an iterated projective bundle. Moreover

$$
\operatorname{dim} P_{n}^{\prime} / S^{\prime}=(p-1)\left(\operatorname{dim} P_{n-1}+1\right)=p^{n}-p^{n-1}
$$

by Lemma 3.1.

Let

$$
\begin{aligned}
u_{n}^{\prime} & =c_{1}\left(K_{n}^{\prime}\right) & \in \mathrm{CH}^{1}\left(P_{n}^{\prime}\right), \\
u_{n-1, j} & =c_{1}\left(K_{n-1, j}\right) & \in \mathrm{CH}^{1}\left(P_{n-1, j}\right), \\
v_{n} & =c_{1}(L) & \in \mathrm{CH}^{1}\left(S^{\prime}\right) .
\end{aligned}
$$

Lemma 4.2. One has

$$
u_{n}^{\prime} p^{n}=u_{n}^{\prime} p^{n-1} v_{n}^{p^{n}-p^{n-1}} \bmod p
$$

If $S^{\prime}=\operatorname{Spec} k$, then

$$
\delta\left(K_{n}^{\prime}\right)=\operatorname{deg}\left(u_{n}^{\prime} p^{n}-p^{n-1}\right)=-1 \bmod p
$$

Proof. Let

$$
\widehat{\widehat{P_{n}}}=S^{\prime} \times \prod_{j=1}^{p-1} P_{n-1, j}
$$

Then

$$
\mathrm{CH}^{*}\left(\widehat{\widehat{P_{n}}}\right)=\mathrm{CH}^{*}\left(S^{\prime}\right) \otimes \bigotimes_{j=1}^{p-1} \mathrm{CH}^{*}\left(P_{n-1, j}\right)
$$

and

$$
\mathrm{CH}^{*}\left(P_{n}^{\prime}\right)=\frac{\mathrm{CH}^{*}\left(\widehat{\widehat{P_{n}}}\right)\left[z_{n, j} ; j=1, \ldots, p-1\right]}{\left\langle z_{n, j}^{2}-z_{n, j}\left(v_{n}+u_{n-1, j}\right) ; j=1, \ldots, p-1\right\rangle} .
$$

Moreover

$$
u_{n}^{\prime}=\bar{z}_{n}, \quad \text { with } \quad \bar{z}_{n}=\sum_{j=1}^{p-1} z_{n, j} .
$$

Recall that $u_{n-1, j}^{p^{n-1}}=0$. Calculating $\bmod p$, one finds

$$
\begin{aligned}
u_{n}^{\prime} p^{n} & =\bar{z}_{n}^{p^{n}} \\
& =z_{n, 1}^{p^{n}}+\cdots+z_{n, p-1}^{p^{n}} \\
& =z_{n, 1}^{p^{n-1}}\left(v_{n}+u_{n-1,1}\right)^{p^{n-1}(p-1)}+\cdots+z_{n, p-1}^{p^{n-1}}\left(v_{n}+u_{n-1, p-1}\right)^{p^{n-1}(p-1)} \\
& =z_{n, 1}^{p^{n-1}}\left(v_{n}^{p^{n-1}}+u_{n-1,1}^{p^{n-1}}\right)^{(p-1)}+\cdots+z_{n, p-1}^{p^{n-1}}\left(v_{n}^{p^{n-1}}+u_{n-1, p-1}^{p^{n-1}}\right)^{(p-1)} \\
& =z_{n, 1}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)}+\cdots+z_{n, p-1}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)} \\
& =\bar{z}_{n}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)}=u_{n}^{\prime}{ }^{n-1} v_{n}^{p^{n-1}(p-1)} .
\end{aligned}
$$

This proves the first claim.
Suppose $v_{n}=0$. Then $z_{n, j}^{p^{n-1}+1}=0$. One finds $\bmod p$ (using Lemma 3.3)

$$
\begin{aligned}
u_{n}^{p^{n-1}(p-1)} & =\left(z_{n, 1}^{p^{n-1}}+z_{n, 2}^{p^{n-1}}+\cdots+z_{n, p-1}^{p^{n-1}}\right)^{p-1} \\
& =-z_{n, 1}^{p^{n-1}} z_{n, 2}^{p^{n-1}} \cdots z_{n, p-1}^{p^{n-1}} \\
& =-z_{n, 1} u_{n-1,1}^{p^{n-1}-1} z_{n, 2} u_{n-1,2}^{p^{n-1}-1} \cdots z_{n, p-1} u_{n-1, p-1}^{p^{n-1}-1}
\end{aligned}
$$

Since $\delta\left(K_{n-1}\right) \neq 0 \bmod p$, it follows that

$$
\begin{aligned}
\delta\left(K_{n}^{\prime}\right) & =-\left(-\delta\left(K_{n-1,1}\right)\right)\left(-\delta\left(K_{n-1,2}\right)\right) \cdots\left(-\delta\left(K_{n-1, p-1}\right)\right) \\
& =-1 \bmod p
\end{aligned}
$$

whence the second claim.
From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n-1$. Let Γ be a finite group, let $\Gamma \rightarrow \Gamma_{n-1}$ be an epimorphism and let $\Gamma \rightarrow \operatorname{Aut}\left(S^{\prime}, L, \beta\right)$ be a homomorphism. Thus Γ acts on all the forms $\left(\operatorname{Spec} k, H_{i}, \alpha_{i}\right), i=0, \ldots, n-1$, and (S^{\prime}, L, β).

Lemma 4.3. Suppose that $\left(S^{\prime}, L, \beta\right)$ is an admissable Γ-form with all fixed points k-rational. Moreover suppose that each fixed point is twisting for the forms

$$
\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1, \text { and }\left(S^{\prime}, L, \beta\right) .
$$

Then $\left(P_{n}^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)$ is an admissable Γ-form with all fixed points k-rational.
Proof. This follows as for Lemma 3.4.
Lemma 4.4. Suppose that S^{\prime} is irreducible. Let $\eta_{n} \in P_{n}$ be the generic point. Then

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-1}, \beta\left(\eta_{n}\right), \Phi_{n}\left(\eta_{n}\right)\right\}=0 \in K_{n+1}^{M} k\left(P_{n}\right) / p
$$

Proof. This follows as for Lemma 3.5.
Remark 4.5. Given the form $\left(S^{\prime}, L, \beta\right)$ one may define the "Kummer algebra"

$$
A=A\left(S^{\prime}, L, \beta\right)=L^{\otimes 0} \oplus L^{\otimes 1} \oplus \cdots \oplus L^{\otimes p-1}
$$

with the product given by the natural multiplication in the tensor algebra using the form $\beta: L^{\otimes p} \rightarrow L^{\otimes 0}$ to reduce the degree $\bmod p$. One finds

$$
\mathrm{CH}^{*}(\mathbb{P}(A)) \otimes \mathbb{F}_{p}=\mathrm{CH}^{*}\left(S^{\prime}\right) \otimes \mathbb{F}_{p}[x] /\left\langle x^{p}-x^{p-1} y\right\rangle
$$

with $x=c_{1}(\mathbb{L}(A))$ and $y=c_{1}(L)$.
Hence we have a homomorphism

$$
R=\mathbb{F}_{p}[x] /\left\langle x^{p}-x^{p-1} y\right\rangle \rightarrow \mathrm{CH}^{*}(\mathbb{P}(A)) \otimes \mathbb{F}_{p}
$$

Lemma 4.2 shows that there is a homomorphism

$$
R \rightarrow \mathrm{CH}^{*}\left(P_{n}^{\prime}\right) \otimes \mathbb{F}_{p}, \quad x \mapsto u_{n}^{\prime p^{n-1}}, y \mapsto v_{n}^{p^{n-1}} .
$$

If one thinks in terms of the (in general nonexisting) algebras

$$
A_{n}=A\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta\right)
$$

with "subalgebras"

$$
A_{n-1}=A\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)
$$

and one imagines to form something like the projective space $\mathbb{P}_{A_{n-1}}\left(A_{n}\right)$, then one may think of P_{n}^{\prime} as an approximation $P_{n}^{\prime} \rightarrow \mathbb{P}_{A_{n-1}}\left(A_{n}\right)$ with the homomorphism $R \rightarrow \mathrm{CH}^{*}\left(P_{n}^{\prime}\right) \otimes \mathbb{F}_{p}$ being the pull back on the Chow rings (if say $S^{\prime}=\mathbb{P}^{\infty}$ and with L the universal line bundle).
5. The forms $\mathcal{C}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (Chain lemma construction)

Let $n \geq 2$. Given forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1$, and $\left(S^{\prime} / S, L, \beta\right)$, we define forms

$$
\mathcal{C}_{r}=\mathcal{C}_{r}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta\right)=\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right), \quad r \geq-1
$$

For $r=-1,0$ we put

$$
\begin{aligned}
\left(S_{-1} / S_{-2}, L_{-1}, \beta_{-1}\right) & =\left(S / S, H_{n-1}, \alpha_{n-1}\right) \\
\left(S_{0} / S_{-1}, L_{0}, \beta_{0}\right) & =\left(S^{\prime} / S, L, \beta\right)
\end{aligned}
$$

Let $r>0$ and suppose \mathcal{C}_{r-2} and \mathcal{C}_{r-1} are defined.
Let

$$
\left(P_{n-1, r}^{\prime} / S_{r-1}, K_{n-1, r}^{\prime}, \Phi_{n-1, r}^{\prime}\right)=\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{r-1}\right)
$$

be the form constructed in section 4 , starting from $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-2$, and $\left(S_{r-1} / S_{r-2}, L_{r-1}, \beta_{r-1}\right)$. Put

$$
\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right)=\left(S_{r-2} / S_{r-3}, L_{r-2}, \beta_{r-2}\right) \boxtimes_{S_{r-2}}\left(P_{n-1, r}^{\prime} / S_{r-1}, K_{n-1, r}^{\prime}, \Phi_{n-1, r}^{\prime}\right)
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right)$.

Lemma 5.1. The variety S_{r} is smooth and proper over S^{\prime}, and of relative dimension $r\left(p^{n-1}-p^{n-2}\right)$. If S^{\prime} is cellular, so is S_{r}. The fibres of S / S^{\prime} are connected.
Proof. This follows from Lemma 4.1. For the dimension note

$$
\operatorname{dim} S_{r} / S_{r-1}=\operatorname{dim} P_{n-1, r}^{\prime} / S_{r-1}=p^{n-1}-p^{n-2}
$$

by Lemma 4.1.
Thus if $\operatorname{dim} S^{\prime}=\left(p^{l}-1\right) p^{n}$ for some $\ell \geq 0$, then $\operatorname{dim} S_{p}=\left(p^{l+1}-1\right) p^{n-1}$.
Theorem 5.2. Let $\ell \geq 0$ and suppose that S^{\prime} is smooth and proper of dimension $\left(p^{l}-1\right) p^{n}$. Then

$$
\delta\left(L_{p}\right)=\delta(L) \bmod p
$$

The proof requires some calculations.
Let $a, b \in \mathbb{F}_{p}$, and let $r \geq 0$ be an integer. In the ring $\mathbb{F}_{p}\left[z_{1}, \ldots, z_{r}\right]$ let

$$
\begin{aligned}
x_{-1} & =a \\
x_{0} & =b \\
x_{m} & =z_{m}+x_{m-2}, \quad 1 \leq m \leq r
\end{aligned}
$$

Then

$$
\begin{aligned}
x_{2 k} & =z_{2 k}+z_{2 k-2}+\cdots+z_{4}+z_{2}+b \\
x_{2 k+1} & =z_{2 k-1}+z_{2 k-3}+\cdots+z_{3}+z_{1}+a
\end{aligned}
$$

We denote by I the ideal generated by

$$
z_{m}^{p}-z_{m} x_{m-1}^{p-1}, \quad 1 \leq m \leq r
$$

and put

$$
R_{r}(a, b)=\mathbb{F}_{p}\left[z_{1}, \ldots, z_{r}\right] / I
$$

The elements

$$
z^{J}=z_{1}^{i_{1}} \cdots z_{r}^{i_{r}}, \quad J=\left(i_{1}, \ldots, i_{r}\right), \quad 0 \leq i_{j} \leq p-1
$$

form an \mathbb{F}_{p}-basis of $R_{r}(a, b)$. For $u \in R_{r}(a, b)$ let $c_{m}(u)$ be the coefficient of $z_{1}^{p-1} \cdots z_{m}^{p-1}$

Lemma 5.3. If $1 \leq r \leq p$ one has $c_{r}\left(x_{r}^{r(p-1)}\right)=1$ in $R_{r}(a, b)$.
Proof. One has for $1 \leq m \leq p$:

$$
\begin{aligned}
x_{m}^{m(p-1)} & =x_{m}^{p(m-1)+(p-m)} \\
& =\left(z_{m}+x_{m-2}\right)^{p(m-1)+(p-m)} \\
& =\left(z_{m}^{p}+x_{m-2}^{p}\right)^{(m-1)}\left(z_{m}+x_{m-2}\right)^{(p-m)} \\
& =\left(z_{m} x_{m-1}^{p-1}+x_{m-2}^{p}\right)^{(m-1)}\left(z_{m}+x_{m-2}\right)^{(p-m)} .
\end{aligned}
$$

Hence for $m \leq p$ one has

$$
c_{m}\left(x_{m}^{m(p-1)}\right)=c_{m-1}\left(x_{m-1}^{(m-1)(p-1)}\right) .
$$

The claim follows by induction.
Proposition 5.4. If $(a, b) \neq(0,0)$, then $R_{r}(a, b)$ is isomorphic to a product of rings of the form

$$
\mathbb{F}_{p}\left[v_{1}, \ldots, v_{k}\right] /\left(v_{1}^{p}, \ldots, v_{k}^{p}\right), \quad k \geq 0 .
$$

Proof. By induction on $r \geq 0$. The case $r=0$ is obvious.
Suppose $b \neq 0$. Then the polynomial

$$
z_{1}^{p}-z_{1} x_{0}^{p-1}
$$

is separable with roots $z_{1}=i b, i \in \mathbb{F}_{p}$. It follows that we have isomorphism

$$
R_{r}(a, b) \xrightarrow{\sim} \prod_{i \in \mathbb{F}_{p}} R_{r}(a, b) /\left(z_{1}-i b\right) .
$$

The ring $R_{r}(a, b) /\left(z_{1}-i b\right)$ is the quotient of $\mathbb{F}_{p}\left[z_{2}, \ldots, z_{r}\right]$ by the ideal generated by

$$
z_{m}^{p}-z_{m} x_{m-1}^{p-1}, \quad 2 \leq m \leq r
$$

with

$$
\begin{aligned}
x_{0} & =b, \\
x_{1} & =i b+a, \\
x_{m} & =z_{m}+x_{m-2}, \quad 2 \leq m \leq r .
\end{aligned}
$$

Hence $R_{r}(a, b) /\left(z_{1}-i b\right) \simeq R_{r-1}(b, i b+a)$. The claim follows from the induction hypothesis.

Suppose $b=0$. Then $a \neq 0$. In this case we consider the homomorphism

$$
\begin{aligned}
\varphi: \mathbb{F}_{p}\left[z_{1}, \ldots, z_{r}\right] & \rightarrow \mathbb{F}_{p}\left[z_{1}\right] /\left(z_{1}^{p}\right) \otimes R_{r-1}(0,1), \\
z_{m} & \mapsto\left(a+z_{1}\right) \otimes z_{m-1}, \quad 2 \leq m \leq r, \\
z_{1} & \mapsto z_{1} \otimes 1 .
\end{aligned}
$$

We claim that $\varphi(I)=0$. For this it suffices to show

$$
\varphi\left(z_{m}^{p}-z_{m} x_{m-1}^{p-1}\right)=0, \quad 1 \leq m \leq r .
$$

This is obvious for $m=1$. If $m=2$, then

$$
\begin{aligned}
\varphi\left(z_{2}^{p}-z_{2} x_{1}^{p-1}\right) & =\varphi\left(z_{2}^{p}-z_{2}\left(z_{1}+a\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes z_{1}^{p}-\left(\left(a+z_{1}\right) \otimes z_{1}\right)\left(z_{1} \otimes 1+1 \otimes a\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes z_{1}^{p}-\left(\left(a+z_{1}\right) \otimes z_{1}\right)\left(\left(z_{1}+a\right) \otimes 1\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{1}^{p}-z_{1}\right)=0 .
\end{aligned}
$$

If $m=2 k \geq 2$, then

$$
\begin{aligned}
\varphi\left(z_{2 k}^{p}-z_{2 k} x_{2 k-1}^{p-1}\right) & =\varphi\left(z_{2 k}^{p}-z_{2 k}\left(z_{2 k-1}+\cdots+z_{3}+z_{1}+a\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes z_{2 k-1}^{p}- \\
-\left(\left(a+z_{1}\right) \otimes z_{2 k-1}\right) & \left(\left(a+z_{1}\right) \otimes z_{2 k-2}+\cdots+\left(a+z_{1}\right) \otimes z_{2}+z_{1} \otimes 1+1 \otimes a\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes z_{2 k-1}^{p}- \\
-\left(\left(a+z_{1}\right) \otimes z_{2 k-1}\right) & \left(\left(a+z_{1}\right) \otimes z_{2 k-2}+\cdots+\left(a+z_{1}\right) \otimes z_{2}+\left(a+z_{1}\right) \otimes 1\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-1}^{p}-z_{2 k-1}\left(z_{2 k-2}+\cdots+z_{2}+1\right)\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-1}^{p}-z_{2 k-1} x_{2 k-2}^{p-1}\right)=0 .
\end{aligned}
$$

If $m=2 k-1 \geq 3$, then

$$
\begin{aligned}
\varphi\left(z_{2 k-1}^{p}-z_{2 k-1} x_{2 k-2}^{p-1}\right) & =\varphi\left(z_{2 k-1}^{p}-z_{2 k-1}\left(z_{2 k-2}+\cdots+z_{2}\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-2}^{p}-z_{2 k-2}\left(z_{2 k-3}+\cdots+z_{1}\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-2}^{p}-z_{2 k-2} x_{2 k-3}^{p-1}\right)=0 .
\end{aligned}
$$

It follows that φ induces a homomorphism

$$
\begin{aligned}
& \bar{\varphi}: R_{r}(a, b) \rightarrow \mathbb{F}_{p}\left[z_{1}\right] /\left(z_{1}^{p}\right) \otimes R_{r-1}(0,1) \\
& z_{m} \mapsto\left(a+z_{1}\right) \otimes z_{m-1}, \quad 2 \leq m \leq r, \\
& z_{1} \mapsto z_{1} \otimes 1
\end{aligned}
$$

$\bar{\varphi}$ is obviously surjective. By dimension reasons, $\bar{\varphi}$ must be an isomorphism. Again the claim follows from the induction hypothesis.

Corollary 5.5. $u^{p^{2}}=u^{p}$ for all $u \in R_{p}(0,1)$.
Corollary 5.6. Let $n \geq 2$, and let $u_{n}=x_{p}^{p^{n}-p} \in R_{p}(0,1)$. Then $c_{p}\left(u_{n}\right)=1$.
Proof. For $n=2$ this is Lemma 5.3. Moreover, by Corollary 5.5, the element u_{n} does not depend on n.

We rewrite things in a homogenous form. Let x be a variable and let

$$
R^{\prime}=\mathbb{F}_{p}\left[x, z_{1}, \ldots, z_{p}\right] / I^{\prime}
$$

where I^{\prime} is the homogenous ideal generated by

$$
z_{m}^{p}-z_{m} x_{m-1}^{p-1}, \quad 1 \leq m \leq p
$$

with

$$
\begin{aligned}
x_{-1} & =0, \\
x_{0} & =x, \\
x_{m} & =z_{m}+x_{m-2}, \quad 1 \leq m \leq p .
\end{aligned}
$$

Then $R^{\prime} /(x-1)=R_{p}(0,1)$. Corollaries 5.5 and 5.6 yield the following two corollaries:

Corollary 5.7. $u^{p^{2}}=u^{p} x^{p^{2}-p}$ for all $u \in R^{\prime}$.
Corollary 5.8. Let $n \geq 2$. Then

$$
x_{p}^{p^{n}-p}=z_{1}^{p-1} z_{2}^{p-1} \cdots z_{p}^{p-1} x^{p^{n}-p^{2}} \bmod x^{p^{n}-p^{2}+1} R^{\prime}
$$

Proof. Recall the basis elements $\left(z^{J}\right)_{J}$ of $R_{p}(0,1)$ considered above. The elements $\left(z^{J} x^{p^{n}-p-|J|}\right)_{J}$ form a basis of the homogenous subspace of R^{\prime} of degree $p^{n}-p$. It follows that

$$
x_{p}^{p^{n}-p}=c_{p}\left(x_{p}^{p^{n}-p}\right) z_{1}^{p-1} z_{2}^{p-1} \cdots z_{p}^{p-1} x^{p^{n}-p^{2}} \bmod \left\langle z^{J} x^{p^{n}-p-|J|} ;\right| J\left|<p^{2}-p\right\rangle .
$$

But if $|J|<p^{2}-p$ then $z^{J} x^{p^{n}-p-|J|} \in x^{p^{n}-p^{2}+1} R^{\prime}$.
Proof of Theorem 5.2: Let

$$
\begin{aligned}
x_{r} & =c_{1}\left(L_{r}\right)^{p^{n-2}} & \in \mathrm{CH}^{p^{n-2}}\left(S_{r}\right), & \\
z_{r} & =c_{1}\left(K_{n-1, r}^{\prime}\right)^{p^{n-2}} \in \mathrm{CH}^{p^{n-2}}\left(P_{n-1, r}^{\prime}\right), & & r \geq 1 .
\end{aligned}
$$

Then, calculating $\bmod p$,

$$
\begin{aligned}
x_{-1} & =0, \\
x_{0} & =c_{1}(L)^{p^{n-2}} \in \mathrm{CH}^{p^{n-2}}\left(S^{\prime}\right) \otimes \mathbb{F}_{p}, \\
x_{r} & =x_{r-2}+z_{r}, \quad r \geq 1,
\end{aligned}
$$

since

$$
c_{1}\left(L_{r}\right)=c_{1}\left(L_{r-2}\right)+c_{1}\left(K_{n-1, r}^{\prime}\right)
$$

Moreover

$$
z_{r}^{p}=z_{r} x_{r-1}^{p-1}
$$

by Lemma 4.2 .
We have a homomorphism

$$
R^{\prime}(x) \rightarrow \mathrm{CH}^{*}\left(S_{p}\right) \otimes \mathbb{F}_{p}, \quad z_{m} \mapsto z_{m}, \quad x \mapsto x_{0} .
$$

It follows from Corollary 5.8 that $(\bmod p)$

$$
x_{p}^{p^{\ell+2}-p}=z_{1}^{p-1} z_{2}^{p-1} \cdots z_{p}^{p-1} x_{0}^{p^{\ell+2}-p^{2}} \bmod \left\langle x^{p^{\ell+2}-p^{2}+1}\right\rangle
$$

Now if $\operatorname{dim} S^{\prime}=\left(p^{l}-1\right) p^{n}$, then $x_{0}^{p^{l+2}-p^{2}+1}=0$. Hence

$$
x_{p}^{p^{\ell+2}-p}=\delta\left(K_{n-1,1}^{\prime}\right) \delta\left(K_{n-1,2}^{\prime}\right) \cdots \delta\left(K_{n-1, p-1}^{\prime}\right) \delta(L)=\delta(L) \bmod p
$$

where the last equation follows from Lemma 4.2.

From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n-1$. Let Γ be a finite group, let $\Gamma \rightarrow \Gamma_{n-1}$ be an epimorphism and let $\Gamma \rightarrow \operatorname{Aut}\left(S^{\prime}, L, \beta\right)$ be a homomorphism. Thus Γ acts on all the forms $\left(\operatorname{Spec} k, H_{i}, \alpha_{i}\right), i=0, \ldots, n-1$, and (S^{\prime}, L, β).

Lemma 5.9. Suppose that $\left(S^{\prime}, L, \beta\right)$ is an admissable Γ-form, that all fixed points are k-rational and that each fixed point $P \in S^{\prime}$ is twisting for the forms

$$
\left(S^{\prime}, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1, \text { and }\left(S^{\prime}, L, \beta\right)
$$

Then for all $r \geq 0,\left(S_{r}, L_{r}, \beta_{r}\right)$ is an admissable Γ-form, all fixed points are k-rational, and each fixed point $P \in S_{r}$ is twisting for the forms

$$
\left(S_{r}, H_{i}, \alpha_{i}\right), i=1, \ldots, n-2,\left(S_{r}, L_{r-1}, \beta_{r-1}\right), \text { and }\left(S_{r}, L_{r}, \beta_{r}\right)
$$

Proof. Let $P \in S_{r}$ be a fixed point. By induction we may assume that P is k rational and that

$$
\Gamma \rightarrow \operatorname{Aut}\left(L_{r-2}\left|P, \beta_{r-2}\right| P\right) \times \operatorname{Aut}\left(L_{r-1}\left|P, \beta_{r-1}\right| P\right) \times \prod_{i=1}^{n-2} \operatorname{Aut}\left(H_{i}\left|P, \alpha_{i}\right| P\right)
$$

is surjective. We claim that

$$
\Gamma \rightarrow \operatorname{Aut}\left(L_{r}\left|P, \beta_{r}\right| P\right) \times \operatorname{Aut}\left(L_{r-1}\left|P, \beta_{r-1}\right| P\right) \times \prod_{i=1}^{n-2} \operatorname{Aut}\left(H_{i}\left|P, \alpha_{i}\right| P\right)
$$

is surjective. Note that $L_{r}\left|P=L_{r-2}\right| P \otimes K_{n-1, r} \mid P$. The claim follows now from the fact that $\operatorname{Aut}\left(L_{r-2}\left|P, \alpha_{r-2}\right| P\right)$ acts trivially on $K_{n-1, r} \mid P$.

The remaining parts of the statement follow from Lemma 4.3.
Lemma 5.10. Suppose that S^{\prime} is irreducible. Let $\eta_{r} \in S_{r}$ be the generic point. Then

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{r-1}\left(\eta_{r-1}\right), \beta_{r}\left(\eta_{r}\right)\right\}=(-1)^{r}\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \alpha_{n-1}, \beta\left(\eta_{0}\right)\right\}
$$

in $K_{n}^{M} k\left(S_{r}\right) / p$.
Proof. We show

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{r-1}\left(\eta_{r-1}\right), \beta_{r}\left(\eta_{r}\right)\right\}=\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{r-1}\left(\eta_{r-1}\right), \beta_{r}\left(\eta_{r-2}\right)\right\}
$$

We have

$$
\beta_{r}\left(\eta_{r}\right)=\beta_{r}\left(\eta_{r-2}\right) \Phi_{n-1, r}^{\prime} .
$$

The claim follows now from Lemma 4.4.
We will need the following special case:
Corollary 5.11.

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{p}\left(\eta_{p}\right), \beta_{p-1}\left(\eta_{p-1}\right)\right\}=\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \alpha_{n-1}, \beta\left(\eta_{0}\right)\right\}
$$

in $K_{n}^{M} k\left(S_{p}\right) / p$.
Remark 5.12. Let $S^{\prime}=\operatorname{Spec} k$. We think of the symbol

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{p}\left(\eta_{p}\right)\right\}
$$

as a family of symbols of weight $n-1$ "between"

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}\right\} \quad \text { and } \quad\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \alpha_{n-1}, \beta\right\}
$$

with S_{p} as parameter space.

Our later considerations indicate that this family is universal over p-special fields. For $n=2$ we will make this precise, and for $p=2$ this can be done using Pfister forms. I have no idea how to show this in general. In the case $n=p=3$ the universality would have important consequences for the classification of groups of type F_{4}.

6. The forms $\mathcal{K}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (universal families of Kummer splitting

 FIELDS)Let $n \geq 1$. Given forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n$, we define forms

$$
\begin{aligned}
\mathcal{K}_{i}=\mathcal{K}_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right), & 1 \leq i \leq n, \\
\mathcal{K}_{i}^{\prime}=\mathcal{K}_{i}^{\prime}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(R_{i} / R_{i+1}, J_{i}^{\prime}, \gamma_{i}^{\prime}\right), & 1 \leq i \leq n .
\end{aligned}
$$

We put

$$
\left(R_{n} / R_{n+1}, J_{n}, \gamma_{n}\right)=\left(S / S, H_{n}, \alpha_{n}\right)
$$

and

$$
\left(R_{n} / R_{n+1}, J_{n}^{\prime}, \gamma_{n}^{\prime}\right)=\left(S / S, \mathcal{O}_{S}, \tau\right)
$$

with $\tau(t)=t^{p}$.
Let $i<n$ and suppose that \mathcal{K}_{i+1} is defined.
Recall the forms

$$
\mathcal{C}_{r}=\mathcal{C}_{r}\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\right)=\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right)
$$

defined in section 5 . Let $\pi: S_{p} \rightarrow S_{p-1}$ be the projection.
We put

$$
\begin{aligned}
\mathcal{K}_{i} & =\mathcal{C}_{p}\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\right) \\
\mathcal{K}_{i}^{\prime} & =\pi^{*} \mathcal{C}_{p-1}\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\right)
\end{aligned}
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$ and $\left(R_{i} / R_{i+1}, J_{i}^{\prime}, \gamma_{i}^{\prime}\right)$.
Lemma 6.1. The variety R_{i} is smooth, proper, cellular, and of dimension $p^{n}-p^{i}$.
Proof. This follows from Lemma 5.1. For the dimension note

$$
\operatorname{dim} R_{i} / R_{i+1}=p^{i+1}-p^{i}, \quad i<n
$$

by Lemma 5.1.
Lemma 6.2. $\delta\left(J_{i}\right)=1 \bmod p$.
Proof. By Theorem 5.2 we have

$$
\delta\left(J_{i}\right)=\delta\left(J_{i+1}\right) \bmod p
$$

Hence $\delta\left(J_{i}\right)=\delta\left(J_{n}\right)=1 \bmod p$.
The construction of $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$ is functorial in the forms $\left(S, H_{i}, \alpha_{i}\right)$. In particular the group

$$
\Gamma_{n}=\mu_{p}^{n} \subset \prod_{i=1}^{n} \operatorname{Aut}\left(S, H_{i}, \alpha_{i}\right)
$$

acts on $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$.
From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n$.

Lemma 6.3. The forms $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$ are admissable Γ_{n}-forms, all fixed points are k-rational, and each fixed point $P \in R_{i}$ is twisting for the forms

$$
\left(R_{i}, H_{m}, \alpha_{m}\right), m=1, \ldots, i-1, \text { and }\left(R_{i}, J_{i}, \gamma_{i}\right)
$$

Proof. This follows form Lemma 5.9.
Lemma 6.4. Let $\eta_{i} \in R_{i}$ be the generic point. Then, for $1 \leq i<n$,

$$
\left\{\alpha_{1}, \ldots, \alpha_{i-1}, \gamma_{i}\left(\eta_{i}\right), \gamma_{i}^{\prime}\left(\eta_{i}\right)\right\}=\left\{\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\left(\eta_{i+1}\right)\right\}
$$

in $K_{i+1}^{M} k\left(R_{i}\right) / p$.
Proof. This follows from Lemma 5.11.
In particular we have

$$
\begin{align*}
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left\{\alpha_{1}, \gamma_{2}, \gamma_{3}^{\prime}, \ldots, \gamma_{n}^{\prime}\right\} \tag{6.1}\\
\left\{\alpha_{1}, \gamma_{2}\right\} & =\left\{\gamma_{1}, \gamma_{2}^{\prime}\right\} \tag{6.2}\\
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left\{\gamma_{1}, \gamma_{2}^{\prime}, \ldots, \gamma_{n}^{\prime}\right\} . \tag{6.3}
\end{align*}
$$

We write

$$
(R, J, \gamma)=\left(R_{1}, J_{1}, \gamma_{1}\right)
$$

We denote by $\widetilde{R} \rightarrow R$ be the degree p "Kummer extension" corresponding to γ, defined locally by $\mathcal{O}_{\widetilde{R}}=\mathcal{O}_{R}[t] /\left(t^{p}-\gamma(\lambda)\right)$ where λ is a local nonzero section of J.

Corollary 6.5. The symbol $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ vanishes in the generic point of \widetilde{R}.
Proof. This follows from Lemma 6.4 (see (6.3)).

7. Proof of the chain lemma

A splitting variety of a symbol is called p-generic, if it is a generic splitting variety over any p-special field.

Let Z be a p-generic splitting variety of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of dimension $p^{n-1}-1$. We assume $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \neq 0$. It follows that $I_{Z} \subset p \mathbb{Z}$.

Let (R, J, γ) be the form of defined at the end of section 6.
Note that Z has point of degree prime to p over $k(\widetilde{R})$, hence has a $k\left(\widetilde{R}^{\prime}\right)$-rational point where R^{\prime} / R is of degree prime to p. We have diagram of varieties covered by cyclic extensions of degree p :

Let

$$
R_{0} \subset R
$$

be the zero locus of γ. Inspection shows that $I\left(R_{0}\right) \subset p \mathbb{Z}$. We have

$$
\eta\left(\widetilde{R} / R, R, R_{0}\right)=c_{1}(J)^{d} \bmod p=1 \bmod p \neq 0 \bmod p
$$

by Lemma 6.2.
Let

$$
R_{0}^{\prime}=\subset R^{\prime}
$$

be the subscheme of ramification of $\widetilde{R}^{\prime} / R^{\prime}$. Then $g\left(R_{0}^{\prime}\right) \subset R_{0}$ and therefore $I\left(R_{0}^{\prime}\right) \subset$ $p \mathbb{Z}$. The degree formula tells that

$$
\eta\left(\widetilde{R}^{\prime} / R^{\prime}, R^{\prime}, R_{0}^{\prime}\right)=(\operatorname{deg} g)^{-1} \bmod p \neq 0 \bmod p .
$$

Moreover let

$$
\operatorname{Cyclic}^{p}(Z)_{0}=Z \subset \operatorname{Cyclic}^{p}(Z)
$$

be the image of the diagonal. One has $I\left(\operatorname{Cyclic}^{p}(Z)_{0}\right)=p \mathbb{Z}$. Further, $\operatorname{Cyclic}^{p}(Z)_{0}$ contains the subscheme of ramification of $Z^{p} / \operatorname{Cyclic}^{p}(Z)$. Therefore $f\left(R_{0}^{\prime}\right) \subset$ $\operatorname{Cyclic}^{p}(Z)_{0}$. The degree formula tells that

$$
\operatorname{deg} f \neq 0 \bmod p
$$

Now let $K=k(\sqrt[p]{b})$ be a cyclic extension of degree p which splits $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. We assume that k is p-special. It follows that there is a point $\operatorname{Spec} K \rightarrow \widetilde{R}$ lying over a rational point P : Spec $k \rightarrow R$. Then $b=\gamma(P)$ in $k^{*} /\left(k^{*}\right)^{p}$. It follows that

$$
\begin{align*}
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left\{\alpha_{1}, \gamma_{2}(P), \gamma_{3}^{\prime}(P), \ldots, \gamma_{n}^{\prime}(P)\right\} \tag{7.1}\\
\left\{\alpha_{1}, \gamma_{2}(P)\right\} & =\left\{b, \gamma_{2}^{\prime}(P)\right\} \tag{7.2}\\
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left\{b, \gamma_{2}^{\prime}(P), \ldots, \gamma_{n}^{\prime}(P)\right\} \tag{7.3}
\end{align*}
$$

(see (6.1)-(6.3) after Lemma 6.4).
We have proved:
Corollary 7.1. The chain lemma for cyclic algebras of degree p over p-special fields.

Corollary 7.2. The chain lemma for symbols $(a, b, c) \bmod p$ over p-special fields.
Now let $k(\sqrt[p]{b}), k(\sqrt[p]{c})$ be two cyclic extensions of degree p which split the symbol $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Applying the last arguments twice, one finds first $b_{i} \in k^{*}$ such that

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\left\{b, b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

and then $c_{i}, c_{i}^{\prime} \in k^{*}$ such that

$$
\begin{aligned}
\left\{b, b_{1}, b_{2}, \ldots, b_{n}\right\} & =\left\{b, c_{1}, c_{2}, \ldots, c_{n}\right\}, \\
\left\{b, c_{1}\right\} & =\left\{c, c_{2}^{\prime}\right\} .
\end{aligned}
$$

Let $X\left(b, c_{1}\right)$ be the Brauer-Severi variety associated to the symbol $\left\{b, c_{1}\right\}$. It has rational points over $k(\sqrt[p]{b})$ and over $k(\sqrt[p]{c})$. Morover, since Z is a p-generic spliting field, we have a correspondence $X\left(b, c_{1}\right) \rightarrow Z$ lying over $\mathbb{Z} \rightarrow \mathbb{Z}$ of degree prime to p.

Corollary 7.3. Let $x, y \in Z$ be points of degree p and let $\alpha \in \kappa(x)^{*}, \beta \in \kappa(y)^{*}$. Then there exist $z \in Z$ of degree p and $\gamma \in \kappa(z)^{*}$, such that

$$
[\alpha]+[\beta]=[\gamma] \quad \text { in } \quad A_{0}\left(Z, K_{1}\right) .
$$

Proof. By the previous considerations, and using that $\mathrm{CH}_{0}\left(Z_{K}\right)=\mathbb{Z}$ whenever $Z(K) \neq \varnothing$, we may reduce to the case of Brauer-Severi variety. In this case the statement is known [1].

Remark 7.4. In the last proof we assumed $\mathrm{CH}_{0}\left(Z_{K}\right)=\mathbb{Z}$ whenever $Z(K) \neq \varnothing$. This can be shown for $n=3$ for Z the usual $\operatorname{SL}(p)$-form.

Without this assumption, we get at least the last corollary with $A_{0}\left(Z, K_{1}\right)$ replaced by

$$
\operatorname{coker} A_{0}\left(Z^{2}, K_{1}\right) \rightarrow A_{0}\left(Z, K_{1}\right)
$$

the group considered in my MSRI-talk.

References

[1] A. S. Merkurjev and A. A. Suslin, The group of K_{1}-zero-cycles on Severi-Brauer varieties, Nova J. Algebra Geom. 1 (1992), no. 3, 297-315.

NWF I - Mathematik, Universität Regensburg, D-93040 Regensburg, Germany
E-mail address: markus.rost@mathematik.uni-regensburg.de
URL: http://www.physik.uni-regensburg.de/~rom03516

[^0]: Date: August 9, 1998.

