THE METRIC OF A $(n+2)$-GON IN AFFINE n-SPACE

MARKUS ROST

Contents

Summary 1

1. Preliminaries 2
1.1. Affine spaces 2
1.2. Symmetric bilinear forms 2
1.3. The orientation module of a finite set 2
1.4. M-gons 3
1.5. $(n+2)$-gons 3
2. The main statements 4
2.1. The (dual) metric of a $(n+2)$-gon 4
2.2. The metric of a $(n+2)$-gon 5
2.3. Second presentation of Φ_{x} 7
2.4. Third presentation of Φ_{x} 8
2.5. The determinant of Φ_{x} 10
2.6. The dual $(n+2)$-gon 10
2.7. The involution of a $(n+2)$-gon 10
3. The case of a plane quadrangle 11
3.1. On the lines of a plane quadrangle 11
3.2. On the dual quadrangle 11
3.3. Selfdual quadrangles? 11
3.4. The determinant 11
3.5. Orthocentric quadrangles 12

Summary

For $n+2$ points in affine n-space in general position there is a canonical metric (unique up to a similarity factor) such that complementary faces of the $(n+2)$-gon are orthogonal.

We describe this metric in terms of a sum over all $(n-1)$-dimensional faces (see Proposition 2) and discuss some of its properties.

1. Preliminaries

1.1. Affine spaces. An affine space over a field F consists of a set A, a vector space V over F and an operation

$$
\begin{gathered}
A \times V \rightarrow A \\
(a, v) \mapsto a+v
\end{gathered}
$$

which makes A into a principal homogeneous V-space.
By a dilation of A we understand an automorphism of A whose linear part (in $\mathrm{GL}(V))$ is a scalar multiple of the identity.

Affine spaces can be presented as follows. Let W be a vector space over F and let

$$
\varepsilon: W \rightarrow F
$$

be an epimorphism. Then $A=\varepsilon^{-1}(1)$ is an affine space with underlying vector space $V=\varepsilon^{-1}(0)$. The pair (W, ε) is uniquely determined by $(A, V,+)$ up to unique isomorphism.

There are natural exact sequences

$$
0 \rightarrow \Lambda^{i+1} V \xrightarrow{\iota} \Lambda^{i+1} W \xrightarrow{\varepsilon_{i}} \Lambda^{i} V \rightarrow 0
$$

where ε_{i} is characterized by

$$
\varepsilon_{i}(a \wedge \omega)=\omega
$$

with $a \in A$ and $\omega \in \Lambda^{i} V$.
1.2. Symmetric bilinear forms. Let V be a finite-dimensional vector space and let L be a 1-dimensional vector space. We consider symmetric bilinear maps

$$
\Phi: V \times V \rightarrow L
$$

For dual vector spaces we use the notation $V^{\vee}=\operatorname{Hom}(V, F)$.
The map

$$
\begin{gathered}
\widehat{\Phi}: V \rightarrow \operatorname{Hom}(V, L)=V^{\vee} \otimes L \\
\widehat{\Phi}(v)(w)=\Phi(v, w)
\end{gathered}
$$

is called the duality associated to Φ.
Let $n=\operatorname{dim} V$. The determinant of Φ is defined as

$$
\operatorname{det}(\Phi)=\Lambda^{n} \widehat{\Phi} \in \operatorname{Hom}\left(\Lambda^{n} V, \Lambda^{n}\left(V^{\vee} \otimes L\right)\right)=\left(\Lambda^{n} V\right)^{\otimes-2} \otimes L^{\otimes n}
$$

1.3. The orientation module of a finite set. Let M be a finite set. The orientation module of M is defined as

$$
\mathcal{O}_{M}=\Lambda^{|M|} \mathbf{Z}[M]
$$

where $\mathbf{Z}[M]$ is the free abelian group on M. The group \mathcal{O}_{M} is free of rank 1 and the natural action of the group of permutations of M on \mathcal{O}_{M} is given by the signum. Clearly $\mathcal{O}_{M} \otimes \mathcal{O}_{M} \equiv \mathbf{Z}$.
1.4. M-gons. Let A be an affine space (with notations $V, \varepsilon: W \rightarrow F$ as above) and let M be a finite set. By an M-gon in A we understand a map

$$
\begin{gathered}
x: M \rightarrow A \\
i \mapsto x_{i}
\end{gathered}
$$

By a r-gon we understand a M-gon for some set M with $|M|=r$, usually $M=$ $\{1, \ldots, r\}$.

For $v \in V$ we denote by $x+v$ the translated M-gon, defined by

$$
(x+v)_{i}=x_{i}+v
$$

with $i \in M$.
For a M-gon $x \in A^{M}$ and a subset $I \subset M$ we denote by

$$
A_{I}(x) \subset A
$$

the affine span of the points x_{i} with $i \in I$. Its underlying vector space

$$
V_{I}(x) \subset V
$$

is generated by the elements $x_{i}-x_{j}$ with $i, j \in I$.
We denote by

$$
\begin{aligned}
W^{M} & \rightarrow \Lambda^{M} W \\
x & \mapsto \wedge x
\end{aligned}
$$

be the universal alternating map. Note that

$$
\Lambda^{M} W \equiv \Lambda^{|M|} W \otimes \mathcal{O}_{M}
$$

1.5. $(n+2)$-gons. Let n be an integer, let A be an affine space with $\operatorname{dim} A=n$, let M be a set with $|M|=n+2$ and let $x \in A^{M}$ be a M-gon in A. For $i \in M$ we define the element

$$
\theta_{i}(x) \in \Lambda^{n} V \otimes \mathcal{O}_{M}
$$

by

$$
\theta_{i}(x)=\varepsilon_{n}\left(x_{\sigma(1)} \wedge \cdots \wedge x_{\sigma(n+1)}\right) \otimes(i \wedge \sigma(1) \wedge \cdots \wedge \sigma(n+1))
$$

where

$$
\sigma:\{1, \ldots, n+1\} \rightarrow M \backslash\{i\}
$$

is any bijection.
The element $\theta_{i}(x)$ has the standard interpretation of a volume element for the i-th face of x. It is invariant under translations:

$$
\theta_{i}(x+v)=\theta_{i}(x)
$$

This can be easily deduced for instance from

$$
x_{1} \wedge \cdots \wedge x_{r}=x_{1} \wedge\left(x_{2}-x_{1}\right) \wedge \cdots \wedge\left(x_{r}-x_{1}\right)
$$

with $x_{i} \in A$.
We say that x is nondegenerate if $\theta_{i}(x) \neq 0$ for all $i \in M$.
Lemma 1. Let $\operatorname{dim} A=n$, let M be a set with $|M|=n+2$ and let $x \in A^{M}$ be a M-gon in A. Then

$$
\sum_{i \in M} \theta_{i}(x) x_{i}=0
$$

in $\Lambda^{n} V \otimes \mathcal{O}_{M} \otimes W$.

In particular, by applying ε, one gets

$$
\sum_{i \in M} \theta_{i}(x)=0
$$

in $\Lambda^{n} V \otimes \mathcal{O}_{M}$.
Proof. Basic multilinear algebra: For $x_{i} \in W$ the expression

$$
\sum_{i=1}^{n+2}(-1)^{i}\left(x_{1} \wedge \cdots \widehat{x_{i}} \cdots \wedge x_{n+2}\right) x_{i}
$$

is alternating in the x_{i}. Since $n+2>\operatorname{dim} W$, it vanishes.
For a subset $I \subset M$ we write

$$
\theta_{I}(x)=\prod_{i \in I} \theta_{i}(x) \in\left(\Lambda^{n} V \otimes \mathcal{O}_{M}\right)^{\otimes|I|}
$$

Moreover for $i \in M$ we write

$$
\rho_{i}(x)=\theta_{M \backslash\{i\}}(x)
$$

2. The main statements

Let $n=\operatorname{dim} A$, let M be a set with $|M|=n+2$ and let $x \in A^{M}$ be a M-gon in A.

Notations $V, \varepsilon: W \rightarrow F$ are as in the previous section.
2.1. The (dual) metric of a $(n+2)$-gon. This subsection contains a simple definition of the metric. I found it only after typing the other parts of the text, which turned out to be much more complicated than necessary.

Let

$$
L=\Lambda^{n} V \otimes \mathcal{O}_{M}
$$

Let $a, b \in A$. One considers the tensor

$$
\Omega_{x}=\sum_{i \in M}\left(x_{i}-a\right) \otimes\left(x_{i}-b\right) \otimes \theta_{i}(x) \in V \otimes V \otimes L
$$

Proposition 1. (1) The element Ω_{x} does not depend on the choice of $a, b \in A$.
(2) The element Ω_{x} is invariant under switch involution on $V \otimes V$.
(3) Let $I \subset M$ and let $f \in V^{\vee}$. If $f\left(V_{I}(x)\right)=0$, then

$$
\left(f \otimes \operatorname{id}_{V} \otimes \operatorname{id}_{L}\right)\left(\Omega_{x}\right) \in V_{M \backslash I}(x) \otimes L
$$

Proof. (1) follows from $\sum_{i} \theta_{i}(x) x_{i}=0$ (cf. Lemma 1). (2) is obvious. As for (3), we may assume $I \neq \varnothing, M$. Choose $a \in A_{I}(x)$ and $b \in A_{M \backslash I}(x)$. Then

$$
\left(f \otimes \operatorname{id}_{V} \otimes \operatorname{id}_{L}\right)\left(\Omega_{x}\right)=\sum_{i \in M \backslash I} f\left(x_{i}-a\right)\left(x_{i}-b\right) \otimes \theta_{i}(x)
$$

The tensor Ω_{x} defines a symmetric duality

$$
\widehat{\Omega}_{x}: V^{\vee} \rightarrow V \otimes L
$$

Consider its $(n-1)$-fold exterior power

$$
\Lambda^{n-1} \widehat{\Omega}_{x}: \Lambda^{n-1} V^{\vee} \rightarrow \Lambda^{n-1} V \otimes L^{\otimes(n-1)}
$$

Since $\Lambda^{n-1} V=V^{\vee} \otimes \Lambda^{n} V$, it defines a symmetric bilinear form

$$
\Phi_{x}: V \times V \rightarrow L^{\otimes(n+1)}
$$

We call the form Φ_{x} the metric of x.
In the following we give some other descriptions.
2.2. The metric of a $(n+2)$-gon. We consider the following symmetric bilinear map on $\Lambda^{2} W$ with values in an appropriate 1-dimensional vector space:

$$
\begin{gathered}
\varphi_{x}: \Lambda^{2} W \times \Lambda^{2} W \rightarrow\left(\Lambda^{n} V \otimes \mathcal{O}_{M}\right)^{\otimes(n+1)} \\
\varphi_{x}(\alpha, \beta)=\sum_{\substack{I \subset M \\
|I|=n-1}} \theta_{I}(x) \varepsilon_{n}\left(\alpha \wedge\left(\left.\wedge x\right|_{I}\right)\right) \varepsilon_{n}\left(\beta \wedge\left(\left.\wedge x\right|_{I}\right)\right)
\end{gathered}
$$

This is to be read as follows. The product $\alpha \wedge\left(\left.\wedge x\right|_{I}\right)$ is an element of

$$
\Lambda^{2} W \wedge \Lambda^{I} W=\Lambda^{2} W \wedge \Lambda^{|I|} W \otimes \mathcal{O}_{I}=\Lambda^{n+1} W \otimes \mathcal{O}_{I}
$$

Thus $\varepsilon_{n}\left(\alpha \wedge\left(\left.\wedge x\right|_{I}\right)\right)$ is an element of $\Lambda^{n} V \otimes \mathcal{O}_{I}$ and since $\mathcal{O}_{I} \otimes \mathcal{O}_{I} \equiv \mathbf{Z}$ we have

$$
\varepsilon_{n}\left(\alpha \wedge\left(\left.\wedge x\right|_{I}\right)\right) \varepsilon_{n}\left(\beta \wedge\left(\left.\wedge x\right|_{I}\right)\right) \in\left(\Lambda^{n} V\right)^{\otimes 2}=\left(\Lambda^{n} V \otimes \mathcal{O}_{M}\right)^{\otimes 2}
$$

Lemma 2. If $\alpha \in \Lambda^{2} V$ or $\beta \in \Lambda^{2} V$, then $\varphi_{x}(\alpha, \beta)=0$.
Proof. Suppose $\alpha \in \Lambda^{2} V$. Fix $a \in A$.
For $z \in A^{n-1}$ one has

$$
\begin{aligned}
\varepsilon_{n}(\alpha \wedge(\wedge z)) & =\varepsilon_{n}\left(\alpha \wedge z_{1} \wedge \cdots \wedge z_{n-1}\right) \\
& =\varepsilon_{n}\left(\alpha \wedge z_{1} \wedge\left(z_{2}-z_{1}\right) \wedge \cdots \wedge\left(z_{n-1}-z_{1}\right)\right) \\
& =\varepsilon_{n}\left(\alpha \wedge a \wedge\left(z_{2}-z_{1}\right) \wedge \cdots \wedge\left(z_{n-1}-z_{1}\right)\right) \\
& =\sum_{i=1}^{n-1}(-1)^{i+1} \varepsilon_{n}\left(\alpha \wedge a \wedge z_{1} \wedge \cdots \widehat{z_{i}} \cdots \wedge z_{n-1}\right)
\end{aligned}
$$

Moreover

$$
\varepsilon_{n}(\beta \wedge(\wedge z))=(-1)^{i+1} \varepsilon_{n}\left(\beta \wedge z_{i} \wedge z_{1} \wedge \cdots \widehat{z_{i}} \cdots \wedge z_{n-1}\right)
$$

Hence

$$
\begin{gathered}
\varepsilon_{n}(\alpha \wedge(\wedge z)) \varepsilon_{n}(\beta \wedge(\wedge z))= \\
\sum_{i=1}^{n-1} \varepsilon_{n}\left(\alpha \wedge a \wedge z_{1} \wedge \cdots \widehat{z_{i}} \cdots \wedge z_{n-1}\right) \varepsilon_{n}\left(\beta \wedge z_{i} \wedge z_{1} \wedge \cdots \widehat{z_{i}} \cdots \wedge z_{n-1}\right)
\end{gathered}
$$

This shows that

$$
\begin{gathered}
\varepsilon_{n}\left(\alpha \wedge\left(\left.\wedge x\right|_{I}\right)\right) \varepsilon_{n}\left(\beta \wedge\left(\left.\wedge x\right|_{I}\right)\right)= \\
\sum_{\substack{i \in I \\
K=I \backslash\{i\}}} \varepsilon_{n}\left(\alpha \wedge a \wedge\left(\left.\wedge x\right|_{K}\right)\right) \varepsilon_{n}\left(\beta \wedge x_{i} \wedge\left(\left.\wedge x\right|_{K}\right)\right)
\end{gathered}
$$

We get

$$
\begin{aligned}
\varphi_{x}(\alpha, \beta) & =\sum_{\substack{I \subset M \\
|I|=n-1}} \theta_{I}(x) \varepsilon_{n}\left(\alpha \wedge\left(\left.\wedge x\right|_{I}\right)\right) \varepsilon_{n}\left(\beta \wedge\left(\left.\wedge x\right|_{I}\right)\right) \\
& =\sum_{\substack{K \subset M \\
|K|=n-2}} \sum_{i \in M \backslash K} \theta_{I}(x) \varepsilon_{n}\left(\alpha \wedge a \wedge\left(\left.\wedge x\right|_{K}\right)\right) \varepsilon_{n}\left(\beta \wedge x_{i} \wedge\left(\left.\wedge x\right|_{K}\right)\right)
\end{aligned}
$$

For $i \in K$ one has $x_{i} \wedge\left(\left.\wedge x\right|_{K}\right)=0$. Hence we may extend the range of i to all of M and get

$$
\varphi_{x}(\alpha, \beta)=\sum_{\substack{K \subset M \\|K|=n-2}} \sum_{i \in M} \theta_{K}(x) \theta_{i}(x) \varepsilon_{n}\left(\alpha \wedge a \wedge\left(\left.\wedge x\right|_{K}\right)\right) \varepsilon_{n}\left(\beta \wedge x_{i} \wedge\left(\left.\wedge x\right|_{K}\right)\right)
$$

This vanishes because of $\sum_{i} \theta_{i}(x) x_{i}=0$ (cf. Lemma 1).
By Lemma 2, the form φ_{x} is essentially a form on $\Lambda^{2} W / \Lambda^{2} V \simeq V$. We describe this as follows:

Proposition 2. Let $a, b \in A$. The form

$$
\Phi_{x}(v, w)=\sum_{\substack{I \subset M \\|I|=n-1}} \theta_{I}(x) \varepsilon_{n}\left(v \wedge a \wedge\left(\left.\wedge x\right|_{I}\right)\right) \varepsilon_{n}\left(w \wedge b \wedge\left(\left.\wedge x\right|_{I}\right)\right) .
$$

does not depend on the choices of a and b.
We call the form Φ_{x} the metric of x.
Lemma 3. Let $i, j, k, \ell \in M$ be distinct elements. Then

$$
\begin{align*}
& \Phi_{x}\left(x_{i}-x_{j}, x_{k}-x_{\ell}\right)=0 \tag{1}\\
& \Phi_{x}\left(x_{i}-x_{j}, x_{i}-x_{k}\right)=-\rho_{i}(x) \\
& \Phi_{x}\left(x_{i}-x_{j}, x_{i}-x_{j}\right)=-\rho_{i}(x)-\rho_{j}(x)
\end{align*}
$$

Proof. It is easy to see that (1) and (3) follow from (2).
As for (2) we choose $a=b=x_{i}$ in the definition of Φ_{x}. Then
$\Phi_{x}\left(x_{i}-x_{j}, x_{i}-x_{k}\right)=\sum_{\substack{I \subset M \\|I|=n-1}} \theta_{I}(x) \varepsilon_{n}\left(-x_{j} \wedge x_{i} \wedge\left(\left.\wedge x\right|_{I}\right)\right) \varepsilon_{n}\left(-x_{k} \wedge x_{i} \wedge\left(\left.\wedge x\right|_{I}\right)\right)$
Every summand vanishes except for $I=M \backslash\{i, j, k\}$ and for this term the last two factors amount to $-\theta_{j}(x) \theta_{k}(x)$. This shows (2).

Remark 1. One may check (3) also as follows. We have with $a=b=x_{j}$

$$
\Phi_{x}\left(x_{i}-x_{j}, x_{i}-x_{j}\right)=\sum_{\substack{I \subset M \\|I|=n-1}} \theta_{I}(x) \varepsilon_{n}\left(x_{i} \wedge x_{j} \wedge\left(\left.\wedge x\right|_{I}\right)\right)^{2}
$$

Here every summand vanishes except for $I=M \backslash\{i, j, h\}$ with $h \neq i, j$. Hence

$$
\begin{aligned}
\Phi_{x}\left(x_{i}-x_{j}, x_{i}-x_{j}\right) & =\sum_{\substack{h \in M \backslash\{i, j\} \\
I=M \backslash\{i, j, h\}}} \theta_{I}(x) \varepsilon_{n}\left(x_{i} \wedge x_{j} \wedge\left(\left.\wedge x\right|_{I}\right)\right)^{2} \\
& =\sum_{\substack{h \in M \backslash\{i, j\} \\
I=M \backslash\{i, j, h\}}} \theta_{I}(x) \theta_{h}(x)^{2} \\
& =\theta_{M \backslash\{i, j\}}(x) \sum_{h \in M \backslash\{i, j\}} \theta_{h}(x) \\
& =\theta_{M \backslash\{i, j\}}(x)\left(-\theta_{i}(x)-\theta_{j}(x)\right)
\end{aligned}
$$

Here we have used $\sum_{i} \theta_{i}(x)=0$ (cf. Lemma 1). Claim (3) is now immediate.
Remark 2. Condition (1) in Lemma 3 is equivalent to

$$
V_{I}(x) \perp_{\Phi_{x}} V_{M \backslash I}(x)
$$

for all subsets $I \subset M$.
Suppose x is nondegenerate. Then

$$
V=V_{I}(x)+V_{M \backslash I}(x)
$$

for all subsets $I \subset M$. Moreover the form Φ_{x} is determined by (1) in Lemma 3 up to multiplication by a scalar.

Remark 3. It is clear (for nondegenerate x) that if two lines of the M-gon are parallel, then its metric is isotropic.
2.3. Second presentation of Φ_{x}. Fix $h \in M$ and let $N=M \backslash\{h\}$. Then $|N|=n+1$. We assume that the family $\left(x_{i}\right)_{i \in N}$ is a basis for W.

Then there exists a symmetric bilinear map

$$
\Psi_{h}: W \times W \rightarrow\left(\Lambda^{n} V \otimes \mathcal{O}_{M}\right)^{\otimes(n+1)}
$$

with

$$
\begin{aligned}
& \Psi_{h}\left(x_{i}, x_{j}\right)=0 \\
& \Psi_{h}\left(x_{i}, x_{i}\right)=-\rho_{i}(x)
\end{aligned}
$$

for $i, j \in N, i \neq j$.
Lemma 4. One has

$$
\Psi_{h}\left(x_{i}, x_{h}\right)=\rho_{h}(x)
$$

for $i \in M$.
Proof. Indeed,

$$
\begin{aligned}
\Psi_{h}\left(x_{i}, x_{h}\right) & =\Psi_{h}\left(x_{i},-\theta_{h}(x)^{-1} \sum_{j \in N} \theta_{j}(x) x_{j}\right) \\
& =-\theta_{h}(x)^{-1} \theta_{i}(x)\left(-\rho_{i}(x)\right)=\rho_{h}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi_{h}\left(x_{h}, x_{h}\right) & =\Psi_{h}\left(x_{h},-\theta_{h}(x)^{-1} \sum_{j \in N} \theta_{j}(x) x_{j}\right) \\
& =-\theta_{h}(x)^{-1} \rho_{h}(x) \sum_{j \in N} \theta_{j}(x)=\rho_{h}(x)
\end{aligned}
$$

Corollary. The form Φ_{x} is the restriction of Ψ_{h} to V. Moreover

$$
\Psi_{h}\left(V, x_{h}\right)=0
$$

and

$$
\begin{equation*}
W=V \oplus x_{h} F \tag{4}
\end{equation*}
$$

is an orthogonal decomposition with respect to Ψ_{h}.
2.4. Third presentation of Φ_{x}. Let $|M|=n+2$ and let

$$
a \in\left(F^{\times}\right)^{M}
$$

be a M-family of invertible elements in F with

$$
\sum_{i \in M} a_{i}=0
$$

Let $U=F[M]$ be the vector space with basis $e_{i}, i \in M$. Let

$$
\Psi_{a}: U \times U \rightarrow F
$$

be the symmetric bilinear form with

$$
\begin{aligned}
& \Psi_{a}\left(e_{i}, e_{j}\right)=0 \\
& \Psi_{a}\left(e_{i}, e_{i}\right)=a_{i}^{-1}
\end{aligned}
$$

for $i, j \in M, i \neq j$.
The vector

$$
z=\sum_{i \in M} a_{i} e_{i} \in U
$$

is isotropic. Let us denote by $[z] \subset U$ the subspace generated by z. Note that $\Psi_{a}\left(e_{i}, z\right)=1$ for $i \in M$. Hence for $i, j \in M$ one has $e_{i}-e_{j} \in[z]^{\perp}$. Since $z \neq 0$, these elements generate $[z]^{\perp}$.

Now put

$$
\begin{aligned}
W_{a} & =U /[z] \\
V_{a} & =[z]^{\perp} /[z]
\end{aligned}
$$

Further let

$$
\begin{gathered}
\varepsilon: W_{a} \rightarrow F \\
\varepsilon(u+[z]))=\Psi_{a}(u, z)
\end{gathered}
$$

and

$$
A_{a}=\varepsilon^{-1}(1)
$$

Then A_{a} is a n-dimensional affine space with underlying vector space V_{a}. Moreover,

$$
\begin{aligned}
& x: M \rightarrow A_{a} \\
& x_{i}=e_{i}+[z]
\end{aligned}
$$

defines a M-gon x in A_{a}.
Let

$$
\begin{aligned}
\Phi_{a}: V_{a} \times V_{a} & \rightarrow F \\
\Phi_{a}\left(u+[z], u^{\prime}+[z]\right) & =\Psi_{a}\left(u, u^{\prime}\right)
\end{aligned}
$$

be the canonical form associated with Ψ_{a} and the isotropic vector z.
There is a canonical identification

$$
\Lambda^{n} V_{a} \otimes \mathcal{O}_{M} \equiv[z] \otimes U /[z]^{\perp} \otimes \Lambda^{n} V_{a} \otimes \mathcal{O}_{M} \equiv \Lambda^{n+2} U \otimes \mathcal{O}_{M} \equiv F
$$

given by

$$
\bar{\alpha} \otimes(\wedge \sigma) \mapsto z \otimes e_{i} \otimes \bar{\alpha} \otimes(\wedge \sigma) \mapsto\left(z \wedge e_{i} \wedge \alpha\right) \otimes(\wedge \sigma), \quad(\wedge \sigma) \otimes(\wedge \sigma) \mapsto 1
$$

with $\alpha \in \Lambda^{n}\left([z]^{\perp}\right)$ and $\sigma:\{1, \ldots, n+2\} \rightarrow M$ a bijection.
With respect to this identification, one has

$$
\theta_{i}(x)=a_{i}
$$

and

$$
\begin{equation*}
\left(-a_{1} \cdots a_{n+2}\right)^{-1} \Phi_{x} \perp \mathcal{H}=\Psi_{a} \tag{5}
\end{equation*}
$$

where \mathcal{H} is a hyperbolic plane.
It is easy to see that every nondegenerate M-gon x in a n-dimensional affine space appears in this way from some

$$
a \in\left(F^{\times}\right)^{M}
$$

with

$$
\sum_{i \in M} a_{i}=0
$$

Remark 4. For nondegenerate x this gives a very simple way to define Φ_{x}. The first definition of Φ_{x} via a sum over all $(n-1)$-dimensional faces works smoothly for all x and has its own appeal anyway. I don't know an urgent reason to consider the description of Φ_{x} via the form $\Psi_{h}, h \in M$-I used it at first to compute the determinant of Φ_{x}.
Remark 5. Suppose char $F \neq 2$. Then a n-dimensional quadratic form Φ appears as Φ_{x} for some x if and only if

$$
\Phi \perp\langle 1,-1\rangle \simeq-a_{1} \cdots a_{n+2}\left\langle a_{1}, \ldots, a_{n+2}\right\rangle
$$

for some $a_{i} \in F^{\times}$with $\sum_{i=1}^{n+2} a_{i}=0$. From this one sees that every similarity class of a n-dimensional quadratic form appears as the similarity class of the metric of a $(n+2)$-gon.

Remark 6. One may also consider twisted forms of ($n+2$)-gons. The setup would be to consider an etale algebra H of rank $n+2$ and a point x : $\operatorname{Spec} H \rightarrow A$. For nondegenerate x the quadratic form Φ_{x} would be of the form

$$
\Phi_{x} \perp\langle 1,-1\rangle \simeq-N_{H / F}(a) T_{H / F}(\langle a\rangle)
$$

for some $a \in H^{\times}$with $T_{H / F}(a)=0$.
2.5. The determinant of Φ_{x}. Here is the computation:

Lemma 5.

$$
\operatorname{det}\left(\Phi_{x}\right)=\left(-\theta_{M}(x)\right)^{(n-1)} \in\left(\Lambda^{n} V\right)^{\otimes(n+2)(n-1)}
$$

In particular we see that Φ_{x} is nondegenerate if and only if x is nondegenerate.
Proof. Since we have to check a polynomial identity in x, we may assume that x is nondegenerate. Then one may use the description of Φ_{x} in (5). But one may also use the orthogonal decomposition (4) which shows

$$
\operatorname{det}\left(\Psi_{h}\right)=\operatorname{det}\left(\Phi_{x}\right) \Psi_{h}\left(x_{h}, x_{h}\right)
$$

One has

$$
\operatorname{det}\left(\Psi_{h}\right)=\theta_{h}(x)^{-2} \prod_{i \in N}\left(-\rho_{i}(x)\right)=\left(-\theta_{M}(x)\right)^{n-1} \rho_{h}(x)
$$

and we are done by $\Psi_{h}\left(x_{h}, x_{h}\right)=\rho_{h}(x)($ cf. Lemma 4).
2.6. The dual $(n+2)$-gon. We assume that x is nondegenerate. Fix $a \in A$ and a basis element λ for $\left(\Lambda^{n} V \otimes \mathcal{O}_{M}\right)^{\otimes(n+1)}$. Then we get a M-gon

$$
\begin{gathered}
y: M \rightarrow V^{\vee} \\
y_{i}=\widehat{\Phi}_{x}\left(x_{i}-a\right) / \lambda
\end{gathered}
$$

in the dual space V^{\vee}. We call it a dual M-gon of x. Dual M-gons of x are determined by x up to dilations (translations and scalar multiplications). They are characterized by

$$
\left\langle y_{i}-y_{j}, x_{k}-x_{\ell}\right\rangle=0
$$

where $i, j, k, \ell \in M$ are distinct elements and where \langle,$\rangle denotes the natural pairing$ $V^{\vee} \times V \rightarrow F$.

Dual M-gons determine the metric up to multiplication by a scalar.
2.7. The involution of a $(n+2)$-gon.

Proposition 3. Let $n=\operatorname{dim} A$, let M be a set with $|M|=n+2$ and let $x \in A^{M}$ be a M-gon in A. Suppose that x is nondegenerate. Then there exists a unique involution τ_{x} of orthogonal type on $\operatorname{End}(V)$ such that

$$
\left.\tau_{x}\left(\operatorname{Hom}\left(V, V_{I}(x)\right)\right)=\operatorname{Hom}\left(V / V_{M \backslash I}(x), V\right)\right)
$$

for each subset $I \subset M$.
It is clear that $\tau_{x}=\tau_{y}$ if x, y differ only by a dilation of A.
Proof. τ_{x} is the involution associated with the symmetric bilinear form Φ_{x}, i. e.,

$$
\tau_{x}\left(\Phi_{x}(v) \otimes v^{\prime}\right)=\Phi_{x}\left(v^{\prime}\right) \otimes v
$$

Remark 7. Suppose char $F=2$, that n is even and that $\theta_{i}(x)=\theta_{j}(x) \neq 0$ for all $i, j \in M$. Then

$$
\sum_{i \in M} x_{i}=0
$$

One finds that there is a unique alternating bilinear form $\Omega: V \times V \rightarrow F$ with

$$
\Omega\left(x_{i}-x_{j}, x_{i}-x_{k}\right)=1
$$

for distinct elements $i, j, k \in M$.
This is the only case where an involution τ on $\operatorname{End}(V)$ with

$$
\left.\tau_{x}\left(\operatorname{Hom}\left(V, V_{I}(x)\right)\right)=\operatorname{Hom}\left(V / V_{M \backslash I}(x), V\right)\right)
$$

for each subset $I \subset M$ is possibly symplectic.

3. The case of a plane quadrangle

We now look at the case $\operatorname{dim} A=2$ and $|M|=4$.
In this case $V=V^{\vee} \otimes \Lambda^{2} V$ and the duality $\widehat{\Phi}_{x}$ becomes a map

$$
\widehat{\Phi}: V \rightarrow V^{\vee} \otimes\left(\Lambda^{2} V \otimes \mathcal{O}_{M}\right)^{\otimes 3}=V \otimes\left(\Lambda^{2} V\right)^{\otimes 2} \otimes \mathcal{O}_{M}
$$

3.1. On the lines of a plane quadrangle. We assume that x is nondegenerate. Then $\widehat{\Phi}$ is an isomorphism and induces an involution

$$
\sigma_{x}: \mathbf{P}(V) \rightarrow \mathbf{P}(V)
$$

on the projective space of lines in V. It has the following interpretation: Let $M=\{i, j, k, h\}$. Then

$$
\sigma_{x}\left(\left[x_{i}-x_{j}\right]\right)=\left[x_{k}-x_{h}\right]
$$

One may phrase this by saying that "the 6 lines of a plane quadrangle stand in involution". The converse is also true: If 6 points in \mathbf{P}^{1} stand in involution, they are given by the lines of a quadrangle. (Note: An involution of \mathbf{P}^{1} is determined by two pairs of points.)
3.2. On the dual quadrangle. Since $V=V^{\vee} \otimes \Lambda^{2} V$ we may also speak about dual M-gons in V. They can be described as follows:

Given four general points $x_{1}, x_{2}, x_{3}, x_{4}$ in a 2-dimensional affine space, there exists another sequence of four points $y_{1}, y_{2}, y_{3}, y_{4}$ such that the line $x_{i}-x_{j}$ is parallel to the line $y_{k}-y_{h}$ for any permutation $i j k h$ of 1234 . The y-tuple is uniquely determined by the x-tuple up to translation and scalar multiplication.
3.3. Selfdual quadrangles? It turns out that a nondegenerate quadrangle is never dual to itself (in characteristic different from 2).

What about nondegenerate quadrangles which become dual to itself after a permutation? It turns out that then there exists one side $x_{i}-x_{j}$ which is parallel to its opposite side $x_{k}-x_{h}$ and the permutation is $(i j)(k h)$. More specifically, let $A=V$, let $v, w \in V$ be linearly independent and let $c \in F^{\times}$. Then the quadrangle $(0, v, w, w+c v)$ is dual to $(v, 0, w+c v, w)$.
3.4. The determinant. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be a nondegenerate plane quadrangle and let $a_{i} \in F^{\times}$with

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=0
$$

Then

$$
\operatorname{det}\left(\Phi_{x}\right)=-a_{1} a_{2} a_{3} a_{4}
$$

up to multiplication by a square.
Consider the case of a parallelogram. (This amounts to $a_{1}=a_{2}=-a_{3}=-a_{4}$.) In this case the metric is hyperbolic; the two isotropic lines are given by the pairs of parallel sides.

Suppose that $F=\mathbf{R}$ (real numbers). The Φ_{x} is definite if and only if one of the points x_{i} lies inside the triangle formed by the other points x_{j}, x_{k}, x_{ℓ}.
3.5. Orthocentric quadrangles. Let us consider the case $F=\mathbf{R}$. Let x be a nondegenerate plane quadrangle and suppose that the metric Φ_{x} is definite. Then we have an Euclidean structure on A. With respect to this Euclidean structure, the quadrangle x is orthocentric, i. e., each point x_{i} is the orthocenter of the opposite triangle x_{j}, x_{k}, x_{ℓ}. A dual quadrangle is obtained from x by a rotation of 90°.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

E-mail address: rost@mathematik.uni-bielefeld.de
URL: http://www.mathematik.uni-bielefeld.de/~rost

