ON THE DISCRIMINANT OF CUBIC POLYNOMIALS

MARKUS ROST

CONTENTS

1. Introduction	1
2. Preliminaries	1
3. A presentation of the discriminant	2
3.1. The case of an element of norm 1	2
3.2. The case of an element of norm -1	3
4. On the generic C_3 -torsor	5
5. On $\mathbf{Z}/2\mathbf{Z}$ -torsors	6
References	7

1. INTRODUCTION

The starting point of this text was a certain presentation of the discriminant of cubic forms (see Lemma 1, for a quick grasp see Subsection 3.2).

I observed it after looking more closely at the parametrization of cubic cyclic extensions presented in [2] (see equation (1)).

At the beginning there were just formulas, I had no good explanation (see Remark 4). However, some weeks after writing a first version of this text, I found an interpretation (see Remark 5, in particular (3)). Comments are welcome anyway.

At some point I added brief descriptions of $\mathbf{Z}/n\mathbf{Z}$ -torsors (first for n = 3, then also for n = 2).

Here one looks for an embedding of $\mathbf{Z}/n\mathbf{Z}$ into some affine algebraic group G which has no non-trivial torsors over fields (or local rings). The group G should be as small as possible, at least somewhat pleasant.

As for $\mathbb{Z}/2\mathbb{Z}$ -torsors, there is such a group G which is an open subscheme of the affine line \mathbb{A}^1 (see Section 5).

For $\mathbb{Z}/3\mathbb{Z}$ -torsors there is such a group G as well. It is an open subscheme of the projective line \mathbb{P}^1 (see Section 4). After removing the unit element in $G/(\mathbb{Z}/3\mathbb{Z})$ one ends up with the parametrization of cubic cyclic extensions presented in [2].

2. Preliminaries

Recall that the cubic polynomial

$$ax^3 + bx^2y + cxy^2 + dy^3$$

has the discriminant

$$b^{2}c^{2} - 4ac^{3} - 4db^{3} - 27a^{2}d^{2} + 18abcd$$

Date: August 17, 2018.

Let R be a ring and consider a normed cubic polynomial

$$P(x) = x^3 - Tx^2 + Qx - N$$

over R. Then its discriminant is

$$\Delta = T^2 Q^2 - 4Q^3 - 4NT^3 - 27N^2 + 18TQN$$

If we let

$$L = R[x] / (P(x))$$

be the cubic extension of R given by P, then we have

$$T = \operatorname{trace}_{L/R}(x)$$
$$Q = \operatorname{trace}_{L/R}(x^{\#})$$
$$N = \operatorname{norm}_{L/R}(x)$$

where $x^{\#}$ is the adjoint of x (characterized by $xx^{\#} = \operatorname{norm}_{L/R}(x)$).

3. A presentation of the discriminant

Let

$$H = R[\eta] / (\eta^3 - N)$$

For the norm of such a cubic "Kummer" extension one has the formula

$$N_{H/R}(a + b\eta + c\eta^2) = a^3 + Nb^3 + N^2c^3 - 3Nabc$$

Lemma 1. One has

$$\Delta = (TQ - 9N)^2 - 4N_{H/R}(Q + T\eta + 3\eta^2)$$

Proof. By computation:

$$(TQ - 9N)^2 = T^2Q^2 - 18TQN + 3 \cdot 27N^2$$
$$N_{H/R}(Q + T\eta + 3\eta^2) = Q^3 + NT^3 + 27N^2 - 9NQT$$

3.1. The case of an element of norm 1. Assume N = 1. Hence our polynomial is of the form

$$P(x) = x^3 - Tx^2 + Qx - 1$$

Lemma 1 yields

Corollary 2.

$$\Delta = (9 - TQ)^2 - 4(3 + T + Q)(3 + T\zeta + Q\zeta^2)(3 + T\zeta^2 + Q\zeta)$$

with

$$1 + \zeta + \zeta^2 = 0$$

3.2. The case of an element of norm -1. Sometimes it is convenient to consider the case N = -1 (this is equivalent to the case N = 1, one just has to replace x by -x).

In this case one has

$$P(x) = x^3 - Tx^2 + Qx + 1$$

and

$$\Delta = (9 + TQ)^2 - 4(3 - T + Q)(3 - T\zeta + Q\zeta^2)(3 - T\zeta^2 + Q\zeta)$$

again with $1 + \zeta + \zeta^2 = 0$.

Remark 3. It follows that if

$$Q = T - 3$$
$$N = -1$$

then Δ is a square. If Δ is invertible, this means that the cubic extension is cyclic. Indeed, in [2] one finds the following description of cubic cyclic extensions:

(1)
$$x^3 - Tx^2 + (T-3)x + 1 = 0$$

The discriminant is $(T^2 - 3T + 9)^2$ and

$$\sigma(x) = \frac{1}{1-x}$$

is an automorphism of the corresponding cubic extension of order 3.

Remark 4. I found Lemma 1 as follows.

From the description

$$x^3 - Tx^2 + (T-3)x + 1$$

of a generic cubic cyclic extension in [2] (see above) it follows that if

$$Q = T - 3$$
$$N = -1$$

then $\Delta = (TQ + 9)^2$. Thus, if N = -1, then

$$Z(T,Q) = \Delta - (TQ+9)^2$$

must be divisible by Q - T + 3 (as a polynomial in T, Q).

But the expressions Δ and TQ + 9 don't change if x is replaced by ζx with ζ a cube root of unity. Thus the polynomial Z is invariant under

$$T \mapsto \zeta T, \qquad Q \mapsto \zeta^2 Q$$

Therefore Z is divisible by $Q\zeta^2 - T\zeta + 3$ as well.

By working over $R = \mathbf{Q}$ (or $R = \mathbf{Z}$) one concludes

$$Z(T,Q) = cA(1)A(\zeta)A(\zeta^{2}) \qquad (A(t) = Qt^{2} - Tt + 3)$$

where $1, \zeta, \zeta^2$ are the roots of $t^3 - 1$ (so that $1 + \zeta + \zeta^2 = 0$). The quantity c must be a constant for degree reasons. One finds c = -4.

It is then obvious to get rid of the condition $N = \pm 1$ by using cube roots of N.

Remark 5. Meanwhile I have found an interpretation. Here is a brief account. Let us first write down things again: The cubic polynomial

$$f = ax^3 + bx^2y + cxy^2 + dy^3$$

has discriminant

$$\Delta = b^2 c^2 - 4ac^3 - 4db^3 - 27a^2 d^2 + 18abcd$$
$$= (bc - 9ad)^2 - 4\Phi$$

with

$$\Phi = ac^3 + db^3 + 27a^2d^2 - 9abcd$$

The problem is to interpret the quantity Φ . And to explain why for a = d = 1 there is the factorization

(2)
$$\Phi_{a=d=1} = (3+b+c)(3+b\zeta+c\zeta^2)(3+b\zeta^2+c\zeta)$$

with $1 + \zeta + \zeta^2 = 0$.

It turns out that Φ is the determinant of a certain 3×3 matrix, namely

 $\Phi = \det A$

with

$$A = \begin{pmatrix} 3ad & bd & ca \\ c & 3d & b \\ b & c & 3a \end{pmatrix}$$

Also the term $(bc - 9ad)^2$ appears as determinant, namely simply as

$$(bc - 9ad)^2 = \det \begin{pmatrix} B & 0 \\ 0 & B \end{pmatrix}, \qquad B = \begin{pmatrix} 3a & b \\ c & 3d \end{pmatrix}$$

This yields the presentation

(3)
$$\Delta = \det \begin{pmatrix} 3a & b \\ c & 3d \end{pmatrix}^2 - 4 \det \begin{pmatrix} 3ad & bd & ca \\ c & 3d & b \\ b & c & 3a \end{pmatrix}$$

of the discriminant.

Note that if a = d = 1, then A becomes

$$A_{a=d=1} = \begin{pmatrix} 3 & b & c \\ c & 3 & b \\ b & c & 3 \end{pmatrix} = 3 + b\sigma + c\sigma^{2}$$

where σ the permutation matrix

$$\sigma = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

This readily explains the factorization (2).

In particular: If a = d = 1 and 3 + b + c = 0, then A vanishes on (1, 1, 1), so det A = 0 and from (3) it follows that Δ is a square. Hence the cubic extension associated to

$$x^{3} + bx^{2}y - (b+3)xy^{2} + y^{3}$$

is cyclic (as long as it is separable, that is if $b^2 + 3b + 9$ is invertible).

4

How to find the matrix A (and B)? That's a longer story. Clearly the quantity Φ is not an invariant of the cubic form f. To get a hand on Φ one somehow has to break the GL₂-symmetry. It turns out that it is appropriate to choose from the beginning a non-degenerate quadratic form q up to multiplication with scalars. This reduces the symmetry group GL₂ to the similarity group GO(q) of q. (The groups GO(q) are the normalizers of the maximal tori in GL₂; if q = xy then GO(q) = $\mathbf{G}_{\mathrm{m}}^2 \rtimes \mathbf{Z}/2\mathbf{Z}$.)

After some juggling one obtains a certain linear morphism A between certain rank 3 modules. In the special case q = xy, the morphism A has the matrix presentation given above.

As a side result, one obtains a somewhat natural presentation of the discriminant Δ as a "square mod 4". That Δ is a square mod 4 is clear from the fact that Δ is the discriminant of a quadratic algebra, namely of the discriminant algebra of the cubic form. Under presence of the quadratic form q = xy that algebra is of the form

$$T^2 - T(bc - 9ad) + \Phi$$

(For the discriminant algebra of a cubic algebra see [1].)

4. On the generic C_3 -torsor

We conclude with some remarks about (1).

Remark 6. In [2] it is shown that equation (1) is versal for cyclic cubic extensions. One can show the following somewhat more precise remark: For any field k, any cubic cyclic field extension of k is given by (1) for some $T \in k$. This holds as well for the split cubic extension k^3 if and only if $|k| \ge 5$.

Remark 7. Consider the flat R-algebras of rank 2

$$A = R[\theta]/(\theta^2 + \theta + 1)$$
$$B = R[\eta]/(\eta^2 + 3\eta + 9)$$

The algebra homomorphism

$$j \colon B \to A$$
$$\eta \mapsto 3\theta$$

is injective if 3 is not a zero divisor. Let

$$\begin{split} \widetilde{\varphi} \colon A^{\times} &\to A^{\times} \\ \widetilde{\varphi}(z) = \frac{z^3}{N_{A/R}(z)} = \frac{z^2}{\bar{z}} \end{split}$$

where $\bar{z} = T_{A/R}(z) - z$ denotes the canonical involution on the quadratic algebra A. One finds that $\tilde{\varphi}$ has image in B. More precisely: The map

$$\varphi: A^{\times} \to B^{\times}$$
$$\varphi(x+y\theta) = \frac{(x^3 - 3xy^2 + y^3) + xy(x-y)\eta}{x^2 - xy + y^2}$$

has the property

$$(j \circ \varphi)(z) = \widetilde{\varphi}(z)$$

Note that $\varphi(a) = a$ for $a \in \mathbb{R}^{\times}$.

MARKUS ROST

Moreover, φ is a group homomorphism. It suffices to check this for $R = \mathbb{Z}$. But then j is injective and the claim follows from the multiplicativity of $\tilde{\varphi}$. Let

$$C_3 = \{1, \theta, \theta^2\} \subset A^{\diamond}$$

(This is the constant group scheme $\mathbf{Z}/3\mathbf{Z}$ even in characteristic 3.)

One finds that the resulting sequence

$$1 \to C_3 \to \mathbf{G}_{\mathrm{m}}(A)/\mathbf{G}_{\mathrm{m}} \xrightarrow{\varphi} \mathbf{G}_{\mathrm{m}}(B)/\mathbf{G}_{\mathrm{m}} \to 1$$

of algebraic groups is exact. So if R is a local ring, the sequence

$$1 \to C_3 \to A^{\times}/R^{\times} \xrightarrow{\varphi} B^{\times}/R^{\times} \to H^1(R,C_3) \to 0$$

is exact (use $H^1(R, \mathbf{G}_m(A)) = 0$ in some appropriate flat topology). To summarize:

Corollary 8. For local rings R, there is a bijection between the group

$$B^{\times}/\varphi(A^{\times})$$

and the set of isomorphism classes of pairs (L, σ) where L is a cubic etale extension of R and σ is a R-automorphism of L of order 3.

Note that

$$\mathbf{G}_{\mathrm{m}}(A)/\mathbf{G}_{\mathrm{m}} = \mathbf{P}^{1} \setminus \{u^{2} - uv + v^{2} = 0\}$$
$$\mathbf{G}_{\mathrm{m}}(B)/\mathbf{G}_{\mathrm{m}} = \mathbf{P}^{1} \setminus \{U^{2} - 3UV + 9V^{2} = 0\}$$

The morphism φ extends to the morphism

$$\mathbf{P}^1 \to \mathbf{P}^1/C_3 \simeq \mathbf{P}^1$$

considered in [2].

5. On $\mathbf{Z}/2\mathbf{Z}$ -torsors

Since we are about such things, let us also look at the case of quadratic etale extensions ($\mathbb{Z}/2\mathbb{Z}$ -torsors).

Here one considers the groups of invertible matrices

$$G = \mathbf{A}^{1} \setminus \{\frac{1}{2}\} = \operatorname{Spec} \mathbf{Z}[a][(1-2a)^{-1}] = \{X(a)\}$$
$$H = \mathbf{A}^{1} \setminus \{\frac{1}{4}\} = \operatorname{Spec} \mathbf{Z}[b][(1-4b)^{-1}] = \{Y(b)\}$$

where

$$X(a) = \begin{pmatrix} 1 & a \\ 0 & 1-2a \end{pmatrix} \qquad (1-2a \neq 0)$$
$$Y(b) = \begin{pmatrix} 1 & b \\ 0 & 1-4b \end{pmatrix} \qquad (1-4b \neq 0)$$

There are the natural group homomorphisms

$$j \colon H \to G$$
$$j(Y(b)) = X(2b)$$

and

$$\varphi \colon G \to H$$
$$\varphi(X(a)) = Y(a - a^2)$$

 $\mathbf{6}$

Note that

$$(j \circ \varphi)(z) = z^2$$

The morphism φ yields the exact sequence

(4) $0 \to \mathbf{Z}/2\mathbf{Z} \to G \xrightarrow{\varphi} H \to 1$

of algebraic groups where

$$\mathbf{Z}/2\mathbf{Z} = \{X(0), X(1)\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \right\}$$

If 2 is invertible, (4) becomes

$$1 \to \mu_2 \to \mathbf{G}_{\mathrm{m}} \xrightarrow{x \mapsto x^2} \mathbf{G}_{\mathrm{m}} \to 1$$

In characteristic 2, (4) becomes

$$0 \to \mathbf{F}_2 \to \mathbf{G}_a \xrightarrow{x \mapsto x^2 + x} \mathbf{G}_a \to 0$$

The resulting generic $\mathbf{Z}/2\mathbf{Z}$ -torsor is

$$x^2 - x + b = 0$$

with discriminant 1 - 4b.

Remark 9. It follows that a separable quadratic extension of a local ring has a generator of trace 1. Let us establish this directly.

Note first that for a separable extension the trace is an epimorphism. Then apply the following more general observation:

Lemma 10. Let L/R be a quadratic extension whose trace map $T: L \to R$ is an epimorphism. If R is local, there exists a generator $x \in L$ with T(x) = 1.

Proof. For x to be a generator means that 1, x is an R-basis of L. This holds if and only if it holds after passing to the residue class field k of R. Moreover, T(x) is invertible if and only if its image in k is nonzero.

Therefore we may assume that R is a field. Then $x \in L$ is a generator if and only if $x \notin R$.

The affine line $T^{-1}(1) \subset L$ and the vector subspace $R \subset L$ meet in at most one point (one has $T^{-1}(1) \cap R = \emptyset$ if and only if char R = 2). Hence $T^{-1}(1) \setminus R \neq \emptyset$ and the claim follows.

More explicitly: Let $t \in L$ be a generator with

$$t^2 - at + b = 0$$

The image of the trace map is aR + 2R. If a is invertible, one may take $x = ta^{-1}$. If a = 0, then 2 must be invertible and $x = t + 2^{-1}$ does the job.

References

- M. Rost, The discriminant algebra of a cubic algebra, Preprint, 2002, (www.math.uni-biele feld.de/~rost/binary.html#cub-disc).
- [2] J. Serre, *Topics in Galois theory*, Research Notes in Mathematics, vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992, Lecture notes prepared by Henri Damon [Henri Darmon], With a foreword by Darmon and the author.

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, POSTFACH 100131, D-33501 BIELE-FELD, GERMANY

E-mail address: rost *at* math.uni-bielefeld.de *URL:* www.math.uni-bielefeld.de/~rost