NOTES ON CUBIC EQUATIONS

MARKUS ROST

For a cubic element (or a triangle) we define its "basic line". It leads to the normalization (4) of cubic equations. The method works in all characteristics for generic cubic elements. We describe for this 1-parameter family the discriminant extension and the corresponding variant of Cardano's formula.

1. Basic invariants. Let F be a field and let K be a cubic extension of F. We consider the functions

$$
T, Q, N, A, B, D, M, f, g: K \rightarrow F, \quad \delta, \varphi: K \rightarrow K
$$

defined as follows: For $x \in K$ the polynomial

$$
P_{x}(r)=r^{3}-T(x) r^{2}+Q(x) r-N(x)
$$

is the characteristic polynomial of x. In other words, $T(x)$ is the trace of $x, N(x)$ is the norm of x, and, for invertible x,

$$
Q(x)=T\left(x^{-1}\right) N(x)
$$

Moreover

$$
\begin{aligned}
\delta(x) & =\left.\frac{\mathrm{d} P_{x}(r)}{\mathrm{d} r}\right|_{r=x}=3 x^{2}-2 T(x) x+Q(x) \\
\varphi(x) & =3 x-T(x) \\
\Delta(x) & =N\left(\varphi(x)^{2}-4 \delta(x)\right) \\
A(x) & =N(\varphi(x)) \\
B & =\frac{\Delta-A^{2}}{4} \\
D(x) & =T(\delta(x)) \\
M & =Q T-9 N \\
f & =\frac{T D-M}{D} \\
g & =-\frac{A}{D}
\end{aligned}
$$

One finds

$$
\begin{aligned}
D & =T^{2}-3 Q \\
A & =-(3 M-2 T D) \\
3 f+g & =T \\
2 f+g & =\frac{M}{D}
\end{aligned}
$$

The polynomial $\Delta(x)$ is the discriminant of x.
Remark 1. Suppose $K=F \times F \times F$. Then for $x=\left(x_{0}, x_{1}, x_{2}\right)$ one has

$$
\begin{aligned}
D(x) & =x_{0}^{2}+x_{1}^{2}+x_{2}^{2}-x_{0} x_{1}-x_{1} x_{2}-x_{2} x_{0} \\
& =\left(x_{0}+\zeta x_{1}+\zeta^{2} x_{2}\right)\left(x_{0}+\zeta^{2} x_{1}+\zeta x_{2}\right)
\end{aligned}
$$

where ζ is subject to

$$
1+\zeta+\zeta^{2}=0
$$

Remark 2. Note that $1+\zeta+\zeta^{2}=0$ means that ζ is a cube root of unity (and is primitive as long as char $F \neq 3$). Thus, if $F=\mathbf{C}$ (complex numbers) in Remark 1, then $D(x)=0$ if and only if the Euclidean triangle x_{0}, x_{1}, x_{2} is equilateral.
Remark 3. Suppose $K=F \times F \times F$. Then for $x=\left(x_{0}, x_{1}, x_{2}\right)$ one has

$$
A(x)=\left(2 x_{0}-x_{1}-x_{2}\right)\left(2 x_{1}-x_{2}-x_{0}\right)\left(2 x_{2}-x_{0}-x_{1}\right)
$$

Lemma. For $x \in K$ with $D(x) \neq 0$ and $a, b \in F$ one has

$$
\begin{align*}
D(a x+b) & =a^{2} D(x) \tag{1}\\
g(a x+b) & =a g(x) \tag{2}\\
f(a x+b) & =a f(x)+b
\end{align*}
$$

Proof. Claim (1) is easy to check, for instance using Remark 1, or by using a similar property for $\delta(x)$.

As for (2), note that $T(x)-3 x$ is invariant under translations $x \mapsto x+b$. The same is true for $A(x)$ and also for D by (1). The claim is now clear from $\operatorname{deg} g=1$.

Claim (3) follows easily from (2) and $3 f+g=T$.

2. The basic line.

Definition. For $x \in K$ with $D(x) \neq 0$ the function

$$
\ell_{x}(s)=f(x)+s g(x), \quad s \in F
$$

is called the basic line of x.
Clearly one has

$$
\ell_{a x+b}(s)=a \ell_{x}(s)+b
$$

Remark 4. Let x_{0}, x_{1}, x_{2} be an Euclidean triangle which is not equilateral. Then $\ell_{\left(x_{0}, x_{1}, x_{2}\right)}(s)$ (understanding $K=\mathbf{C} \times \mathbf{C} \times \mathbf{C}$) determines a natural line associated to the triangle.

Apart from the degenerate cases $D(x)=0$ and $A(x)=0$, the basic line is defined and non-degenerate. We thus can normalize it by means of an affine transformation $x \mapsto a x+b$, so that $f(x)=0$ and $g(x)=1$. This yields the following normalization for the basic parameters:

$$
T=1, \quad 9 N-4 Q+1=0
$$

This gives

$$
(T, Q, N)=(1,9 t-2,4 t-1)
$$

with $t \in F$ and we get the following normalized form of a cubic equation

$$
\begin{equation*}
x^{3}-x^{2}+(9 t-2) x-(4 t-1)=0 \tag{4}
\end{equation*}
$$

Remark 5. One finds

$$
t=\frac{B}{A^{2}}
$$

The invariant t is the basic modulus for triangles up to affine transformations.
I think it can serve as a toy model for the j-invariant for elliptic curves.
Remark 6. For $t=0$ equation (4) becomes $x^{3}-x^{2}-2 x+1=0$ which has the complex roots $x=2 \cos \frac{\pi}{7}, 2 \cos \frac{3 \pi}{7}, 2 \cos \frac{5 \pi}{7}$.

Remark 7. After the change of variables

$$
y=3 x-1
$$

one gets the family

$$
y^{3}-3 D y+D=0
$$

with $D=7-27 t$.
3. The discriminant. The discriminant of the cubic equation (4) is

$$
(1-4 t)(27 t-7)^{2}
$$

The discriminant algebra is after a normalization simply given by the quadratic equation

$$
u^{2}-u+t=0
$$

In fact, one may check that the linear fractional transformation

$$
\Phi(x)=\frac{u x+3 t-1}{x+u-1}
$$

defines an $F[u]$-automorphism of $F[u][x]$ of order 3. In particular, $\Phi(x)$ and $\Phi^{2}(x)$ are the conjugates of x.
4. Cardano's formula. Explicit solutions of (4) in terms of radicals are given by:

$$
\begin{aligned}
D & =7-27 t \\
w^{2}+w+D & =0 \\
w+\bar{w} & =-1 \\
w \bar{w} & =D \\
\alpha^{3} & =w^{2} \bar{w} \\
\bar{\alpha}^{3} & =\bar{w}^{2} w \\
\alpha \bar{\alpha} & =D \\
x & =\frac{1+\alpha+\bar{\alpha}}{3}
\end{aligned}
$$

This gives

$$
x=\frac{1}{6}(2-\sqrt[3]{(1-E)(1+\sqrt{E})}-\sqrt[3]{(1-E)(1-\sqrt{E})})
$$

with

$$
E=1-4 D=27(4 t-1)
$$

Here are further related formulas:

$$
\begin{aligned}
X & :=3 x-1 \\
D\left(\frac{1}{X+w}\right) & =D\left(\frac{1}{X+\bar{w}}\right)=0 \\
N(X+w) & =27(4 t-1) w \\
Y & :=\frac{X+w}{X+\bar{w}} \\
Y^{3} & =\frac{w}{\bar{w}}
\end{aligned}
$$

5. Appendix. (Added April 2004)

Here are more remarks:
Let

$$
\begin{gathered}
\phi_{t}: K \rightarrow K \\
\phi_{t}(x)=(1-3 t) x+t T(x)
\end{gathered}
$$

Then

$$
\begin{aligned}
D(x) & =Q(x)-Q\left(\phi_{1}(x)\right) \\
D(x) & =\left.\frac{-1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} Q\left(\phi_{t}(x)\right)\right|_{t=0} \\
f(x) & =\frac{\left.\frac{\mathrm{d}}{\mathrm{~d} t} N\left(\phi_{t}(x)\right)\right|_{t=0}}{\left.\frac{\mathrm{~d}}{\mathrm{~d} t} Q\left(\phi_{t}(x)\right)\right|_{t=0}} \\
f(x) & =\frac{N(x)-N\left(\phi_{1}(x)\right)}{Q(x)-Q\left(\phi_{1}(x)\right)}
\end{aligned}
$$

This is perhaps helpful to give a more geometric definition of f.
Moreover one has

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \Rightarrow x_{2}=x_{3}
$$

This is perhaps helpful to characterize f.
Can one draw any analogies between $x \mapsto f(x)$ and the orthocenter of a Euclidean triangle?

Department of Mathematics, The Ohio State University, 231 W 18th Avenue, ColumBus, OH 43210, USA

E-mail address: rost@math.ohio-state.edu
URL: http://www.math.ohio-state.edu/~rost

