CONSTRUCTION OF SPLITTING VARIETIES

MARKUS ROST

Contents

1. Preliminaries, Conventions, and Notations 2
2. Consequences of Voevodsky's work 4
2.1. Voevodsky's theorem 4
2.2. A degree formula for $s_{d}(X)$ 4
2.3. On a higher degree formula 5
3. The Conner-Floyd theorem: computing $s_{d}(X)$ 7
4. The forms $\mathcal{A}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("algebras") 8
5. The forms $\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("relative algebras") 11
6. The forms $\mathcal{C}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (Chain lemma construction) 14
7. The forms $\mathcal{K}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (universal families of Kummer splitting fields) 19
8. Construction of a norm variety via chain lemma 21
9. Multiplicativity 25
10. On the norm principle 27
References 30
[^0]
1. Preliminaries, Conventions, and Notations

- The ground field k has characteristic 0 . We fix a prime p. We assume $\mu_{p} \subset k$.
- By a scheme or a variety X (over k) we mean a separated scheme of finite type $\pi_{X}: X \rightarrow \operatorname{Spec} k$.
- If X is a smooth variety, then $T X$ denotes the tangent bundle of X.
- Let V be vector bundle over X. We denote by $\pi_{V}: \mathbb{P}(V) \rightarrow X$ the projective bundle associated to V. Moreover

$$
\mathbb{L}(V) \rightarrow \pi_{V}^{*} V
$$

denotes the tautological line bundle on $\mathbb{P}(V)$.
For the fiber tangent bundle $T(\mathbb{P}(V) / X)$ one has

$$
T(\mathbb{P}(V) / X)=\pi_{V}^{*} V \otimes \mathbb{L}(V)^{\vee} / \mathcal{O}_{\mathbb{P}(V)}
$$

- Let V be vector (or an affine) bundle over X. We denote by $\mathbb{A}(V) \rightarrow X$ the associated scheme V.
- By a form we understand a triple $(T / S, L, \alpha)$ where $T \rightarrow S$ are schemes, L is line bundle on T and $\alpha \in H^{0}\left(T, L^{\otimes-p}\right)$ is a form of degree p on L.

There is a natural homomorphism $\mu_{p} \rightarrow \operatorname{Aut}(T / S, L, \alpha)$ induced from the standard action of \mathbb{G}_{m} on L.

- Let (Spec k, L, α) be a nonzero form and let $u \in L$ be a basis vector. Then the p-power class

$$
\{\alpha\}=\{\alpha(u)\} \in K_{1} k / p=k^{*} /\left(k^{*}\right)^{p}
$$

is independent on the choice of u.

- Let $(T / S, L, \alpha)$ and let Γ be a finite group acting on $(T / S, L, \alpha)$ (i.e., there is given a homomorphism $\Gamma \rightarrow \operatorname{Aut}(T / S, L, \alpha))$. We say that $(T / S, L, \alpha)$ is an admissable Γ-form if the following conditions hold:
$-\alpha$ is nonzero on an open dense subscheme of T.
- Γ has only finitely many fixed points on T (a fixed point is a point $P \in T$ with $g P=P$ for all $g \in G$).
- At each fixed point P the form α is nonzero.
- For vector bundles V, V^{\prime} on schemes X / S resp. X^{\prime} / S we denote by $V \boxplus_{S} V^{\prime}$ the exterior direct sum, given by the sum of the pull backs to $X \times_{S} X^{\prime}$. Similarly we denote by $V \boxtimes_{S} V^{\prime}$ the exterior tensor product, given by the tensor product of the pull backs.
- For forms $(T / S, L, \alpha)$ and $\left(T^{\prime} / S, L^{\prime}, \alpha^{\prime}\right)$ we denote by

$$
(T / S, L, \alpha) \boxtimes_{S}\left(T^{\prime} / S, L^{\prime}, \alpha^{\prime}\right)=\left(\left(T \times_{S} T^{\prime}\right) / S, L \boxtimes_{S} L^{\prime}, \alpha \boxtimes_{S} \alpha^{\prime}\right)
$$

their exterior product, with the form defined by

$$
\left(\alpha \boxtimes_{S} \alpha^{\prime}\right)\left(u \boxtimes_{S} u^{\prime}\right)=\alpha(u) \alpha^{\prime}\left(u^{\prime}\right)
$$

for sections u, u^{\prime} of L, L^{\prime}, respectively.
If $(T / S, L, \alpha)$ and $\left(T^{\prime} / S, L^{\prime}, \alpha^{\prime}\right)$ are admissable Γ-forms, then $(T / S, L, \alpha) \boxtimes_{S}$ ($T^{\prime} / S, L^{\prime}, \alpha^{\prime}$) is an admissable Γ-form.

- Let $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n$, be admissable Γ-forms and let $P \in S$ be a k-rational fixed point. We say that P is twisting for the family $\left(S, H_{i}, \alpha_{i}\right)_{i}$, if the homomorphism

$$
\Gamma \rightarrow \mu_{p}^{n}=\prod_{i=1}^{n} \operatorname{Aut}\left(H_{i}\left|P, \alpha_{i}\right| P\right)
$$

is surjective.

- By a cellular variety we mean a variety which admits a stratification by affine spaces. The motive of a cellular variety is the direct sum of powers of the Tate motive L, with a summand $L^{\otimes i}$ for each i-cell. If X and Y are cellular, then $X \times Y$ is cellular and one has

$$
\mathrm{CH}_{*}(X \times Y)=\mathrm{CH}_{*}(X) \otimes_{\mathbb{Z}} \mathrm{CH}_{*}(Y) .
$$

- Let L be a line bundle L on a smooth and proper variety X over k of dimension $d \geq 0$. We write

$$
\delta(L)=\operatorname{deg}\left(c_{1}(L)^{d}\right) \in \mathbb{Z}
$$

Here

$$
\operatorname{deg}: \mathrm{CH}_{0}(X) \rightarrow \mathrm{CH}_{0}(\operatorname{Spec} k)=\mathbb{Z}
$$

is the degree map. If $d=0$ we understand by $\delta(L)$ the degree of X as a finite extension of k.

If V is a vector space of dimension n, then

$$
\delta(\mathbb{L}(V))=\operatorname{deg}\left(c_{1}(\mathbb{L}(V))^{n-1}\right)=(-1)^{n-1}
$$

- The index I_{X} of a proper variety is

$$
I_{X}=\operatorname{deg}\left(\mathrm{CH}_{0}(X)\right) \subset \mathbb{Z}
$$

- If p is a prime, a field k is called p-special if char $k \neq p$ and if k has no finite field extensions of degree prime to p.
- Let (S, L, α) be a form. We consider the bundle of algebras

$$
A=A(S, L, \alpha)=T L / I
$$

over R. Here $T L$ is the tensor algebra of L and I is the ideal subsheaf generated by

$$
\lambda^{\otimes p}-\alpha(\lambda)
$$

for local sections λ of $L . A$ a is bundle of commutative algebras of degree p. Note that

$$
A=\bigoplus_{i=0}^{p-1} L^{\otimes i}
$$

as vector bundles. We denote by

$$
N_{A}: A \rightarrow \mathcal{O}_{S}
$$

the norm of the algebra A.

- We use the notation

$$
\operatorname{Cyclic}^{p}(Z)=\left(Z^{p}\right) /(\mathbb{Z} / p) .
$$

2. Consequences of Voevodsky's work

In this paper p always is a prime, k is a field with char $k=0$ and $K_{n}^{\mathrm{M}} k$ denotes Milnor's n-th K-group of k. Let

$$
\begin{gathered}
h_{(n, p)}: K_{n}^{\mathrm{M}} k / p \rightarrow H_{\text {et }}^{n}\left(k, \mu_{p}^{\otimes n}\right), \\
\left\{a_{1}, \ldots, a_{n}\right\} \mapsto\left(a_{1}, \ldots, a_{n}\right) .
\end{gathered}
$$

be the norm residue homomorphism.
2.1. Voevodsky's theorem. V. Voevodsky announced in October 1996 the following theorem:

Theorem (Voevodsky). Let p be a prime and let m be a natural number.
Suppose that for every subfield $k \subset \mathbb{C}$ containing the p-th roots of unity and for every sequence of elements $a_{1}, \ldots, a_{n} \in k^{*}, 2 \leq n \leq m$, there exists a smooth projective variety X over k such that:
$\left(\mathrm{V}_{1}\right)\left\{a_{1}, \ldots, a_{n}\right\}_{k(X)}=0$ in $K_{n}^{\mathrm{M}} k(X) / p$.
$\left(\mathrm{V}_{2}\right) X$ has dimension $d=p^{n-1}-1$.
$\left(\mathrm{V}_{3}\right)$ In the category of Chow motifs over $k(X)$ with $\mathbb{Z}_{(p)}$-coefficients there exist an effective object Y such that

$$
X_{k(X)}=L^{\otimes 0} \oplus(Y \otimes L)
$$

Here L denotes the Tate motive.
$\left(\mathrm{V}_{4}\right)$ The characteristic number $s_{d}(X(\mathbb{C})) \in \mathbb{Z}$ is not divisible by p^{2}.
$\left(\mathrm{V}_{5}\right)$ The sequence

$$
\coprod_{x \in X_{(1)}} K_{2} \kappa(x) \xrightarrow{d} \coprod_{x \in X_{(0)}} K_{1} \kappa(x) \xrightarrow{N_{X}} K_{1} k
$$

is exact. Here $N_{X}=\sum \mathrm{N}_{\kappa(x) \mid k}$.
Then one has:
(BK) The Bloch-Kato conjecture holds in weight m and $\bmod p$, i.e., the norm residue homomorphism $h_{(m, p)}$ is bijective. (for all fields k with char $k \neq p$)
(S) For $n \leq m$, for elements $a_{1}, \ldots, a_{n} \in k^{*}$, and for a smooth projective variety X satisfying $\left(\mathrm{V}_{1}\right)-\left(\mathrm{V}_{5}\right)$, the sequence

$$
\coprod_{x \in X_{(0)}} K_{1} \kappa(x) \xrightarrow{N} K_{1} k \xrightarrow{b \mapsto\left(a_{1}, \ldots, a_{n}, b\right)} H_{\text {èt }}^{n+1}\left(k, \mu_{p}^{\otimes(n+1)}\right)
$$

is exact.
2.2. A degree formula for $\boldsymbol{s}_{\boldsymbol{d}}(\boldsymbol{X})$. We fix a prime p be a prime and a number d of the form $d=p^{n}-1$.

Let X, Y be irreducible smooth proper varieties over k with $\operatorname{dim} Y \leq \operatorname{dim} X=d$ and let $f: X \rightarrow Y$ be a morphism. Define $\operatorname{deg} f$ as follows: If $\operatorname{dim} f(X)<\operatorname{dim} X$, then $\operatorname{deg} f=0$. Otherwise $\operatorname{deg} f \in \mathbb{N}$ is the degree of the extension of the function fields:

$$
f_{*}([X])=\operatorname{deg} f \cdot[Y] .
$$

Theorem 1 ("Degree formula").

$$
\left(s_{d}(X) / p\right)=(\operatorname{deg} f)\left(s_{d}(Y) / p\right) \quad \bmod I_{Y}
$$

This is a consequence of algebraic cobordism theory. One uses the spectrum Φ considered in [4].

Corollary 2. The class

$$
s_{d}(X) / p \bmod I_{X} \in \mathbb{Z} / I_{X}
$$

is a birational invariant
2.3. On a higher degree formula. All of what I am saying in the next lines are mainly guesses from my poor knowledge of Morava K-theories and algebraic cobordism. Everything has to be checked.

Let Φ_{r} be the Φ-construction of [4], iterated r-times, i.e., Φ_{r} is a tower consisting of $\Sigma^{2 i d, i d} H_{\mathbb{Z} / p}, i=0, \ldots, r$ with all intermediate towers of length 2 being a suspension of Φ. Then the Thom class lifts to MU $\rightarrow \Phi_{r}$ and for X of dimension $r d$ we have a fundamental class

$$
[X] \in \pi_{2 r d, r d}\left(X \wedge \Phi_{r}\right)
$$

Define $t(X) \in \mathbb{Z} / p$ as the image of $[X]$ in

$$
\pi_{2 r d, r d}\left(\operatorname{Spec} k \wedge \Phi_{r}\right)=\pi_{2 r d, r d}\left(\operatorname{Spec} k \wedge \Sigma^{2 r d, r d} H_{\mathbb{Z} / p}\right)=\mathbb{Z} / p
$$

From the known structure of Morava K-theories it follows that (perhaps up to multiplication with a number prime to p)

$$
t\left(X_{1} \times X_{2} \times \cdots \times X_{r}\right)=\left(s_{d}\left(X_{1}\right) / p\right)\left(s_{d}\left(X_{2}\right) / p\right) \cdots\left(s_{d}\left(X_{r}\right) / p\right) \quad \bmod p
$$

if $\operatorname{dim} X_{i}=d$.
Furthermore, let Ψ be the fibre of $\Phi_{r} \rightarrow H_{\mathbb{Z} / p}$ and define $J(X) \subset \mathbb{Z}$ as the image of

$$
\pi_{2 r d, r d}(X \wedge \Psi) \rightarrow \pi_{2 r d, r d}(\operatorname{Spec} k \wedge \Psi)=\pi_{2 r d, r d}\left(\operatorname{Spec} k \wedge \Sigma^{2 r d, r d} H_{\mathbb{Z} / p}\right)=\mathbb{Z} / p
$$

Note that $\Psi=\Sigma^{2 d, d} \Phi_{r-1}$.
Then the "higher degree formula" is

$$
\begin{equation*}
t(X)=t(Y)(\operatorname{deg} f) \quad \bmod J(Y) \tag{1}
\end{equation*}
$$

for any $f: X \rightarrow Y$ with X, Y, smooth proper of dimension $r d$. It should be possible to show this in the same way as for the degree formula for s_{d} / p.

Moreover, one should have

$$
\begin{equation*}
J(X)=J(Y), \quad \text { if } \operatorname{deg} f \text { is prime to } p \tag{2}
\end{equation*}
$$

by a transfer argument.
I guess that the following is true:
Let $X_{i}, i=1, \ldots, r$ be of dimension d and suppose that $I_{\left(X_{i_{i}}\right)} \subset p \mathbb{Z}$ for all i, where

$$
F_{i}=k\left(X_{1} \times \cdots \times \widehat{X}_{i} \times \cdots \times X_{r}\right) .
$$

Let $X=X_{1} \times \cdots \times X_{r}$. Then

$$
\begin{equation*}
J(X) \subset p \mathbb{Z} \tag{3}
\end{equation*}
$$

In the case of curves $\left(d=1=2^{1}-1\right)$ one has (?)

$$
J(X)=\left(\pi_{X}\right)_{*}\left(K_{0}(X)^{(1)}\right)
$$

where

$$
K_{0}(X)^{(1)}=\operatorname{ker}\left(K_{0}(X) \rightarrow \mathrm{CH}^{0}(X)\right)
$$

and $\pi_{X}: X \rightarrow \operatorname{Spec} k$ is the structure map for X.
In this case (3) is not difficult to show:
Proof for $d=1$ and $r=2$: One has an exact sequence

$$
\coprod_{x \in X_{1(0)}} K_{0}\left(X_{2 \kappa(x)}\right) \rightarrow K_{0}\left(X_{1} \times X_{2}\right)^{(1)} \rightarrow K_{0}\left(X_{2 k\left(X_{1}\right)}\right)^{(1)} \rightarrow 0
$$

Push forward along $\pi^{\prime}: X_{1} \times X_{2} \rightarrow X_{1}$ maps this sequence into the sequence

$$
\mathrm{CH}_{0}\left(X_{1}\right) \rightarrow K_{0}\left(X_{1}\right) \rightarrow K_{0}\left(k\left(X_{1}\right)\right) \rightarrow 0
$$

Since the index of $X_{2 k\left(X_{1}\right)}$ is 2-divisible, we see that

$$
\pi_{*}^{\prime}\left(K_{0}\left(X_{1} \times X_{2}\right)^{(1)}\right) \subset \mathrm{CH}_{0}\left(X_{1}\right)+2 K_{0}\left(k\left(X_{1}\right)\right)
$$

The claim (3) follows since $I_{X_{1}}$ is 2-divisible.
It should be possible to extend this reasoning to the general case (?).
In my application one has $r=p$ and the X_{i} are of the following type: Let $a_{m} \in k_{0}^{*}$ be such that $\left\{a_{1}, \ldots, a_{n}\right\}$ is a nontrivial symbol, let $k=k_{0}\left(t_{1}, \ldots, t_{p}\right)$ and let X_{i} / k be a norm variety for the symbol $\left\{a_{1}, \ldots, a_{n}, t_{i}\right\}$. We may take X_{i} to be defined over $k_{0}\left(t_{i}\right)$. Note that then each of the fields $k_{0}\left(t_{i}\right)\left(X_{i}\right)$ has a k_{0}-place, hence the field F_{i} has a $k_{0}\left(t_{i}\right)$-place, whence $\left\{a_{1}, \ldots, a_{n}, t_{i}\right\}$ is nontrivial over F_{i}. Therefore the index of $X_{i F_{i}}$ is p.

3. The Conner-Floyd theorem: computing $s_{d}(X)$

In this section we indicate how one can get information about $s_{d}(X)$ from a $(\mathbb{Z} / p)^{n-1}$-action on X with isolated fixed points.

We assume that p is odd and $k \subset \mathbb{C}$. For odd p the Chern number $s_{d}(X)=$ $s_{d}(T X)$ of a complex variety is also an Pontrjagin number of the underlying differentiable manifold $M=X(\mathbb{C})$. Therefore the number $s_{d}(X)$ can be computed in terms of the class $[M]$ of M in the oriented cobordism ring.

In order to compute this number for certain norm varieties we use the following theorem of Conner and Floyd: ([2]).

Theorem 3. Let $d=p^{n}-1$, let $G=(\mathbb{Z} / p)^{n}$, and let M be an oriented differentiable manifold. Suppose that there exist a fixed point free G-action on M. Then the class of M in the oriented cobordism ring Ω_{*} lies in the ideal $I_{n-1, p}$ generated by Milnor the base elements $M_{0, p}=p \cdot$ Point, $M_{1, p}, \ldots, M_{n-1, p}\left(\operatorname{dim} M_{i, p}=p^{i}-1\right)$.

Corollary 4. Let $d=p^{n}-1$, let $G=(\mathbb{Z} / p)^{n}$, and let M be an oriented differentiable manifold of (real) dimension 2d. Suppose that there exist an fixed point free G-action on M. Then $s_{d}(M)$ is divisible by p^{2}.

Proof. This follows from $s_{d}(M) \in p \mathbb{Z}$ for all M of dimension $2 d$ and $s_{d}\left(M_{1} \times M_{2}\right)=$ 0 if $d>\operatorname{dim} X_{i}>0$.

Using canonical desingularization [1] and the Conner-Floyd theorem one finds:
Corollary 5. Let p be odd, let X, Y be proper varieties with Y smooth. Suppose that $G=(\mathbb{Z} / p)^{n}$ acts on X and Y such that the fixed point schemes \mathcal{F}_{X} and \mathcal{F}_{Y} are of dimension 0 and suppose that $\mathcal{F}_{X} \subset X_{\mathrm{reg}}$. Suppose further that the families of G-representations $\left(T_{P} X\right)_{P \in \mathcal{F}_{X}(\mathbb{C})},\left(T_{P} Y\right)_{P \in \mathcal{F}_{Y}(\mathbb{C})}$ are isomorphic. Then there exist a smooth proper variety \widetilde{X} together with a birational isomorphism $\widetilde{X} \rightarrow X$ such that $\widetilde{X}(\mathbb{C})$ and $Y(\mathbb{C})$ represent the same element in $\Omega_{*} / I_{n-1, p}$.

In particular, if $\operatorname{dim} X=\operatorname{dim} Y=d=p^{n}-1$, then

$$
s_{d}(\tilde{X})=s_{d}(Y) \bmod p^{2}
$$

This consequence is extremely useful to compute the birational invariant of Corollary 2.

Proof. By canonical desingularization [1] we may assume that X is smooth. Let Z be the multifold connected sum of the differentiable manifolds $X(\mathbb{C})$ and $-Y(\mathbb{C})$, build by glueing together pairs of fixed points with isomorphic G-normal structures. Since $S^{2 d}$ and $S^{1} \times S^{2 d-1}$ are bordant, one has $[Z]=[X]-[Y]$ for the cobordism classes. On Z we have a fixed point free G-action, and the Conner-Floyd theorem shows $[Z] \in I_{n-1, p}$.

If the families of G-representations $\left(T_{P} X\right)_{P \in \mathcal{F}_{X}(\mathbb{C})},\left(T_{P} Y\right)_{P \in \mathcal{F}_{Y}(\mathbb{C})}$ are isomorphic, we say that X and Y are G-fixed point equivalent.

4. The forms $\mathcal{A}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("algebras")

Given a scheme S and forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, m$, we define forms

$$
\mathcal{A}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(P_{n} / S, K_{n}, \Phi_{n}\right), \quad 0 \leq n \leq m
$$

For $n=0$ we put

$$
\begin{aligned}
P_{0} & =S \\
K_{0} & =\mathcal{O}_{S} \\
\Phi_{0}(t) & =t^{p}
\end{aligned}
$$

Suppose ($P_{n-1} / S, K_{n-1}, \Phi_{n-1}$) is defined. We consider the 2-dimensional vector bundle

$$
V_{n}=\mathcal{O}_{P_{n-1}} \oplus H_{n} \boxtimes_{S} K_{n-1}
$$

on P_{n-1}, and the form

$$
\varphi_{n}: V_{n} \rightarrow \mathcal{O}_{P_{n-1}}
$$

on V_{n} defined by

$$
\varphi_{n}(t-u \otimes v)=t^{p}-\alpha_{n}(u) \Phi_{n-1}(v)
$$

for sections t, u, v of $\mathcal{O}_{P_{n-1}}, H_{n}, K_{n-1}$, respectively.
Let $\left(P_{n-1, j}, V_{n, j}, \varphi_{n, j}\right), j=1, \ldots, p-1$ be copies of $\left(P_{n-1}, V_{n}, \varphi_{n}\right)$. We put

$$
\left(P_{n} / S, K_{n}, \Phi_{n}\right)=\left(P_{n-1} / S, K_{n-1}, \Phi_{n-1}\right) \boxtimes_{S} \bigotimes_{j=1}^{p-1}\left(\mathbb{P}\left(V_{n, j}\right), \mathbb{L}\left(V_{n, j}\right), \varphi_{n, j}\right)
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(P_{n}, K_{n}, \Phi_{n}\right)$.

Lemma 6. The variety P_{n} is smooth, proper, cellular, connected, and of dimension $p^{n}-1$.
Proof. Indeed, P_{n} is an iterated projective bundle. The computation of the dimension is clear for $n=0$ and for $n>0$ we find

$$
\begin{aligned}
\operatorname{dim} P_{n} & =\operatorname{dim} P_{n-1}+(p-1)\left(1+\operatorname{dim} P_{n-1}\right) \\
& =\left(p^{n-1}-1\right)+(p-1) p^{n-1}=p^{n}-1
\end{aligned}
$$

by induction on n.
Lemma 7. $\delta\left(K_{n}\right)=(-1)^{n} \bmod p$.
Proof. This is clear for $n=0$. Let

$$
\begin{array}{rlrl}
u_{n} & =c_{1}\left(K_{n}\right) & \in \mathrm{CH}^{1}\left(P_{n}\right), & \\
u_{n-1, j} & =c_{1}\left(K_{n-1, j}\right) & \in \mathrm{CH}^{1}\left(P_{n-1, j}\right), & \\
n \geq 1, j=1, \ldots, p-1, \\
z_{n, j} & =c_{1}\left(\mathbb{L}\left(V_{n, j}\right)\right) & \in \mathrm{CH}^{1}\left(\mathbb{P}\left(V_{n, j}\right)\right), & \\
n \geq 1, j=1, \ldots, p-1 .
\end{array}
$$

For $n \geq 1$ let

$$
\widehat{P}_{n}=P_{n-1} \times \prod_{j=1}^{p-1} P_{n-1, j}
$$

Then

$$
\mathrm{CH}^{*}\left(\widehat{P}_{n}\right)=\mathrm{CH}^{*}\left(P_{n-1}\right) \otimes \bigotimes_{j=1}^{p-1} \mathrm{CH}^{*}\left(P_{n-1, j}\right)
$$

and

$$
\mathrm{CH}^{*}\left(P_{n}\right)=\frac{\mathrm{CH}^{*}\left(\widehat{P}_{n}\right)\left[z_{n, j} ; j=1, \ldots, p-1\right]}{\left\langle z_{n, j}^{2}-z_{n, j} u_{n-1, j} ; j=1, \ldots, p-1\right\rangle} .
$$

Moreover

$$
u_{n}=u_{n-1}+\bar{z}_{n}, \quad \text { with } \quad \bar{z}_{n}=\sum_{j=1}^{p-1} z_{n, j} .
$$

Note that

$$
u_{n-1}^{p^{n-1}}=u_{n-1, j}^{p^{n-1}}=0, \quad z_{n, j}^{p^{n-1}+1}=0
$$

by dimension reasons. Hence, calculating $\bmod p$,

$$
u_{n}^{p^{n-1}}=\left(u_{n-1}+\bar{z}_{n}\right)^{p^{n-1}}=u_{n-1}^{p^{n-1}}+\bar{z}_{n}^{p^{n-1}}=\bar{z}_{n}^{p^{n-1}} .
$$

One finds (using Lemma 8 below)

$$
\begin{aligned}
u_{n}^{p^{n}-1} & =u_{n}^{p^{n-1}-1} u_{n}^{p^{n-1}(p-1)}=u_{n}^{p^{n-1}-1} \bar{z}_{n}^{p^{n-1}}(p-1) \\
& =u_{n}^{p^{n-1}-1}\left(z_{n, 1}^{p^{n-1}}+z_{n, 2}^{p^{n-1}}+\cdots+z_{n, p-1}^{p^{n-1}}\right)^{p-1} \\
& =-u_{n-1}^{p^{n-1}-1} z_{n, 1}^{p^{n-1}} z_{n, 2}^{p^{n-1}} \cdots z_{n, p-1}^{p^{n-1}} \\
& =-u_{n-1}^{p^{n-1}-1} z_{n, 1} u_{n, 1}^{p^{n-1}-1} z_{n, 2} u_{n, 2}^{p^{n-1}-1} \cdots z_{n, p-1} u_{n, p-1}^{p^{n-1}-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\delta\left(K_{n}\right) & =-\delta\left(K_{n-1}\right)\left(-\delta\left(K_{n-1,1}\right)\right)\left(-\delta\left(K_{n-1,2}\right)\right) \cdots\left(-\delta\left(K_{n-1, p-1}\right)\right) \\
& =-\delta\left(K_{n-1}\right) \bmod p .
\end{aligned}
$$

whence the claim.
Lemma 8. Let R be a ring over \mathbb{F}_{p} and let $v_{1}, v_{2}, \ldots, v_{p-1} \in R$, be elements with $v_{1}^{2}=v_{2}^{2}=\cdots=v_{p-1}^{2}=0$. Then

$$
\left(v_{1}+v_{2}+\cdots+v_{p-1}\right)^{p-1}=-v_{1} v_{2} \cdots v_{p-1} .
$$

Proof. Note that $(p-1)!=-1 \bmod p$.
The construction of $\left(P_{n}, K_{n}, \Phi_{n}\right)$ is functorial in the forms $\left(S, H_{i}, \alpha_{i}\right)$. In particular the group

$$
\Gamma_{n}=\mu_{p}^{n} \subset \prod_{i=1}^{n} \operatorname{Aut}\left(S, H_{i}, \alpha_{i}\right)
$$

acts on $\left(P_{n}, K_{n}, \Phi_{n}\right)$.
From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n$.
Lemma 9. $\left(P_{n}, K_{n}, \Phi_{n}\right)$ is an admissable Γ_{n}-form. All fixed points are k-rational.

Proof. By induction on n. Suppose that $\left(P_{n-1}, K_{n-1}, \Phi_{n-1}\right)$ is an admissable $\Gamma_{n-1}{ }^{-}$ form. It suffices to show that $\left(\mathbb{P}\left(V_{n}\right), \mathbb{L}\left(V_{n}\right), \varphi_{n}\right)$ is an admissable Γ_{n}-form. It is easy to see that φ_{n} is generically nonzero. Every Γ_{n}-fixed point on $\mathbb{P}\left(V_{n}\right)$ lies over a $\Gamma_{n-1^{-}}$ fixed point $P \in P_{n-1}$. It suffices to show that the fibre (Spec $\left.\kappa(P), \mathbb{L}\left(V_{n}\right)\left|P, \varphi_{n}\right| P\right)$ is an admissable Γ-form where

$$
\Gamma=\operatorname{Aut}\left(S, H_{n}, \alpha_{n}\right)=\operatorname{ker}\left(\Gamma_{n} \rightarrow \Gamma_{n-1}\right)
$$

This is easy to see: If ($\operatorname{Spec} k, H, \alpha$) is a nonzero form over k, then

$$
\mu_{p}=\operatorname{Aut}(\operatorname{Spec} k, H, \alpha)
$$

has in $\mathbb{P}(k \oplus H)$ only the two fixed points $\mathbb{P}(0 \oplus H)$ and $\mathbb{P}(k \oplus 0)$. The form $\varphi(t-u)=t^{p}-\alpha(u)$ is nonzero on the lines $t=0$ and $u=0$.

Lemma 10. Let $\eta_{n} \in P_{n}$ be the generic point. Then

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}, \Phi_{n}\left(\eta_{n}\right)\right\}=0 \in K_{n+1}^{\mathrm{M}} k\left(P_{n}\right) / p
$$

Proof. By induction on n. Suppose that

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-1}, \Phi_{n-1}\left(\eta_{n-1}\right)\right\}=0 \in K_{n}^{\mathrm{M}} k\left(P_{n-1}\right) / p
$$

One has

$$
\Phi_{n}\left(\eta_{n}\right)=\Phi_{n-1}\left(\eta_{n-1}\right) \cdot \prod_{j=1}^{p-1}\left(1-\alpha_{n} \Phi_{n-1, j}\left(\eta_{n-1, j}\right)\right) .
$$

Hence it suffices to show

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}, 1-\alpha_{n} \Phi_{n-1, j}\left(\eta_{n-1, j}\right)\right\} \in K_{n+1}^{\mathrm{M}} k\left(P_{n}\right) / p
$$

for each $j=1, \ldots, p-1$. This follows from $\{a, 1-a b\}=-\{b, 1-a b\}$.
Remark 1. Given the forms (Spec k, H_{i}, α_{i}), form the vector space

$$
A_{n}=\bigoplus_{j_{1}, \ldots, j_{n}=0}^{p-1} H_{1}^{\otimes j_{1}} \otimes \cdots \otimes H_{n}^{\otimes j_{n}} .
$$

One has $\operatorname{dim} A_{n}=p^{n}$. On A_{n} there is the form

$$
\Theta_{n}=\bigoplus_{j_{1}, \ldots, j_{n}=0}^{p-1}\left(-\alpha_{1}\right)^{\otimes j_{1}} \otimes \cdots \otimes\left(-\alpha_{n}\right)^{\otimes j_{n}}
$$

Consider the form $\left(\mathbb{P}\left(A_{n}\right), \mathbb{L}\left(A_{n}\right), \Theta_{n}\right)$. If $p=2$, this form satisfies all the properties of $\left(P_{n}, K_{n}, \Phi_{n}\right)$ listed above (up to a sign in the computation of $\delta\left(\mathbb{L}\left(A_{n}\right)\right)$). If $p>2$, all properties of $\left(P_{n}, K_{n}, \Phi_{n}\right)$ are also valid, except for the splitting of the symbol. If $n=1, n=2$, or $n=p=3$, one may define on A_{n} an algebra structure with norm form Θ_{n}^{\prime} in such a way that $\left(\mathbb{P}\left(A_{n}\right), \mathbb{L}\left(A_{n}\right), \Theta_{n}^{\prime}\right)$ satisfies all the properties. The $\left(P_{n}, K_{n}, \Phi_{n}\right)$ form an approximation to these algebras, with the advantage, that $\left(P_{n}, K_{n}, \Phi_{n}\right)$ can be constructed for all p and n.

5. The forms $\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ ("relative algebras")

Let $n \geq 1$. Given forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1$, and ($S^{\prime} / S, L, \beta$), we define a form

$$
\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta\right)=\left(P_{n}^{\prime} / S^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)
$$

as follows. Let $\left(P_{n-1} / S, K_{n-1}, \Phi_{n-1}\right)$ be as in section 4. Put

$$
\bar{P}_{n-1}=S^{\prime} \times_{S} P_{n-1}
$$

We consider the 2-dimensional vector bundle

$$
\bar{V}_{n}=\mathcal{O}_{\bar{P}_{n-1}} \oplus L \boxtimes_{S} K_{n-1}
$$

on \bar{P}_{n-1}, and the form

$$
\bar{\varphi}_{n}: \bar{V}_{n} \rightarrow \mathcal{O}_{\bar{P}_{n-1}}
$$

on \bar{V}_{n} defined by

$$
\bar{\varphi}_{n}(t-u \otimes v)=t^{p}-\beta(u) \Phi_{n-1}(v)
$$

for sections t, u, v of $\mathcal{O}_{\bar{P}_{n-1}}, L, K_{n-1}$, respectively.
Let

$$
\left(\bar{P}_{n-1, j}, \bar{V}_{n, j}, \bar{\varphi}_{n, j}, K_{n-1, j}, P_{n-1, j}\right), j=1, \ldots, p-1
$$

be copies of $\left(\bar{P}_{n-1}, \bar{V}_{n}, \bar{\varphi}_{n}, K_{n-1}, P_{n-1}\right)$. We put

$$
\left(P_{n}^{\prime} / S^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)=\bigotimes_{j=1}^{p-1}\left(\mathbb{P}\left(\bar{V}_{n, j}\right), \mathbb{L}\left(\bar{V}_{n, j}\right), \bar{\varphi}_{n, j}\right)
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(P_{n}^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)$.

Lemma 11. The variety P_{n}^{\prime} is smooth and proper over S^{\prime}, and of relative dimension $p^{n}-p^{n-1}$. If S^{\prime} is cellular, so is P_{n}^{\prime}. The fibres of S / S^{\prime} are connected.

Proof. Note that $P_{n}^{\prime} / S^{\prime}$ is an iterated projective bundle. Moreover

$$
\operatorname{dim} P_{n}^{\prime} / S^{\prime}=(p-1)\left(\operatorname{dim} P_{n-1}+1\right)=p^{n}-p^{n-1}
$$

by Lemma 6 .
Let

$$
\begin{aligned}
u_{n}^{\prime} & =c_{1}\left(K_{n}^{\prime}\right) & \in \mathrm{CH}^{1}\left(P_{n}^{\prime}\right), \\
u_{n-1, j} & =c_{1}\left(K_{n-1, j}\right) & \in \mathrm{CH}^{1}\left(P_{n-1, j}\right), \\
v_{n} & =c_{1}(L) & \in \mathrm{CH}^{1}\left(S^{\prime}\right) .
\end{aligned}
$$

Lemma 12. One has

$$
u_{n}^{\prime} p^{n}=u_{n}^{\prime p^{n-1}} v_{n}^{p^{n}-p^{n-1}} \bmod p .
$$

If $S^{\prime}=\operatorname{Spec} k$, then

$$
\delta\left(K_{n}^{\prime}\right)=\operatorname{deg}\left(u_{n}^{\prime p^{n}-p^{n-1}}\right)=-1 \bmod p .
$$

Proof. Let

$$
\widehat{\widehat{P_{n}}}=S^{\prime} \times \prod_{j=1}^{p-1} P_{n-1, j}
$$

Then

$$
\mathrm{CH}^{*}\left(\widehat{\overline{P_{n}}}\right)=\mathrm{CH}^{*}\left(S^{\prime}\right) \otimes \bigotimes_{j=1}^{p-1} \mathrm{CH}^{*}\left(P_{n-1, j}\right)
$$

and

$$
\mathrm{CH}^{*}\left(P_{n}^{\prime}\right)=\frac{\mathrm{CH}^{*}\left(\widehat{\overline{P_{n}}}\right)\left[z_{n, j} ; j=1, \ldots, p-1\right]}{\left\langle z_{n, j}^{2}-z_{n, j}\left(v_{n}+u_{n-1, j}\right) ; j=1, \ldots, p-1\right\rangle} .
$$

Moreover

$$
u_{n}^{\prime}=\bar{z}_{n}, \quad \text { with } \quad \bar{z}_{n}=\sum_{j=1}^{p-1} z_{n, j} .
$$

Recall that $u_{n-1, j}^{p^{n-1}}=0$. Calculating $\bmod p$, one finds

$$
\begin{aligned}
u_{n}^{\prime} p^{n} & =\bar{z}_{n}^{p^{n}} \\
& =z_{n, 1}^{p^{n}}+\cdots+z_{n, p-1}^{p^{n}} \\
& =z_{n, 1}^{p^{n-1}}\left(v_{n}+u_{n-1,1}\right)^{p^{n-1}(p-1)}+\cdots+z_{n, p-1}^{p^{n-1}}\left(v_{n}+u_{n-1, p-1}\right)^{p^{n-1}(p-1)} \\
& =z_{n, 1}^{p^{n-1}}\left(v_{n}^{p^{n-1}}+u_{n-1,1}^{p^{n-1}}\right)^{(p-1)}+\cdots+z_{n, p-1}^{p^{n-1}}\left(v_{n}^{p^{n-1}}+u_{n-1, p-1}^{p^{n-1}}\right)^{(p-1)} \\
& =z_{n, 1}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)}+\cdots+z_{n, p-1}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)} \\
& =\bar{z}_{n}^{p^{n-1}} v_{n}^{p^{n-1}(p-1)}=u_{n}^{\prime} p^{n-1} v_{n}^{p^{n-1}(p-1)} .
\end{aligned}
$$

This proves the first claim.
Suppose $v_{n}=0$. Then $z_{n, j}^{p^{n-1}+1}=0$. One finds $\bmod p($ using Lemma 8$)$

$$
\begin{aligned}
u_{n}^{\prime}{ }^{p^{n-1}(p-1)} & =\left(z_{n, 1}^{p^{n-1}}+z_{n, 2}^{p^{n-1}}+\cdots+z_{n, p-1}^{p^{n-1}}\right)^{p-1} \\
& =-z_{n, 1}^{p^{n-1}} z_{n, 2}^{p^{n-1}} \cdots z_{n, p-1}^{p^{n-1}} \\
& =-z_{n, 1} u_{n-1,1}^{p^{n-1}-1} z_{n, 2} u_{n-1,2}^{p^{n-1}-1} \cdots z_{n, p-1} u_{n-1, p-1}^{p^{n-1}-1}
\end{aligned}
$$

Since $\delta\left(K_{n-1}\right) \neq 0 \bmod p$, it follows that

$$
\begin{aligned}
\delta\left(K_{n}^{\prime}\right) & =-\left(-\delta\left(K_{n-1,1}\right)\right)\left(-\delta\left(K_{n-1,2}\right)\right) \cdots\left(-\delta\left(K_{n-1, p-1}\right)\right) \\
& =-1 \bmod p
\end{aligned}
$$

whence the second claim.
From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n-1$. Let Γ be a finite group, let $\Gamma \rightarrow \Gamma_{n-1}$ be an epimorphism and let $\Gamma \rightarrow \operatorname{Aut}\left(S^{\prime}, L, \beta\right)$ be a homomorphism. Thus Γ acts on all the forms $\left(\operatorname{Spec} k, H_{i}, \alpha_{i}\right), i=0, \ldots, n-1$, and (S^{\prime}, L, β).

Lemma 13. Suppose that $\left(S^{\prime}, L, \beta\right)$ is an admissable Γ-form with all fixed points k-rational. Moreover suppose that each fixed point is twisting for the forms

$$
\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1, \text { and }\left(S^{\prime}, L, \beta\right)
$$

Then $\left(P_{n}^{\prime}, K_{n}^{\prime}, \Phi_{n}^{\prime}\right)$ is an admissable Γ-form with all fixed points k-rational.

Proof. This follows as for Lemma 9.
Lemma 14. Suppose that S^{\prime} is irreducible. Let $\eta_{n} \in P_{n}$ be the generic point. Then

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-1}, \beta\left(\eta_{n}\right), \Phi_{n}\left(\eta_{n}\right)\right\}=0 \in K_{n+1}^{\mathrm{M}} k\left(P_{n}\right) / p
$$

Proof. This follows as for Lemma 10.
Remark 2. Given the form $\left(S^{\prime}, L, \beta\right)$ one may define the "Kummer algebra"

$$
A=A\left(S^{\prime}, L, \beta\right)=L^{\otimes 0} \oplus L^{\otimes 1} \oplus \cdots \oplus L^{\otimes p-1}
$$

with the product given by the natural multiplication in the tensor algebra using the form $\beta: L^{\otimes p} \rightarrow L^{\otimes 0}$ to reduce the degree $\bmod p$. One finds

$$
\mathrm{CH}^{*}(\mathbb{P}(A)) \otimes \mathbb{F}_{p}=\mathrm{CH}^{*}\left(S^{\prime}\right) \otimes \mathbb{F}_{p}[x] /\left\langle x^{p}-x^{p-1} y\right\rangle
$$

with $x=c_{1}(\mathbb{L}(A))$ and $y=c_{1}(L)$.
Hence we have a homomorphism

$$
R=\mathbb{F}_{p}[x] /\left\langle x^{p}-x^{p-1} y\right\rangle \rightarrow \mathrm{CH}^{*}(\mathbb{P}(A)) \otimes \mathbb{F}_{p}
$$

Lemma 12 shows that there is a homomorphism

$$
R \rightarrow \mathrm{CH}^{*}\left(P_{n}^{\prime}\right) \otimes \mathbb{F}_{p}, \quad x \mapsto u_{n}^{\prime p^{n-1}}, y \mapsto v_{n}^{p^{n-1}}
$$

If one thinks in terms of the (in general nonexisting) algebras

$$
A_{n}=A\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta\right)
$$

with "subalgebras"

$$
A_{n-1}=A\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)
$$

and one imagines to form something like the projective space $\mathbb{P}_{A_{n-1}}\left(A_{n}\right)$, then one may think of P_{n}^{\prime} as an approximation $P_{n}^{\prime} \rightarrow \mathbb{P}_{A_{n-1}}\left(A_{n}\right)$ with the homomorphism $R \rightarrow \mathrm{CH}^{*}\left(P_{n}^{\prime}\right) \otimes \mathbb{F}_{p}$ being the pull back on the Chow rings (if say $S^{\prime}=\mathbb{P}^{\infty}$ and with L the universal line bundle).

6. The forms $\mathcal{C}\left(\alpha_{1}, \ldots, \alpha_{\boldsymbol{n}}\right)$ (Chain lemma construction)

Let $n \geq 2$. Given forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1$, and $\left(S^{\prime} / S, L, \beta\right)$, we define forms

$$
\mathcal{C}_{r}=\mathcal{C}_{r}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta\right)=\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right), \quad r \geq-1
$$

For $r=-1,0$ we put

$$
\begin{aligned}
\left(S_{-1} / S_{-2}, L_{-1}, \beta_{-1}\right) & =\left(S / S, H_{n-1}, \alpha_{n-1}\right) \\
\left(S_{0} / S_{-1}, L_{0}, \beta_{0}\right) & =\left(S^{\prime} / S, L, \beta\right)
\end{aligned}
$$

Let $r>0$ and suppose \mathcal{C}_{r-2} and \mathcal{C}_{r-1} are defined.
Let

$$
\left(P_{n-1, r}^{\prime} / S_{r-1}, K_{n-1, r}^{\prime}, \Phi_{n-1, r}^{\prime}\right)=\mathcal{B}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{r-1}\right)
$$

be the form constructed in section 5 , starting from $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n-2$, and $\left(S_{r-1} / S_{r-2}, L_{r-1}, \beta_{r-1}\right)$. Put

$$
\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right)=\left(S_{r-2} / S_{r-3}, L_{r-2}, \beta_{r-2}\right) \boxtimes_{S_{r-2}}\left(P_{n-1, r}^{\prime} / S_{r-1}, K_{n-1, r}^{\prime}, \Phi_{n-1, r}^{\prime}\right)
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right)$.
Lemma 15. The variety S_{r} is smooth and proper over S^{\prime}, and of relative dimension $r\left(p^{n-1}-p^{n-2}\right)$. If S^{\prime} is cellular, so is S_{r}. The fibres of S / S^{\prime} are connected.
Proof. This follows from Lemma 11. For the dimension note

$$
\operatorname{dim} S_{r} / S_{r-1}=\operatorname{dim} P_{n-1, r}^{\prime} / S_{r-1}=p^{n-1}-p^{n-2}
$$

by Lemma 11.
Thus if $\operatorname{dim} S^{\prime}=\left(p^{l}-1\right) p^{n}$ for some $\ell \geq 0$, then $\operatorname{dim} S_{p}=\left(p^{l+1}-1\right) p^{n-1}$.
Theorem 16. Let $\ell \geq 0$ and suppose that S^{\prime} is smooth and proper of dimension $\left(p^{l}-1\right) p^{n}$. Then

$$
\delta\left(L_{p}\right)=\delta(L) \bmod p
$$

The proof requires some calculations.
Let $a, b \in \mathbb{F}_{p}$, and let $r \geq 0$ be an integer. In the ring $\mathbb{F}_{p}\left[z_{1}, \ldots, z_{r}\right]$ let

$$
\begin{aligned}
x_{-1} & =a \\
x_{0} & =b \\
x_{m} & =z_{m}+x_{m-2}, \quad 1 \leq m \leq r
\end{aligned}
$$

Then

$$
\begin{aligned}
x_{2 k} & =z_{2 k}+z_{2 k-2}+\cdots+z_{4}+z_{2}+b \\
x_{2 k+1} & =z_{2 k-1}+z_{2 k-3}+\cdots+z_{3}+z_{1}+a
\end{aligned}
$$

We denote by I the ideal generated by

$$
z_{m}^{p}-z_{m} x_{m-1}^{p-1}, \quad 1 \leq m \leq r
$$

and put

$$
R_{r}(a, b)=\mathbb{F}_{p}\left[z_{1}, \ldots, z_{r}\right] / I
$$

The elements

$$
z^{J}=z_{1}^{i_{1}} \cdots z_{r}^{i_{r}}, \quad J=\left(i_{1}, \ldots, i_{r}\right), \quad 0 \leq i_{j} \leq p-1
$$

form an \mathbb{F}_{p}-basis of $R_{r}(a, b)$. For $u \in R_{r}(a, b)$ let $c_{m}(u)$ be the coefficient of $z_{1}^{p-1} \cdots z_{m}^{p-1}$.

Lemma 17. If $1 \leq r \leq p$ one has $c_{r}\left(x_{r}^{r(p-1)}\right)=1$ in $R_{r}(a, b)$.
Proof. One has for $1 \leq m \leq p$:

$$
\begin{aligned}
x_{m}^{m(p-1)} & =x_{m}^{p(m-1)+(p-m)} \\
& =\left(z_{m}+x_{m-2}\right)^{p(m-1)+(p-m)} \\
& =\left(z_{m}^{p}+x_{m-2}^{p}\right)^{(m-1)}\left(z_{m}+x_{m-2}\right)^{(p-m)} \\
& =\left(z_{m} x_{m-1}^{p-1}+x_{m-2}^{p}\right)^{(m-1)}\left(z_{m}+x_{m-2}\right)^{(p-m)} .
\end{aligned}
$$

Hence for $m \leq p$ one has

$$
c_{m}\left(x_{m}^{m(p-1)}\right)=c_{m-1}\left(x_{m-1}^{(m-1)(p-1)}\right) .
$$

The claim follows by induction.
Proposition 18. If $(a, b) \neq(0,0)$, then $R_{r}(a, b)$ is isomorphic to a product of rings of the form

$$
\mathbb{F}_{p}\left[v_{1}, \ldots, v_{k}\right] /\left(v_{1}^{p}, \ldots, v_{k}^{p}\right), \quad k \geq 0 .
$$

Proof. By induction on $r \geq 0$. The case $r=0$ is obvious.
Suppose $b \neq 0$. Then the polynomial

$$
z_{1}^{p}-z_{1} x_{0}^{p-1}
$$

is separable with roots $z_{1}=i b, i \in \mathbb{F}_{p}$. It follows that we have isomorphism

$$
R_{r}(a, b) \xrightarrow{\sim} \prod_{i \in \mathbb{F}_{p}} R_{r}(a, b) /\left(z_{1}-i b\right) .
$$

The ring $R_{r}(a, b) /\left(z_{1}-i b\right)$ is the quotient of $\mathbb{F}_{p}\left[z_{2}, \ldots, z_{r}\right]$ by the ideal generated by

$$
z_{m}^{p}-z_{m} x_{m-1}^{p-1}, \quad 2 \leq m \leq r
$$

with

$$
\begin{aligned}
x_{0} & =b, \\
x_{1} & =i b+a, \\
x_{m} & =z_{m}+x_{m-2}, \quad 2 \leq m \leq r .
\end{aligned}
$$

Hence $R_{r}(a, b) /\left(z_{1}-i b\right) \simeq R_{r-1}(b, i b+a)$. The claim follows from the induction hypothesis.

Suppose $b=0$. Then $a \neq 0$. In this case we consider the homomorphism

$$
\begin{aligned}
\varphi: \mathbb{F}_{p}\left[z_{1}, \ldots, z_{r}\right] & \rightarrow \mathbb{F}_{p}\left[z_{1}\right] /\left(z_{1}^{p}\right) \otimes R_{r-1}(0,1), \\
z_{m} & \mapsto\left(a+z_{1}\right) \otimes z_{m-1}, \quad 2 \leq m \leq r, \\
z_{1} & \mapsto z_{1} \otimes 1 .
\end{aligned}
$$

We claim that $\varphi(I)=0$. For this it suffices to show

$$
\varphi\left(z_{m}^{p}-z_{m} x_{m-1}^{p-1}\right)=0, \quad 1 \leq m \leq r .
$$

This is obvious for $m=1$. If $m=2$, then

$$
\begin{aligned}
\varphi\left(z_{2}^{p}-z_{2} x_{1}^{p-1}\right) & =\varphi\left(z_{2}^{p}-z_{2}\left(z_{1}+a\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes z_{1}^{p}-\left(\left(a+z_{1}\right) \otimes z_{1}\right)\left(z_{1} \otimes 1+1 \otimes a\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes z_{1}^{p}-\left(\left(a+z_{1}\right) \otimes z_{1}\right)\left(\left(z_{1}+a\right) \otimes 1\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{1}^{p}-z_{1}\right)=0 .
\end{aligned}
$$

If $m=2 k \geq 2$, then

$$
\begin{aligned}
\varphi\left(z_{2 k}^{p}-z_{2 k} x_{2 k-1}^{p-1}\right) & =\varphi\left(z_{2 k}^{p}-z_{2 k}\left(z_{2 k-1}+\cdots+z_{3}+z_{1}+a\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes z_{2 k-1}^{p}- \\
-\left(\left(a+z_{1}\right) \otimes z_{2 k-1}\right) & \left(\left(a+z_{1}\right) \otimes z_{2 k-2}+\cdots+\left(a+z_{1}\right) \otimes z_{2}+z_{1} \otimes 1+1 \otimes a\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes z_{2 k-1}^{p}- \\
-\left(\left(a+z_{1}\right) \otimes z_{2 k-1}\right) & \left(\left(a+z_{1}\right) \otimes z_{2 k-2}+\cdots+\left(a+z_{1}\right) \otimes z_{2}+\left(a+z_{1}\right) \otimes 1\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-1}^{p}-z_{2 k-1}\left(z_{2 k-2}+\cdots+z_{2}+1\right)\right)^{p-1} \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-1}^{p}-z_{2 k-1} x_{2 k-2}^{p-1}\right)=0 .
\end{aligned}
$$

If $m=2 k-1 \geq 3$, then

$$
\begin{aligned}
\varphi\left(z_{2 k-1}^{p}-z_{2 k-1} x_{2 k-2}^{p-1}\right) & =\varphi\left(z_{2 k-1}^{p}-z_{2 k-1}\left(z_{2 k-2}+\cdots+z_{2}\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-2}^{p}-z_{2 k-2}\left(z_{2 k-3}+\cdots+z_{1}\right)^{p-1}\right) \\
& =\left(a+z_{1}\right)^{p} \otimes\left(z_{2 k-2}^{p}-z_{2 k-2} x_{2 k-3}^{p-1}\right)=0 .
\end{aligned}
$$

It follows that φ induces a homomorphism

$$
\begin{aligned}
& \bar{\varphi}: R_{r}(a, b) \rightarrow \mathbb{F}_{p}\left[z_{1}\right] /\left(z_{1}^{p}\right) \otimes R_{r-1}(0,1), \\
& z_{m} \mapsto\left(a+z_{1}\right) \otimes z_{m-1}, \quad 2 \leq m \leq r, \\
& z_{1} \mapsto z_{1} \otimes 1
\end{aligned}
$$

$\bar{\varphi}$ is obviously surjective. By dimension reasons, $\bar{\varphi}$ must be an isomorphism. Again the claim follows from the induction hypothesis.
Corollary 19. $u^{p^{2}}=u^{p}$ for all $u \in R_{p}(0,1)$.
Corollary 20. Let $n \geq 2$, and let $u_{n}=x_{p}^{p^{n}-p} \in R_{p}(0,1)$. Then $c_{p}\left(u_{n}\right)=1$.
Proof. For $n=2$ this is Lemma 17. Moreover, by Corollary 19, the element u_{n} does not depend on n.

We rewrite things in a homogenous form. Let x be a variable and let

$$
R^{\prime}=\mathbb{F}_{p}\left[x, z_{1}, \ldots, z_{p}\right] / I^{\prime}
$$

where I^{\prime} is the homogenous ideal generated by

$$
z_{m}^{p}-z_{m} x_{m-1}^{p-1}, \quad 1 \leq m \leq p
$$

with

$$
\begin{aligned}
x_{-1} & =0 \\
x_{0} & =x \\
x_{m} & =z_{m}+x_{m-2}, \quad 1 \leq m \leq p .
\end{aligned}
$$

Then $R^{\prime} /(x-1)=R_{p}(0,1)$. Corollaries 19 and 20 yield the following two corollaries:

Corollary 21. $u^{p^{2}}=u^{p} x^{p^{2}-p}$ for all $u \in R^{\prime}$.
Corollary 22. Let $n \geq 2$. Then

$$
x_{p}^{p^{n}-p}=z_{1}^{p-1} z_{2}^{p-1} \cdots z_{p}^{p-1} x^{p^{n}-p^{2}} \bmod x^{p^{n}-p^{2}+1} R^{\prime}
$$

Proof. Recall the basis elements $\left(z^{J}\right)_{J}$ of $R_{p}(0,1)$ considered above. The elements $\left(z^{J} x^{p^{n}-p-|J|}\right)_{J}$ form a basis of the homogenous subspace of R^{\prime} of degree $p^{n}-p$. It follows that

$$
x_{p}^{p^{n}-p}=c_{p}\left(x_{p}^{p^{n}-p}\right) z_{1}^{p-1} z_{2}^{p-1} \cdots z_{p}^{p-1} x^{p^{n}-p^{2}} \bmod \left\langle z^{J} x^{p^{n}-p-|J|} ;\right| J\left|<p^{2}-p\right\rangle .
$$

But if $|J|<p^{2}-p$ then $z^{J} x^{p^{n}-p-|J|} \in x^{p^{n}-p^{2}+1} R^{\prime}$.
Proof of Theorem 16: Let

$$
\begin{array}{llrl}
x_{r} & =c_{1}\left(L_{r}\right)^{p^{n-2}} & \in \mathrm{CH}^{p^{n-2}}\left(S_{r}\right), & \\
z_{r}=c_{1}\left(K_{n-1, r}^{\prime}\right)^{p^{n-2}} \in \mathrm{CH}^{p^{n-2}}\left(P_{n-1, r}^{\prime}\right), & & r \geq 1 .
\end{array}
$$

Then, calculating $\bmod p$,

$$
\begin{aligned}
x_{-1} & =0, \\
x_{0} & =c_{1}(L)^{p^{n-2}} \in \mathrm{CH}^{p^{n-2}}\left(S^{\prime}\right) \otimes \mathbb{F}_{p}, \\
x_{r} & =x_{r-2}+z_{r}, \quad r \geq 1,
\end{aligned}
$$

since

$$
c_{1}\left(L_{r}\right)=c_{1}\left(L_{r-2}\right)+c_{1}\left(K_{n-1, r}^{\prime}\right)
$$

Moreover

$$
z_{r}^{p}=z_{r} x_{r-1}^{p-1}
$$

by Lemma 12 .
We have a homomorphism

$$
R^{\prime}(x) \rightarrow \mathrm{CH}^{*}\left(S_{p}\right) \otimes \mathbb{F}_{p}, \quad z_{m} \mapsto z_{m}, \quad x \mapsto x_{0} .
$$

It follows from Corollary 22 that $(\bmod p)$

$$
x_{p}^{p^{\ell+2}-p}=z_{1}^{p-1} z_{2}^{p-1} \cdots z_{p}^{p-1} x_{0}^{p^{\ell+2}-p^{2}} \bmod \left\langle x^{p^{\ell+2}-p^{2}+1}\right\rangle
$$

Now if $\operatorname{dim} S^{\prime}=\left(p^{l}-1\right) p^{n}$, then $x_{0}^{p^{l+2}-p^{2}+1}=0$. Hence

$$
x_{p}^{p^{p+2}-p}=\delta\left(K_{n-1,1}^{\prime}\right) \delta\left(K_{n-1,2}^{\prime}\right) \cdots \delta\left(K_{n-1, p-1}^{\prime}\right) \delta(L)=\delta(L) \bmod p,
$$

where the last equation follows from Lemma 12.
From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n-1$. Let Γ be a finite group, let $\Gamma \rightarrow \Gamma_{n-1}$ be an epimorphism and let $\Gamma \rightarrow \operatorname{Aut}\left(S^{\prime}, L, \beta\right)$ be a homomorphism. Thus Γ acts on all the forms $\left(\operatorname{Spec} k, H_{i}, \alpha_{i}\right), i=0, \ldots, n-1$, and (S^{\prime}, L, β).

Lemma 23. Suppose that $\left(S^{\prime}, L, \beta\right)$ is an admissable Γ-form, that all fixed points are k-rational and that each fixed point $P \in S^{\prime}$ is twisting for the forms

$$
\left(S^{\prime}, H_{i}, \alpha_{i}\right), i=1, \ldots, n-1, \text { and }\left(S^{\prime}, L, \beta\right) .
$$

Then for all $r \geq 0,\left(S_{r}, L_{r}, \beta_{r}\right)$ is an admissable Γ-form, all fixed points are k-rational, and each fixed point $P \in S_{r}$ is twisting for the forms

$$
\left(S_{r}, H_{i}, \alpha_{i}\right), i=1, \ldots, n-2,\left(S_{r}, L_{r-1}, \beta_{r-1}\right), \text { and }\left(S_{r}, L_{r}, \beta_{r}\right)
$$

Proof. Let $P \in S_{r}$ be a fixed point. By induction we may assume that P is k rational and that

$$
\Gamma \rightarrow \operatorname{Aut}\left(L_{r-2}\left|P, \beta_{r-2}\right| P\right) \times \operatorname{Aut}\left(L_{r-1}\left|P, \beta_{r-1}\right| P\right) \times \prod_{i=1}^{n-2} \operatorname{Aut}\left(H_{i}\left|P, \alpha_{i}\right| P\right)
$$

is surjective. We claim that

$$
\Gamma \rightarrow \operatorname{Aut}\left(L_{r}\left|P, \beta_{r}\right| P\right) \times \operatorname{Aut}\left(L_{r-1}\left|P, \beta_{r-1}\right| P\right) \times \prod_{i=1}^{n-2} \operatorname{Aut}\left(H_{i}\left|P, \alpha_{i}\right| P\right)
$$

is surjective. Note that $L_{r}\left|P=L_{r-2}\right| P \otimes K_{n-1, r} \mid P$. The claim follows now from the fact that $\operatorname{Aut}\left(L_{r-2}\left|P, \alpha_{r-2}\right| P\right)$ acts trivially on $K_{n-1, r} \mid P$.

The remaining parts of the statement follow from Lemma 13.
Lemma 24. Suppose that S^{\prime} is irreducible. Let $\eta_{r} \in S_{r}$ be the generic point. Then

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{r-1}\left(\eta_{r-1}\right), \beta_{r}\left(\eta_{r}\right)\right\}=(-1)^{r}\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \alpha_{n-1}, \beta\left(\eta_{0}\right)\right\}
$$

in $K_{n}^{\mathrm{M}} k\left(S_{r}\right) / p$.
Proof. We show

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{r-1}\left(\eta_{r-1}\right), \beta_{r}\left(\eta_{r}\right)\right\}=\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{r-1}\left(\eta_{r-1}\right), \beta_{r}\left(\eta_{r-2}\right)\right\} .
$$

We have

$$
\beta_{r}\left(\eta_{r}\right)=\beta_{r}\left(\eta_{r-2}\right) \Phi_{n-1, r}^{\prime} .
$$

The claim follows now from Lemma 14.
We will need the following special case:

Corollary 25.

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{p}\left(\eta_{p}\right), \beta_{p-1}\left(\eta_{p-1}\right)\right\}=\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \alpha_{n-1}, \beta\left(\eta_{0}\right)\right\}
$$

in $K_{n}^{\mathrm{M}} k\left(S_{p}\right) / p$.
Remark 3. Let $S^{\prime}=\operatorname{Spec} k$. We think of the symbol

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \beta_{p}\left(\eta_{p}\right)\right\}
$$

as a family of symbols of weight $n-1$ "between"

$$
\left\{\alpha_{1}, \ldots, \alpha_{n-2}\right\} \quad \text { and } \quad\left\{\alpha_{1}, \ldots, \alpha_{n-2}, \alpha_{n-1}, \beta\right\}
$$

with S_{p} as parameter space.
Our later considerations indicate that this family is universal over p-special fields. For $n=2$ we will make this precise, and for $p=2$ this can be done using Pfister forms. I have no idea how to show this in general. In the case $n=p=3$ the universality would have important consequences for the classification of groups of type F_{4}.

7. The forms $\mathcal{K}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (universal families of Kummer splitting fields)

Let $n \geq 1$. Given forms $\left(S, H_{i}, \alpha_{i}\right), i=1, \ldots, n$, we define forms

$$
\begin{aligned}
& \mathcal{K}_{i}=\mathcal{K}_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right), \\
& \mathcal{K}_{i}^{\prime}=\mathcal{K}_{i}^{\prime}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(R_{i} / R_{i+1}, J_{i}^{\prime}, \gamma_{i}^{\prime}\right), \\
& 1 \leq i \leq n
\end{aligned}
$$

We put

$$
\left(R_{n} / R_{n+1}, J_{n}, \gamma_{n}\right)=\left(S / S, H_{n}, \alpha_{n}\right)
$$

and

$$
\left(R_{n} / R_{n+1}, J_{n}^{\prime}, \gamma_{n}^{\prime}\right)=\left(S / S, \mathcal{O}_{S}, \tau\right)
$$

with $\tau(t)=t^{p}$.
Let $i<n$ and suppose that \mathcal{K}_{i+1} is defined.
Recall the forms

$$
\mathcal{C}_{r}=\mathcal{C}_{r}\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\right)=\left(S_{r} / S_{r-1}, L_{r}, \beta_{r}\right)
$$

defined in section 6 . Let $\pi: S_{p} \rightarrow S_{p-1}$ be the projection.
We put

$$
\begin{aligned}
\mathcal{K}_{i} & =\mathcal{C}_{p}\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\right) \\
\mathcal{K}_{i}^{\prime} & =\pi^{*} \mathcal{C}_{p-1}\left(\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\right) .
\end{aligned}
$$

We assume now that $S=\operatorname{Spec} k$ and list the most important properties of the forms $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$ and $\left(R_{i} / R_{i+1}, J_{i}^{\prime}, \gamma_{i}^{\prime}\right)$.

Lemma 26. The variety R_{i} is smooth, proper, cellular, and of dimension $p^{n}-p^{i}$.
Proof. This follows from Lemma 15. For the dimension note

$$
\operatorname{dim} R_{i} / R_{i+1}=p^{i+1}-p^{i}, \quad i<n
$$

by Lemma 15 .
Lemma 27. $\delta\left(J_{i}\right)=1 \bmod p$.
Proof. By Theorem 16 we have

$$
\delta\left(J_{i}\right)=\delta\left(J_{i+1}\right) \bmod p .
$$

Hence $\delta\left(J_{i}\right)=\delta\left(J_{n}\right)=1 \bmod p$.
The construction of $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$ is functorial in the forms $\left(S, H_{i}, \alpha_{i}\right)$. In particular the group

$$
\Gamma_{n}=\mu_{p}^{n} \subset \prod_{i=1}^{n} \operatorname{Aut}\left(S, H_{i}, \alpha_{i}\right)
$$

acts on $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$.
From now on we suppose that $\alpha_{i} \neq 0$ for $i=1, \ldots, n$.
Lemma 28. The forms $\left(R_{i} / R_{i+1}, J_{i}, \gamma_{i}\right)$ are admissable Γ_{n}-forms, all fixed points are k-rational, and each fixed point $P \in R_{i}$ is twisting for the forms

$$
\left(R_{i}, H_{m}, \alpha_{m}\right), m=1, \ldots, i-1, \text { and }\left(R_{i}, J_{i}, \gamma_{i}\right)
$$

Proof. This follows form Lemma 23.

Lemma 29. Let $\eta_{i} \in R_{i}$ be the generic point. Then, for $1 \leq i<n$, $\left\{\alpha_{1}, \ldots, \alpha_{i-1}, \gamma_{i}\left(\eta_{i}\right), \gamma_{i}^{\prime}\left(\eta_{i}\right)\right\}=\left\{\alpha_{1}, \ldots, \alpha_{i}, \gamma_{i+1}\left(\eta_{i+1}\right)\right\}$
in $K_{i+1}^{\mathrm{M}} k\left(R_{i}\right) / p$.
Proof. This follows from Lemma 25.
In particular we have

$$
\begin{align*}
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left\{\alpha_{1}, \gamma_{2}, \gamma_{3}^{\prime}, \ldots, \gamma_{n}^{\prime}\right\} \tag{4}\\
\left\{\alpha_{1}, \gamma_{2}\right\} & =\left\{\gamma_{1}, \gamma_{2}^{\prime}\right\} \tag{5}
\end{align*}
$$

We write

$$
(R, J, \gamma)=\left(R_{1}, J_{1}, \gamma_{1}\right)
$$

We denote by $\widetilde{R} \rightarrow R$ be the degree p "Kummer extension" corresponding to γ, defined locally by $\mathcal{O}_{\widetilde{R}}=\mathcal{O}_{R}[t] /\left(t^{p}-\gamma(\lambda)\right)$ where λ is a local nonzero section of J.
Corollary 30. The symbol $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ vanishes in the generic point of \widetilde{R}.
Proof. This follows from Lemma 29 (see (6)).

8. Construction of a norm variety via chain lemma

We fix a p-th root of unity $\zeta \neq 1$.
Let (R, J, γ) be the form of defined at the end of section 7 and let $G=\Gamma_{n}$.
Moreover let $A=A(R, J, \gamma)$ be the associated algebra bundle, with norm

$$
N_{A}: A \rightarrow \mathcal{O}_{R}
$$

Let $b \in k^{*}$. We define the variety

$$
X=X_{b}=\left\{[x, t] \in \mathbb{P}\left(A \oplus \mathcal{O}_{R}\right) \mid N_{A}(x)=b t^{p}\right\} .
$$

The G-action extends to a G-action on $A, A \oplus \mathcal{O}_{R}, \mathbb{P}\left(A \oplus \mathcal{O}_{R}\right)$, and X.
Proposition 31. The variety X has the following properties:
(1) X is proper of dimension $d=\operatorname{dim} X=p^{n}-1$.
(2) One has

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}, b\right\}_{k(X)}=0 \quad \text { in } \quad K_{n+1}^{\mathrm{M}} k(X) / p
$$

(3) The fixed point scheme \mathcal{F}_{X} of the G-action on X is a smooth 0-dimensional subscheme of X contained in the smooth part of X.
(4) There exist a proper smooth G-variety Y such that
a) X and Y are G-fixed point equivalent.
b) $s_{d}(Y) \not \equiv 0 \bmod p^{2}$.

Proof. (1) follows from Lemma 26 and (2) follows from Corrollary 30. For the variety Y we take $Y=\mathbb{P}(A)$ with the natural G-action.

Proof of 4a): We have the map

$$
X \xrightarrow{\pi} Y, \quad \pi([x, t])=[x]
$$

The map π is a branched covering of degree p. It should be noted that the map π seems to have no real significance for the applications of the proposition, however it turns out to be useful to compare the fixed points of X and Y.

To compute the fixed point sets \mathcal{F}_{X} and \mathcal{F}_{Y} we first note that both lie over \mathcal{F}_{R}. For each $P \in \mathcal{F}_{R}\left(k_{\text {sep }}\right)$ let $G_{P}=\mu_{p} \subset \operatorname{Aut}(J \mid P)$ and let X_{P}, Y_{P} be the fibres of X resp. Y over P.

Recall that P is twisting by Lemma 28. Therefore the homomorphism

$$
G \rightarrow G_{P}
$$

is surjective. From this one sees that all fixed points in X are contained in the smooth locus of X.

For $x \in \mathcal{F}_{X} \cap X_{P}, y \in \mathcal{F}_{Y} \cap Y_{P}$ one has G-equivariant decompositions

$$
\begin{aligned}
T_{x} X & =T_{x} X_{r} \oplus T_{P} R \\
T_{y} Y & =T_{y} Y_{r} \oplus T_{P} R
\end{aligned}
$$

Therefore, in order to prove 4a), it suffices to show that for each $r \in \mathcal{F}_{R}\left(k_{\mathrm{sep}}\right)$ the fibres X_{r} and Y_{r} are G_{P}-fixed point equivalent. Moreover, we may assume that $k=k_{\text {sep }}$. Hence we are reduced to the case $n=1, G=\mu_{p}, R=\operatorname{Spec} k, J=k$, $\gamma(\lambda)=\lambda^{p}$, and $b=1$.

In this case the G-fixed points of X resp. Y are

$$
\begin{array}{lll}
{\left[\zeta^{i}, 1, \ldots, 1\right]} & 0 \leq i \leq p-1 & (\text { for } X) \\
{\left[0, \ldots, 0,1_{i}, 0, \ldots, 0\right]} & 0 \leq i \leq p-1 & (\text { for } Y)
\end{array}
$$

with respect to the coordinates

$$
A \oplus k=k \oplus L \oplus \cdots \oplus L^{\otimes p-1} \oplus k=k^{p+1}
$$

resp.

$$
A=k \oplus L \oplus \cdots \oplus L^{\otimes p-1}=k^{p} .
$$

The fixed points of Y have all the same tangential G-structure, since the cyclic permutation of the coordinates on $Y=\mathbb{P}(A)$ commutes with the G-action. Moreover the map $\pi: X \rightarrow Y$ induces isomorphisms between the tangent spaces at the fixed points of X and the fixed point $[1,0, \ldots, 0]$ of Y. Hence X and Y have both p fixed points, with all having the same tangential G-structure. (Of course this can be verified also directly by computing the tangential G-structures: they are all isomorphic to the sum of the $p-1$ irreducible representations of G.)

This proves 4a) and along the way we have also seen (3).
Proof of 4b): The tangent bundle of Y decomposes (in $K_{0}(Y)$) as the sum of the tangent bundle $T R$ of R and the fibre tangent bundle $T(Y / R)$ of the projection $\pi_{A}: Y=\mathbb{P}(A) \rightarrow R$. Hence

$$
s_{d}(T Y)=s_{d}\left(\pi_{A}^{*}(T R)\right)+s_{d}(T(Y / R))
$$

We have

$$
s_{d}\left(\pi_{A}^{*}(T R)\right)=\pi_{A}^{*}\left(s_{d}(T R)\right)=0
$$

since $\operatorname{dim} R<d$. Moreover

$$
\begin{aligned}
s_{d}(T(Y / R)) & =s_{d}\left(\pi_{A}^{*}(A) \otimes \mathbb{L}(A)^{\vee}-\mathcal{O}_{R}\right) \\
& =s_{d}\left(\bigoplus_{i=0}^{p-1} J^{\otimes i} \otimes \mathbb{L}(A)^{\vee}\right) \\
& =\sum_{i=0}^{p-1} s_{d}\left(J^{\otimes i} \otimes \mathbb{L}(A)^{\vee}\right) \\
& =\sum_{i=0}^{p-1}\left(c_{1}\left(J^{\otimes i} \otimes \mathbb{L}(A)^{\vee}\right)\right)^{d} .
\end{aligned}
$$

We put

$$
\begin{aligned}
& x=-c_{1}(J) \in \mathrm{CH}^{1}(R) \\
& y=-c_{1}(\mathbb{L}(A)) \in \mathrm{CH}^{1}(Y) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{CH}^{*}(Y) & =\mathrm{CH}^{*}(R)[y] /\left(\prod_{i=0}^{p-1}(y-i x)\right) \\
& =\bigoplus_{i=0}^{p-1} y^{i} \mathrm{CH}^{*}(R)
\end{aligned}
$$

(by the computation of the Chow ring of projective bundles) and

$$
s_{d}(T Y)=\sum_{i=0}^{p-1}(y-i x)^{d}
$$

In the ring

$$
\mathbb{Z}[x, y] /\left(\prod_{i=0}^{p-1}(y-i x)\right)
$$

write

$$
\sum_{i=0}^{p-1}(y-i x)^{d}=\sum_{i=0}^{p-1} a_{i} y^{i} x^{d-i}, \quad a_{i} \in \mathbb{Z}
$$

Since $d-i=\operatorname{dim} R+p-1-i$, we have

$$
s_{d}(T Y)=a_{p-1} y^{p-1} x^{\operatorname{dim} R}
$$

Moreover $\left(\pi_{A}\right)_{*}\left(y^{p-1}\right)=[R] \in \mathrm{CH}^{0}(R)$. Hence

$$
s_{d}(Y)=\operatorname{deg}\left(s_{d}(T Y)\right)=a_{p-1} \operatorname{deg}\left(\left(-c_{1}(J)\right)^{\operatorname{dim} R}\right)
$$

The claim follows now from $\delta(J)=1 \bmod p($ Lemma 27$)$ and from the following Lemma 32.

Lemma 32. Let p be a prime, $Z=\mathbb{Z} / p^{2}$, and let

$$
S=Z[y] /\left(\prod_{i=0}^{p-1}(y-i)\right)
$$

For $u \in S$ define $a_{i}(u) \in Z$ by

$$
u=\sum_{i=0}^{p-1} a_{i}(u) y^{i} .
$$

For $n \geq 1$ let

$$
u_{n}=\sum_{i=0}^{p-1}(y-i)^{p^{n}-1} \in S .
$$

Then $a_{p-1}\left(u_{n}\right)=p$.
Proof. One easily sees $a_{p-1}\left(u_{1}\right)=p$. We show that u_{n} does not depend on n.
The homomorphism

$$
\begin{gathered}
\Phi: S \rightarrow \prod_{i=0}^{p-1} Z \\
y \mapsto(0,1,2, \ldots, p-1)
\end{gathered}
$$

is an isomorphism of rings. Hence it suffices to show that $\Phi\left(u_{n}\right)$ does not depend on n.

This means that for each $j=0, \ldots, p-1$ the residue class

$$
\sum_{i=0}^{p-1}(j-i)^{p^{n}-1} \bmod p^{2}
$$

is independent of n. In fact, for any integer h one has $h^{p^{n}-1}=h^{(p-1)} \bmod p^{2}$. This is obvious if $h=0 \bmod p($ if $p \neq 2)$. Otherwise $h^{p-1}=1 \bmod p$ and $h^{(p-1) p}=$ $1 \bmod p^{2}$. Then

$$
h^{p^{n}-1}=h^{(p-1)\left(1+p+\cdots+p^{n-1}\right)}=h^{(p-1)} \bmod p^{2} .
$$

$$
\text { If } p=2 \text {, then }
$$

$$
S=Z[y] /\left(y^{2}-y\right)
$$

and the claim is easy to check.

9. Multiplicativity

A splitting variety of a symbol is called p-generic, if it is a generic splitting variety over any p-special field.

Let Z be a p-generic splitting variety of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of dimension $p^{n-1}-1$. We assume $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \neq 0$. It follows that $I_{Z} \subset p \mathbb{Z}$.

Let (R, J, γ) be the form of defined at the end of section 7 .
We have diagram of varieties

Here g is of degree prime to p and f is a morphism. The maps f, g come from the fact that Z has point of degree prime to p over $k(\widetilde{R})$, hence has a $k\left(\widetilde{R}^{\prime}\right)$-rational point where R^{\prime} / R is of degree prime to p. This point defines the map f. The maps f, g are covered by the cyclic extensions of degree p :

with $\widetilde{R}^{\prime}=\widetilde{R}_{R} R^{\prime}$.
They are also covered by line bundles:

with $\overline{\mathbb{A}^{1}} \subset \mathbb{A}^{p}$ the image of $\mathbb{A}^{1} \rightarrow \mathbb{A}^{p}, t \mapsto t\left(1, \zeta, \zeta^{2}, \ldots, \zeta^{p-1}\right)$ with $1 \neq \zeta \in \mu_{p}$. This diagram induces the maps \bar{f}, \bar{g}.

Note that $\operatorname{deg} \bar{g}=\operatorname{deg} g$ and $\operatorname{deg} \bar{f}=\operatorname{deg} f$.
The fibre X_{t} of N_{A} over the generic point $\operatorname{Spec} k(t)$ is a splitting variety of the symbol

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}, t\right\}
$$

One has $I_{X_{t}}=p \mathbb{Z}$, since $\left\{\alpha_{1}, \ldots, \alpha_{n}, t\right\} \neq 0$.
We assume now $p \neq 2$. By Proposition 31 (4), Corollary 5, and Corollary 2, one finds that the birational invariant of X_{t} in

$$
\mathbb{Z} / I_{X_{t}}=\mathbb{Z} / p
$$

is nonzero. Since $\operatorname{deg} \bar{g}$ is prime to p, the degree formula implies that the fibre X_{t}^{\prime} of $N_{A^{\prime}}$ has nontrivial invariant. The degree formula shows then that $\operatorname{deg} \bar{f}$ is prime to p, hence $\operatorname{deg} f$ is prime to p.

Now let $K=k(\sqrt[p]{b})$ be a cyclic extension of degree p which splits $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. We assume that k is p-special. It follows that there is a point Spec $K \rightarrow \widetilde{R}$ lying over a rational point P : Spec $k \rightarrow R$. Then $b=\gamma(P)$ in $k^{*} /\left(k^{*}\right)^{p}$. It follows that

$$
\begin{align*}
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left\{\alpha_{1}, \gamma_{2}(P), \gamma_{3}^{\prime}(P), \ldots, \gamma_{n}^{\prime}(P)\right\} \tag{7}\\
\left\{\alpha_{1}, \gamma_{2}(P)\right\} & =\left\{b, \gamma_{2}^{\prime}(P)\right\} \tag{8}\\
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left\{b, \gamma_{2}^{\prime}(P), \ldots, \gamma_{n}^{\prime}(P)\right\} \tag{9}
\end{align*}
$$

(see (4)-(6) after Lemma 29).
Now let $k(\sqrt[p]{b}), k(\sqrt[p]{c})$ be two cyclic extensions of degree p which split the symbol $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Applying the last arguments twice, one finds first $b_{i} \in k^{*}$ such that

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\left\{b, b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

and then $c_{i}, c_{i}^{\prime} \in k^{*}$ such that

$$
\begin{aligned}
\left\{b, b_{1}, b_{2}, \ldots, b_{n}\right\} & =\left\{b, c_{1}, c_{2}, \ldots, c_{n}\right\} \\
\left\{b, c_{1}\right\} & =\left\{c, c_{2}^{\prime}\right\}
\end{aligned}
$$

Let $X\left(b, c_{1}\right)$ be the Brauer-Severi variety associated to the symbol $\left\{b, c_{1}\right\}$. It has rational points over $k(\sqrt[p]{b})$ and over $k(\sqrt[p]{c})$. Morover, since Z is a p-generic spliting field, we have a correspondence $X\left(b, c_{1}\right) \rightarrow Z$ lying over $\mathbb{Z} \rightarrow \mathbb{Z}$ of degree prime to p.
Corollary 33. Let $x, y \in Z$ be points of degree p and let $\alpha \in \kappa(x)^{*}, \beta \in \kappa(y)^{*}$. Then there exist $z \in Z$ of degree p and $\gamma \in \kappa(z)^{*}$, such that

$$
[\alpha]+[\beta]=[\gamma] \quad \text { in } \quad A_{0}\left(Z, K_{1}\right)
$$

Proof. By the previous considerations, and using that $\mathrm{CH}_{0}\left(Z_{K}\right)=\mathbb{Z}$ whenever $Z(K) \neq \varnothing$, we may reduce to the case of Brauer-Severi variety. In this case the statement is known [3].

Corollary 34. If k is p-special, then the set $\mathcal{V}\left(N_{A}\right)$ of values $\neq 0, \infty$ of the map

$$
N_{A}: \mathbb{A}(A)(k) \rightarrow k
$$

is a multiplicative subgroup of k^{*}.

10. On the norm principle

We fix a p-th root of unity $\zeta \neq 1$.
Let $(\operatorname{Spec} k, I, \epsilon)$ be a nonzero form and let $K=A(\operatorname{Spec} k, I, \epsilon)$ be the associated algebra.

Let (R, J, γ) be the form defined at the end of section 7 , let $G=\Gamma_{n}$, and let $A=A(R, J, \gamma)$ be the associated algebra bundle, with norm

$$
N_{A}: A \rightarrow \mathcal{O}_{R}
$$

We denote by

$$
N_{A_{K}}: A \otimes K \rightarrow \mathcal{O}_{R} \otimes K
$$

the induced map of degree p.
Let $B=\mathcal{O}_{R} \oplus A \otimes I$. We have a natural inclusion $B \rightarrow A \otimes K$. Let

$$
M: B \rightarrow K \otimes_{k} \mathcal{O}_{R}
$$

be the restriction of $N_{A_{K}}$ to B.
Let $\left(B_{i}, R_{i}, M_{i}\right), i=1, \ldots, p-1$ be copies of (B, R, M). We put

$$
\begin{aligned}
U & =\mathbb{P}(A) \times \prod_{i=1}^{p-1} \mathbb{P}\left(B_{i}\right), \\
L & =\mathbb{L}(A) \boxtimes \bigotimes_{i=1}^{p-1} \mathbb{L}\left(B_{i}\right), \\
V & =L \oplus \mathcal{O}_{U}
\end{aligned}
$$

Then $\operatorname{dim} U=p^{n}-1+(p-1) p^{n}=p^{n+1}-1$ and L is a line bundle on U and V is a 2-dimensional vector bundle on U.

Let $\omega \in K^{*}$. On V we define a K-valued form

$$
\Theta: V \rightarrow \mathcal{O}_{U} \otimes K
$$

of degree p by

$$
\Theta_{\omega}\left(u \otimes \otimes_{i=1}^{p-1} u_{i}+t\right)=N_{A}(u) M\left(u_{1}\right) \cdots M\left(u_{p-1}\right)-\omega t^{p},
$$

where u, u_{i}, t are sections of $\mathbb{L}(A), \mathbb{L}\left(B_{i}\right), \mathcal{O}_{U}$, respectively.
We define the variety

$$
\bar{X}_{\omega}=\left\{[x] \in \mathbb{P}(V) \mid \Theta_{\omega}(x)=0\right\}
$$

Proposition 35. There exist an open dense subset $\Omega \subset \mathbb{A}(K)$ such that the variety $\bar{X}=\bar{X}_{\omega}$ has the following properties:
(1) $d=\operatorname{dim} X=p\left(p^{n}-1\right)$.
(2) One has

$$
\left\{\alpha_{1}, \ldots, \alpha_{n}, \omega\right\}_{k(\bar{X})}=0 \quad \text { in } \quad K_{n+1}^{\mathrm{M}} K(\bar{X}) / p
$$

(3) The fixed point scheme $\mathcal{F}_{\bar{X}}$ of the G-action on \bar{X} is a smooth 0-dimensional subscheme of \bar{X}.
(4) There exist a proper smooth G-variety \bar{Y} such that
a) \bar{X} and \bar{Y} are G-fixed point equivalent.
b) \bar{Y} is the union of $(p-1)$! copies of Y^{p}, where Y is a variety of dimension $d=p^{n}-1$ with $s_{d}(Y) \not \equiv 0 \bmod p^{2}$.

Proof. (1) and (2) are obvious from former considerations (for all $\omega \in K^{*}$).
We have to determine the fixed points on X. Any fixed point lies over a fixed point $P \in R^{p}$. There are only finitely many such P, and any P is twisting for the bundles $\left(\operatorname{Spec} k, H_{i}, \alpha_{i}\right), i=1, \ldots, n$. On $\mathbb{P}(A \mid P)$ there are exactly p fixed points. The fixed point scheme of $\mathbb{P}(B \mid P) \simeq \mathbb{P}^{p}$ consists of a 1-dimensional component

$$
\mathcal{P}=\mathbb{P}(k \oplus I \oplus 0 \oplus \cdots \oplus 0) \simeq \mathbb{P}^{1}
$$

and $p-1$ isolated fixed points

$$
\mathbb{P}\left(0 \oplus 0 \oplus 0 \oplus \cdots \oplus J^{\otimes i} \otimes I \oplus \cdots \oplus 0\right)
$$

Hence any of the fixed point components \mathcal{C} in $U \mid P$ is a product

$$
\mathcal{C}=\mathcal{C}_{0} \times \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{p-1}
$$

with \mathcal{C}_{0} a point, and, for $i>0, \mathcal{C}_{i}$ a point or $\simeq \mathbb{P}^{1}$.
Let $s=\operatorname{dim} \mathcal{C}$. If $s<p-1$, then the equation $\Theta_{\omega}(x)=0$ has no solution at all, provided ω is generic. If $s=p-1$ and

$$
\mathcal{C}_{0}=\left[0, \ldots, \mathbb{L}(A)^{\otimes i}, \ldots, 0\right]
$$

for some $i>0$, then $\mathbb{P}(V) \mid \mathcal{C}$ has only two fixed points, which do not lie in X.
Hence fixed points appear only if

$$
\mathcal{C}=[1,0, \ldots, 0] \times \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{p-1}
$$

with $\mathcal{C}_{i} \simeq \mathbb{P}^{1}$. One finds that there exactly $(p-1)!p^{p}$ fixed points (for generic ω). For this use the following facts:

Let

$$
\begin{aligned}
\Phi:\left(\mathbb{P}^{1}\right)^{p-1} & \rightarrow \mathbb{P}^{p-1} \\
\Phi\left(\left(\left[x_{i}+t y_{i}\right]\right)_{i=1, \ldots, p-1}\right) & =\left[\prod_{i}\left(x_{i}+t y_{i}\right)\right]
\end{aligned}
$$

be the "morphism of the fundamental theorem of algebra". Φ is a finite morphism of degree $(p-1)$!. Let

$$
\begin{aligned}
\widehat{\Phi}:\left(\mathbb{P}^{1}\right)^{p-1} & \rightarrow \mathbb{P}^{p-1} \\
\widehat{\Phi}\left(\left(\left[x_{i}+t y_{i}\right]\right)_{i=1, \ldots, p-1}\right) & =\left[\prod_{i}\left(x_{i}+t y_{i}\right)^{p}\right] .
\end{aligned}
$$

$\widehat{\Phi}$ is a finite morphism of degree $(p-1)!p^{p-1}$.
Hence there are exactly $(p-1)!p^{p}$ fixed points over P. These are given by just $(p-1)$! copies of the fixed point set of $\mathbb{P}(A \mid P)^{p}$. The characteristic number of $Y=\mathbb{P}(A)$ has been computed in section 8.

We assume $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}_{K} \neq 0$. Let ω be the generic element of $\mathbb{A}(K)$. Then $\left\{\alpha_{1}, \ldots, \alpha_{n}, \omega\right\} \neq 0$.

Let further $T=N_{A}^{-1}(\omega)$ (the splitting variety over K for $\left\{\alpha_{1}, \ldots, \alpha_{n}, \omega\right\}$, constructed from the family (R, J, γ) of Kummer splitting fields of $\left.\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$.

Let $R_{K / k}(T)$ be the transfer of T. We claim the $R_{K / k}(T)$ has a point of degree prime to p over $k\left(X_{\omega}\right)$.

In fact, by applying Corollary 34 to the ground field $K\left(X_{\omega}\right)$, we see that there exist an extension $H / K\left(X_{\omega}\right)$ of degree prime to p, such that ω is a value of N_{A} over H. But then there exist an extension $H^{\prime} / k\left(X_{\omega}\right)$ of degree prime to p, such that ω is a value of N_{A} over $H^{\prime} \otimes K$.

Writing $H^{\prime}=k(W)$ we get maps

$$
X_{\omega} \stackrel{g}{\longleftarrow} W \xrightarrow{f} R_{K / k}(T)
$$

with $(\operatorname{deg} g, p)=1$.
We would like to conclude that $(\operatorname{deg} f, p)=1$. To compute $\operatorname{deg} f$ we may do base change $k \rightarrow K$, so that $K=k \times \cdots \times k$. Then the diagram looks as

$$
X_{\omega} \stackrel{g}{\longleftrightarrow} W \xrightarrow{f} \bar{T}:=\prod_{i=1}^{p} N_{A}^{-1}\left(\omega_{i}\right)
$$

with $\omega=\left(\omega_{1}, \ldots, \omega_{p}\right)$, and $\omega_{i} \in k$ are p independent generic elements. $(\operatorname{deg} f, p)=1$ follow from Proposition 35 (4) and the "higher degree formula".

Let us take it for granted, so that $\operatorname{deg} f$ is prime to p. Extension from the generic point of $\mathbb{A}(K)$ to $\mathbb{A}(K)$ provides a diagram

with $(\operatorname{deg} \bar{g}, p)=(\operatorname{deg} \bar{f}, p)=1$.
Assume now that k is p-special.
Let $x \in Z_{K}$ be a point of degree p and let $\delta \in \kappa(x)^{*}$. Our aim is to show that

$$
N_{K / k}([\delta]) \in A_{0}\left(Z, K_{1}\right)
$$

is represented by a sum of elements concentrated in points of Z of degree p (over k). If the symbol is split over K, this is easy to check (assuming $\mathrm{CH}_{0}\left(Z_{K}\right)=\mathbb{Z}$, when K is a splitting field). So we may assume $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}_{K} \neq 0$.

Let $\omega=N_{\kappa(x) / K}(\delta) \in K^{*}$. By multiplying ω with some p-th power in $\left(K^{*}\right)^{p}$, we may arrange that ω lies in any given open dense subset of $\mathbb{A}(K)$.

As we have seen, there is a K-rational point $P \in R$ such that

$$
(R, J, \gamma) \mid P
$$

represents the Kummer extension $\kappa(x) / K$. Hence ω is a value of N_{A} over K. Hence ω is in the image of $R_{K / k}(\mathbb{A}(A))$ under $R_{K / k}\left(N_{A}\right)$. Since $(\operatorname{deg} \bar{f}, p)=1, \omega$ is also in the image of $\mathbb{A}(L)$ under $N_{A} M_{1} \ldots M_{p-1}$.

The p projections $\mathbb{A}(L) \rightarrow R$ (via $\left.\mathbb{P}(A), \mathbb{P}\left(B_{i}\right)\right)$ give us p points in R, whence p points $z_{i} \in Z$ of degree p. Furthermore we have elements $\delta_{i} \in \kappa\left(z_{i}\right)$ such that

$$
\delta=N_{\kappa\left(z_{0}\right) / k}\left(\delta_{0}\right) N_{K \otimes \kappa\left(z_{1}\right) / K}\left(1+z_{1} \sqrt[p]{\epsilon}\right) \cdots N_{K \otimes \kappa\left(z_{p-1}\right) / K}\left(1+z_{p-1} \sqrt[p]{\epsilon}\right)
$$

in K^{*}.
By multiplicativity we see that

$$
[\delta]=\left[\delta_{0}\right]_{K}+\left[1+z_{1} \sqrt[p]{\epsilon}\right]+\cdots+\left[1+z_{p-1} \sqrt[p]{\epsilon}\right] .
$$

in $A_{0}\left(Z_{K}, K_{1}\right)$. But then

$$
N_{K / k}([\delta])=p\left[\delta_{0}\right]+\left[N_{K \otimes \kappa\left(z_{1}\right) / \kappa\left(z_{1}\right)}\left(1+z_{1} \sqrt[p]{\epsilon}\right)\right]+\ldots
$$

is concentrated in the points z_{i}.

References

[1] E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207-302.
[2] E. E. Floyd, Actions of $\left(Z_{p}\right)^{k}$ without stationary points, Topology 10 (1971), 327-336.
[3] A. S. Merkurjev and A. A. Suslin, The group of K_{1}-zero-cycles on Severi-Brauer varieties, Nova J. Algebra Geom. 1 (1992), no. 3, 297-315.
[4] V. Voevodsky, The Milnor conjecture, preprint, Max-Planck-Institute for Mathematics, Bonn, 1996, http://www.math.uiuc.edu/K-theory/0170, 1996.

[^0]: Date: April, 1998

