THE DISCRIMINANT ALGEBRA OF A CUBIC ALGEBRA

MARKUS ROST

Introduction

In this note we describe a construction of the discriminant algebra $D(A)$ of a flat cubic algebra A over any ring R (all rings and algebras are unital and commutative). The algebra $D(A)$ is a flat quadratic algebra. Its discriminant is the discriminant of A.

The discriminant algebra of a cubic binary form has been constructed by Manjul Bhargava. His construction should be the same as the one considered here via the correspondence (binary cubic forms) \leftrightarrow (cubic algebras).

There are many further related questions and constructions not considered here. For example: If A is etale, then $A \otimes_{R} A=A \oplus A \otimes_{R} D(A)$. What is the relation between $A \otimes_{R} A$ and $D(A)$ for arbitrary A ?

1. The discriminant of a quadratic algebra

Let L be a flat quadratic algebra over R.
Consider the bilinear form

$$
b: L \times L \rightarrow R, \quad b(x, y)=\operatorname{trace}_{L / R}(x y)
$$

We define the discriminant of L as

$$
\operatorname{disc}(L)=\operatorname{det} b \in\left(\bigwedge^{2} L\right)^{-\otimes 2}
$$

2. Verschiebung

Let $H=L / R$. Since $\bigwedge^{2} L=H$, the discriminant $\operatorname{disc}(L)$ can also be considered as an element of $H^{\otimes-2}$.

Let

$$
p: L \rightarrow H
$$

be the projection. For any element $e \in H^{\otimes-2}$ we define the quadratic algebra L_{e} by $L_{e}=L$ as R-module and with new product

$$
x * y=x y+e(p(x) \otimes p(y))
$$

We call L_{e} the Verschiebung (something like "translational displacement", if you really insist on a translation) of L with e.

For the discriminant one finds:

$$
\operatorname{disc}\left(L_{e}\right)=\operatorname{disc}(L)+4 e
$$

3. Cubic algebras

Now let A be a flat cubic algebra over R.
Let $N_{A}: A \rightarrow R$ be the norm map and write

$$
N_{A}(x+t)=t^{3}+T_{A}(x) t^{2}+S_{A}(x) t+N_{A}(x)
$$

with $x \in A$ and $t \in R$ where $T_{A} \in A^{\vee}$ is the trace and $S_{A} \in S^{2} A^{\vee}$ is a quadratic form on A.

Let $M=A / R$ and let

$$
\pi: A \rightarrow M
$$

be the projection.
3.1. The discriminant. Consider the bilinear form

$$
b: A \times A \rightarrow R, \quad b(x, y)=T_{A}(x y)
$$

We define the discriminant of A as

$$
\operatorname{disc}(A)=\operatorname{det} b \in\left(\bigwedge^{3} A\right)^{-\otimes 2}
$$

Since $\bigwedge^{3} A=\bigwedge^{2} M$, the discriminant $\operatorname{disc}(A)$ can also be considered as an element of $\left(\bigwedge^{2} M\right)^{\otimes-2}$.
3.2. The reduced trace form. Consider the expression

$$
T_{A}\left(x^{2}\right)-S_{A}(x)
$$

for $x \in A$. One finds that it is invariant under $x \mapsto x+a$ with $a \in R$. Hence there exists a quadratic form

$$
q_{A}: M \rightarrow R
$$

with

$$
q_{A}(\pi(x))=T_{A}\left(x^{2}\right)-S_{A}(x)
$$

for $x \in A$.
Let

$$
K(A)=C_{0}\left(q_{A}\right)
$$

be the even Clifford algebra of q_{A}. Note that

$$
K(A) / R=C_{0}\left(q_{A}\right) / R=\bigwedge^{2} M
$$

For the discriminants one finds

$$
\operatorname{disc}\left(q_{A}\right)=\operatorname{disc}(K(A))=-3 \operatorname{disc}(A) \in\left(\bigwedge^{2} M\right)^{\otimes-2}
$$

We call $K(A)$ the Kummer discriminant algebra of A. This is suggested by
Lemma. The following are equivalent (at least for a local ring R):
(1) $K(A)$ is etale and split, i.e., $K(A) \simeq R \oplus R$.
(2) $1 / 3 \in R$ and $A \simeq R[t] /\left(t^{3}-a\right)$ for some $a \in R^{*}$.

The proof is left to the reader.
3.3. The discriminant algebra. We are now ready to define the discriminant algebra $D(A)$ as the Verschiebung

$$
D(A)=K(A)_{\operatorname{disc}(A)}
$$

Then indeed

$$
\operatorname{disc}(D(A))=\operatorname{disc}(K(A))+4 \operatorname{disc}(A)=\operatorname{disc}(A)
$$

We conclude with
Lemma. The following are equivalent (at least for a local ring R):
(1) $D(A)$ is etale and split, i.e., $K(A) \simeq R \oplus R$.
(2) A is etale and cyclic.

The proof is left to the reader.
Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA

E-mail address: rost@math.ohio-state.edu
$U R L$: http://www.math.ohio-state.edu/~rost

