ON THE DISCRIMINANT OF CUBIC POLYNOMIALS

MARKUS ROST

Contents

1. Introduction 1
2. Preliminaries 1
3. A presentation of the discriminant 2
3.1. The case of an element of norm 1 2
3.2. The case of an element of norm -1 3
4. On the generic C_{3}-torsor 5
5. On $\mathbf{Z} / 2 \mathbf{Z}$-torsors 6
References 7

1. Introduction

The starting point of this text was a certain presentation of the discriminant of cubic forms (see Lemma 1, for a quick grasp see Subsection 3.2).

I observed it after looking more closely at the parametrization of cubic cyclic extensions presented in [2] (see equation (1)).

At the beginning there were just formulas, I had no good explanation (see Remark 4). However, some weeks after writing a first version of this text, I found an interpretation (see Remark 5, in particular (3)). Comments are welcome anyway.

At some point I added brief descriptions of $\mathbf{Z} / n \mathbf{Z}$-torsors (first for $n=3$, then also for $n=2$).

Here one looks for an embedding of $\mathbf{Z} / n \mathbf{Z}$ into some affine algebraic group G which has no non-trivial torsors over fields (or local rings). The group G should be as small as possible, at least somewhat pleasant.

As for $\mathbf{Z} / 2 \mathbf{Z}$-torsors, there is such a group G which is an open subscheme of the affine line \mathbf{A}^{1} (see Section 5).

For $\mathbf{Z} / 3 \mathbf{Z}$-torsors there is such a group G as well. It is an open subscheme of the projective line \mathbf{P}^{1} (see Section 4). After removing the unit element in $G /(\mathbf{Z} / 3 \mathbf{Z})$ one ends up with the parametrization of cubic cyclic extensions presented in [2].

2. Preliminaries

Recall that the cubic polynomial

$$
a x^{3}+b x^{2} y+c x y^{2}+d y^{3}
$$

has the discriminant

$$
b^{2} c^{2}-4 a c^{3}-4 d b^{3}-27 a^{2} d^{2}+18 a b c d
$$

Let R be a ring and consider a normed cubic polynomial

$$
P(x)=x^{3}-T x^{2}+Q x-N
$$

over R. Then its discriminant is

$$
\Delta=T^{2} Q^{2}-4 Q^{3}-4 N T^{3}-27 N^{2}+18 T Q N
$$

If we let

$$
L=R[x] /(P(x))
$$

be the cubic extension of R given by P, then we have

$$
\begin{aligned}
T & =\operatorname{trace}_{L / R}(x) \\
Q & =\operatorname{trace}_{L / R}\left(x^{\#}\right) \\
N & =\operatorname{norm}_{L / R}(x)
\end{aligned}
$$

where $x^{\#}$ is the adjoint of x (characterized by $\left.x x^{\#}=\operatorname{norm}_{L / R}(x)\right)$.

3. A presentation of the discriminant

Let

$$
H=R[\eta] /\left(\eta^{3}-N\right)
$$

For the norm of such a cubic "Kummer" extension one has the formula

$$
N_{H / R}\left(a+b \eta+c \eta^{2}\right)=a^{3}+N b^{3}+N^{2} c^{3}-3 N a b c
$$

Lemma 1. One has

$$
\Delta=(T Q-9 N)^{2}-4 N_{H / R}\left(Q+T \eta+3 \eta^{2}\right)
$$

Proof. By computation:

$$
\begin{aligned}
(T Q-9 N)^{2} & =T^{2} Q^{2}-18 T Q N+3 \cdot 27 N^{2} \\
N_{H / R}\left(Q+T \eta+3 \eta^{2}\right) & =Q^{3}+N T^{3}+27 N^{2}-9 N Q T
\end{aligned}
$$

3.1. The case of an element of norm 1. Assume $N=1$. Hence our polynomial is of the form

$$
P(x)=x^{3}-T x^{2}+Q x-1
$$

Lemma 1 yields

Corollary 2.

$$
\Delta=(9-T Q)^{2}-4(3+T+Q)\left(3+T \zeta+Q \zeta^{2}\right)\left(3+T \zeta^{2}+Q \zeta\right)
$$

with

$$
1+\zeta+\zeta^{2}=0
$$

3.2. The case of an element of norm -1. Sometimes it is convenient to consider the case $N=-1$ (this is equivalent to the case $N=1$, one just has to replace x by $-x)$.

In this case one has

$$
P(x)=x^{3}-T x^{2}+Q x+1
$$

and

$$
\Delta=(9+T Q)^{2}-4(3-T+Q)\left(3-T \zeta+Q \zeta^{2}\right)\left(3-T \zeta^{2}+Q \zeta\right)
$$

again with $1+\zeta+\zeta^{2}=0$.
Remark 3. It follows that if

$$
\begin{aligned}
Q & =T-3 \\
N & =-1
\end{aligned}
$$

then Δ is a square. If Δ is invertible, this means that the cubic extension is cyclic.
Indeed, in [2] one finds the following description of cubic cyclic extensions:

$$
\begin{equation*}
x^{3}-T x^{2}+(T-3) x+1=0 \tag{1}
\end{equation*}
$$

The discriminant is $\left(T^{2}-3 T+9\right)^{2}$ and

$$
\sigma(x)=\frac{1}{1-x}
$$

is an automorphism of the corresponding cubic extension of order 3 .
Remark 4. I found Lemma 1 as follows.
From the description

$$
x^{3}-T x^{2}+(T-3) x+1
$$

of a generic cubic cyclic extension in [2] (see above) it follows that if

$$
\begin{aligned}
Q & =T-3 \\
N & =-1
\end{aligned}
$$

then $\Delta=(T Q+9)^{2}$. Thus, if $N=-1$, then

$$
Z(T, Q)=\Delta-(T Q+9)^{2}
$$

must be divisible by $Q-T+3$ (as a polynomial in T, Q).
But the expressions Δ and $T Q+9$ don't change if x is replaced by ζx with ζ a cube root of unity. Thus the polynomial Z is invariant under

$$
T \mapsto \zeta T, \quad Q \mapsto \zeta^{2} Q
$$

Therefore Z is divisible by $Q \zeta^{2}-T \zeta+3$ as well.
By working over $R=\mathbf{Q}$ (or $R=\mathbf{Z}$) one concludes

$$
Z(T, Q)=c A(1) A(\zeta) A\left(\zeta^{2}\right) \quad\left(A(t)=Q t^{2}-T t+3\right)
$$

where $1, \zeta, \zeta^{2}$ are the roots of $t^{3}-1$ (so that $1+\zeta+\zeta^{2}=0$). The quantity c must be a constant for degree reasons. One finds $c=-4$.

It is then obvious to get rid of the condition $N= \pm 1$ by using cube roots of N.

Remark 5. Meanwhile I have found an interpretation. Here is a brief account.
Let us first write down things again: The cubic polynomial

$$
f=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}
$$

has discriminant

$$
\begin{aligned}
\Delta & =b^{2} c^{2}-4 a c^{3}-4 d b^{3}-27 a^{2} d^{2}+18 a b c d \\
& =(b c-9 a d)^{2}-4 \Phi
\end{aligned}
$$

with

$$
\Phi=a c^{3}+d b^{3}+27 a^{2} d^{2}-9 a b c d
$$

The problem is to interpret the quantity Φ. And to explain why for $a=d=1$ there is the factorization

$$
\begin{equation*}
\Phi_{a=d=1}=(3+b+c)\left(3+b \zeta+c \zeta^{2}\right)\left(3+b \zeta^{2}+c \zeta\right) \tag{2}
\end{equation*}
$$

with $1+\zeta+\zeta^{2}=0$.
It turns out that Φ is the determinant of a certain 3×3 matrix, namely

$$
\Phi=\operatorname{det} A
$$

with

$$
A=\left(\begin{array}{ccc}
3 a d & b d & c a \\
c & 3 d & b \\
b & c & 3 a
\end{array}\right)
$$

Also the term $(b c-9 a d)^{2}$ appears as determinant, namely simply as

$$
(b c-9 a d)^{2}=\operatorname{det}\left(\begin{array}{cc}
B & 0 \\
0 & B
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 a & b \\
c & 3 d
\end{array}\right)
$$

This yields the presentation

$$
\Delta=\operatorname{det}\left(\begin{array}{cc}
3 a & b \tag{3}\\
c & 3 d
\end{array}\right)^{2}-4 \operatorname{det}\left(\begin{array}{ccc}
3 a d & b d & c a \\
c & 3 d & b \\
b & c & 3 a
\end{array}\right)
$$

of the discriminant.
Note that if $a=d=1$, then A becomes

$$
A_{a=d=1}=\left(\begin{array}{lll}
3 & b & c \\
c & 3 & b \\
b & c & 3
\end{array}\right)=3+b \sigma+c \sigma^{2}
$$

where σ the permutation matrix

$$
\sigma=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

This readily explains the factorization (2).
In particular: If $a=d=1$ and $3+b+c=0$, then A vanishes on $(1,1,1)$, so $\operatorname{det} A=0$ and from (3) it follows that Δ is a square. Hence the cubic extension associated to

$$
x^{3}+b x^{2} y-(b+3) x y^{2}+y^{3}
$$

is cyclic (as long as it is separable, that is if $b^{2}+3 b+9$ is invertible).

How to find the matrix $A($ and $B)$? That's a longer story. Clearly the quantity Φ is not an invariant of the cubic form f. To get a hand on Φ one somehow has to break the GL_{2}-symmetry. It turns out that it is appropriate to choose from the beginning a non-degenerate quadratic form q up to multiplication with scalars. This reduces the symmetry group GL_{2} to the similarity group $\mathrm{GO}(q)$ of q. (The groups $\mathrm{GO}(q)$ are the normalizers of the maximal tori in GL_{2}; if $q=x y$ then $\mathrm{GO}(q)=\mathbf{G}_{\mathrm{m}}^{2} \rtimes \mathbf{Z} / 2 \mathbf{Z}$.)

After some juggling one obtains a certain linear morphism A between certain rank 3 modules. In the special case $q=x y$, the morphism A has the matrix presentation given above.

As a side result, one obtains a somewhat natural presentation of the discriminant Δ as a "square $\bmod 4$ ". That Δ is a square $\bmod 4$ is clear from the fact that Δ is the discriminant of a quadratic algebra, namely of the discriminant algebra of the cubic form. Under presence of the quadratic form $q=x y$ that algebra is of the form

$$
T^{2}-T(b c-9 a d)+\Phi
$$

(For the discriminant algebra of a cubic algebra see [1].)

4. On the generic C_{3}-TORSOR

We conclude with some remarks about (1).
Remark 6. In [2] it is shown that equation (1) is versal for cyclic cubic extensions. One can show the following somewhat more precise remark: For any field k, any cubic cyclic field extension of k is given by (1) for some $T \in k$. This holds as well for the split cubic extension k^{3} if and only if $|k| \geq 5$.
Remark 7. Consider the flat R-algebras of rank 2

$$
\begin{aligned}
& A=R[\theta] /\left(\theta^{2}+\theta+1\right) \\
& B=R[\eta] /\left(\eta^{2}+3 \eta+9\right)
\end{aligned}
$$

The algebra homomorphism

$$
\begin{gathered}
j: B \rightarrow A \\
\eta \mapsto 3 \theta
\end{gathered}
$$

is injective if 3 is not a zero divisor. Let

$$
\begin{gathered}
\widetilde{\varphi}: A^{\times} \rightarrow A^{\times} \\
\widetilde{\varphi}(z)=\frac{z^{3}}{N_{A / R}(z)}=\frac{z^{2}}{\bar{z}}
\end{gathered}
$$

where $\bar{z}=T_{A / R}(z)-z$ denotes the canonical involution on the quadratic algebra A. One finds that $\widetilde{\varphi}$ has image in B. More precisely: The map

$$
\begin{gathered}
\varphi: A^{\times} \rightarrow B^{\times} \\
\varphi(x+y \theta)=\frac{\left(x^{3}-3 x y^{2}+y^{3}\right)+x y(x-y) \eta}{x^{2}-x y+y^{2}}
\end{gathered}
$$

has the property

$$
(j \circ \varphi)(z)=\widetilde{\varphi}(z)
$$

Note that $\varphi(a)=a$ for $a \in R^{\times}$.

Moreover, φ is a group homomorphism. It suffices to check this for $R=\mathbf{Z}$. But then j is injective and the claim follows from the multiplicativity of $\widetilde{\varphi}$.

Let

$$
C_{3}=\left\{1, \theta, \theta^{2}\right\} \subset A^{\times}
$$

(This is the constant group scheme $\mathbf{Z} / 3 \mathbf{Z}$ even in characteristic 3.)
One finds that the resulting sequence

$$
1 \rightarrow C_{3} \rightarrow \mathbf{G}_{\mathrm{m}}(A) / \mathbf{G}_{\mathrm{m}} \xrightarrow{\varphi} \mathbf{G}_{\mathrm{m}}(B) / \mathbf{G}_{\mathrm{m}} \rightarrow 1
$$

of algebraic groups is exact. So if R is a local ring, the sequence

$$
1 \rightarrow C_{3} \rightarrow A^{\times} / R^{\times} \xrightarrow{\varphi} B^{\times} / R^{\times} \rightarrow H^{1}\left(R, C_{3}\right) \rightarrow 0
$$

is exact (use $H^{1}\left(R, \mathbf{G}_{\mathrm{m}}(A)\right)=0$ in some appropriate flat topology). To summarize:
Corollary 8. For local rings R, there is a bijection between the group

$$
B^{\times} / \varphi\left(A^{\times}\right)
$$

and the set of isomorphism classes of pairs (L, σ) where L is a cubic etale extension of R and σ is a R-automorphism of L of order 3 .

Note that

$$
\begin{aligned}
\mathbf{G}_{\mathrm{m}}(A) / \mathbf{G}_{\mathrm{m}} & =\mathbf{P}^{1} \backslash\left\{u^{2}-u v+v^{2}=0\right\} \\
\mathbf{G}_{\mathrm{m}}(B) / \mathbf{G}_{\mathrm{m}} & =\mathbf{P}^{1} \backslash\left\{U^{2}-3 U V+9 V^{2}=0\right\}
\end{aligned}
$$

The morphism φ extends to the morphism

$$
\mathbf{P}^{1} \rightarrow \mathbf{P}^{1} / C_{3} \simeq \mathbf{P}^{1}
$$

considered in[2].

5. On Z/2Z-TORSORS

Since we are about such things, let us also look at the case of quadratic etale extensions ($\mathbf{Z} / 2 \mathbf{Z}$-torsors).

Here one considers the groups of invertible matrices

$$
\begin{aligned}
G & =\mathbf{A}^{1} \backslash\left\{\frac{1}{2}\right\} \\
H & =\operatorname{Spec} \mathbf{Z}[a]\left[(1-2 a)^{-1}\right]=\{X(a)\} \\
\mathbf{A}^{1} \backslash\left\{\frac{1}{4}\right\} & =\operatorname{Spec} \mathbf{Z}[b]\left[(1-4 b)^{-1}\right]=\{Y(b)\}
\end{aligned}
$$

where

$$
\begin{array}{ll}
X(a)=\left(\begin{array}{cc}
1 & a \\
0 & 1-2 a
\end{array}\right) \\
Y(b)=\left(\begin{array}{cc}
1 & b \\
0 & 1-4 b
\end{array}\right) & (1-2 a \neq 0) \\
\end{array}
$$

There are the natural group homomorphisms

$$
\begin{aligned}
j: H & \rightarrow G \\
j(Y(b)) & =X(2 b)
\end{aligned}
$$

and

$$
\begin{gathered}
\varphi: G \rightarrow H \\
\varphi(X(a))=Y\left(a-a^{2}\right)
\end{gathered}
$$

Note that

$$
(j \circ \varphi)(z)=z^{2}
$$

The morphism φ yields the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbf{Z} / 2 \mathbf{Z} \rightarrow G \xrightarrow{\varphi} H \rightarrow 1 \tag{4}
\end{equation*}
$$

of algebraic groups where

$$
\mathbf{Z} / 2 \mathbf{Z}=\{X(0), X(1)\}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)\right\}
$$

If 2 is invertible, (4) becomes

$$
1 \rightarrow \mu_{2} \rightarrow \mathbf{G}_{\mathrm{m}} \xrightarrow{x \mapsto x^{2}} \mathbf{G}_{\mathrm{m}} \rightarrow 1
$$

In characteristic 2, (4) becomes

$$
0 \rightarrow \mathbf{F}_{2} \rightarrow \mathbf{G}_{\mathrm{a}} \xrightarrow{x \mapsto x^{2}+x} \mathbf{G}_{\mathrm{a}} \rightarrow 0
$$

The resulting generic $\mathbf{Z} / 2 \mathbf{Z}$-torsor is

$$
x^{2}-x+b=0
$$

with discriminant $1-4 b$.
Remark 9. It follows that a separable quadratic extension of a local ring has a generator of trace 1. Let us establish this directly.

Note first that for a separable extension the trace is an epimorphism. Then apply the following more general observation:
Lemma 10. Let L / R be a quadratic extension whose trace map $T: L \rightarrow R$ is an epimorphism. If R is local, there exists a generator $x \in L$ with $T(x)=1$.
Proof. For x to be a generator means that $1, x$ is an R-basis of L. This holds if and only if it holds after passing to the residue class field k of R. Moreover, $T(x)$ is invertible if and only if its image in k is nonzero.

Therefore we may assume that R is a field. Then $x \in L$ is a generator if and only if $x \notin R$.

The affine line $T^{-1}(1) \subset L$ and the vector subspace $R \subset L$ meet in at most one point (one has $T^{-1}(1) \cap R=\emptyset$ if and only if char $R=2$). Hence $T^{-1}(1) \backslash R \neq \emptyset$ and the claim follows.

More explicitly: Let $t \in L$ be a generator with

$$
t^{2}-a t+b=0
$$

The image of the trace map is $a R+2 R$. If a is invertible, one may take $x=t a^{-1}$. If $a=0$, then 2 must be invertible and $x=t+2^{-1}$ does the job.

References

[1] M. Rost, The discriminant algebra of a cubic algebra, Preprint, 2002, 〈www.math.uni-biele feld.de/ ~rost/binary.html\#cub-disc \rangle.
[2] J. Serre, Topics in Galois theory, Research Notes in Mathematics, vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992, Lecture notes prepared by Henri Damon [Henri Darmon], With a foreword by Darmon and the author.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

E-mail address: rost at math.uni-bielefeld.de
$U R L$: www.math.uni-bielefeld.de/~rost

