THE METRIC OF A (n+2)-GON IN AFFINE *n*-SPACE

MARKUS ROST

Contents

Summary	1
1. Preliminaries	2
1.1. Affine spaces	2
1.2. Symmetric bilinear forms	2
1.3. The orientation module of a finite set	2
1.4. M -gons	3
1.5. $(n+2)$ -gons	3
2. The main statements	4
2.1. The (dual) metric of a $(n+2)$ -gon	4
2.2. The metric of a $(n+2)$ -gon	5
2.3. Second presentation of Φ_x	7
2.4. Third presentation of Φ_x	8
2.5. The determinant of Φ_x	10
2.6. The dual $(n+2)$ -gon	10
2.7. The involution of a $(n+2)$ -gon	10
3. The case of a plane quadrangle	11
3.1. On the lines of a plane quadrangle	11
3.2. On the dual quadrangle	11
3.3. Selfdual quadrangles?	11
3.4. The determinant	11
3.5. Orthocentric quadrangles	12

SUMMARY

For n + 2 points in affine *n*-space in general position there is a canonical metric (unique up to a similarity factor) such that complementary faces of the (n + 2)-gon are orthogonal.

We describe this metric in terms of a sum over all (n-1)-dimensional faces (see Proposition 2) and discuss some of its properties.

Date: August 25, 2004.

1. Preliminaries

1.1. Affine spaces. An affine space over a field F consists of a set A, a vector space V over F and an operation

$$A \times V \to A$$
$$(a, v) \mapsto a + v$$

which makes A into a principal homogeneous V-space.

By a *dilation* of A we understand an automorphism of A whose linear part (in GL(V)) is a scalar multiple of the identity.

Affine spaces can be presented as follows. Let W be a vector space over ${\cal F}$ and let

$$\varepsilon \colon W \to F$$

be an epimorphism. Then $A = \varepsilon^{-1}(1)$ is an affine space with underlying vector space $V = \varepsilon^{-1}(0)$. The pair (W, ε) is uniquely determined by (A, V, +) up to unique isomorphism.

There are natural exact sequences

$$0 \to \Lambda^{i+1} V \xrightarrow{\iota} \Lambda^{i+1} W \xrightarrow{\varepsilon_i} \Lambda^i V \to 0$$

where ε_i is characterized by

$$\varepsilon_i(a \wedge \omega) = \omega$$

with $a \in A$ and $\omega \in \Lambda^i V$.

1.2. Symmetric bilinear forms. Let V be a finite-dimensional vector space and let L be a 1-dimensional vector space. We consider symmetric bilinear maps

$$\Phi \colon V \times V \to L$$

For dual vector spaces we use the notation $V^{\vee} = \operatorname{Hom}(V, F)$. The map

$$\begin{split} \widehat{\Phi} \colon V \to \operatorname{Hom}(V,L) &= V^{\vee} \otimes L \\ \widehat{\Phi}(v)(w) &= \Phi(v,w) \end{split}$$

is called the *duality* associated to Φ .

Let $n = \dim V$. The *determinant* of Φ is defined as

$$\det(\Phi) = \Lambda^n \widehat{\Phi} \in \operatorname{Hom}(\Lambda^n V, \Lambda^n (V^{\vee} \otimes L)) = (\Lambda^n V)^{\otimes -2} \otimes L^{\otimes n}$$

1.3. The orientation module of a finite set. Let M be a finite set. The *orientation module* of M is defined as

$$\mathcal{O}_M = \Lambda^{|M|} \mathbf{Z}[M]$$

where $\mathbf{Z}[M]$ is the free abelian group on M. The group \mathcal{O}_M is free of rank 1 and the natural action of the group of permutations of M on \mathcal{O}_M is given by the signum. Clearly $\mathcal{O}_M \otimes \mathcal{O}_M \equiv \mathbf{Z}$.

1.4. *M*-gons. Let A be an affine space (with notations $V, \varepsilon: W \to F$ as above) and let M be a finite set. By an *M*-gon in A we understand a map

$$x \colon M \to A$$
$$i \mapsto x_i$$

By a r-gon we understand a M-gon for some set M with |M| = r, usually $M = \{1, \ldots, r\}$.

For $v \in V$ we denote by x + v the translated *M*-gon, defined by

$$(x+v)_i = x_i + v$$

with $i \in M$.

For a $M\text{-gon }x\in A^M$ and a subset $I\subset M$ we denote by

$$A_I(x) \subset A$$

the affine span of the points x_i with $i \in I$. Its underlying vector space

$$V_I(x) \subset V$$

is generated by the elements $x_i - x_j$ with $i, j \in I$.

We denote by

$$W^M \to \Lambda^M W$$

$$x\mapsto\wedge\,x$$

be the universal alternating map. Note that

$$\Lambda^M W \equiv \Lambda^{|M|} W \otimes \mathcal{O}_M$$

1.5. (n+2)-gons. Let n be an integer, let A be an affine space with dim A = n, let M be a set with |M| = n + 2 and let $x \in A^M$ be a M-gon in A. For $i \in M$ we define the element

$$\theta_i(x) \in \Lambda^n V \otimes \mathcal{O}_M$$

by

$$\theta_i(x) = \varepsilon_n \left(x_{\sigma(1)} \wedge \dots \wedge x_{\sigma(n+1)} \right) \otimes \left(i \wedge \sigma(1) \wedge \dots \wedge \sigma(n+1) \right)$$

where

$$\sigma\colon \{1,\ldots,n+1\}\to M\setminus\{i\}$$

is any bijection.

The element $\theta_i(x)$ has the standard interpretation of a volume element for the *i*-th face of x. It is invariant under translations:

$$\theta_i(x+v) = \theta_i(x)$$

This can be easily deduced for instance from

$$x_1 \wedge \cdots \wedge x_r = x_1 \wedge (x_2 - x_1) \wedge \cdots \wedge (x_r - x_1)$$

with $x_i \in A$.

We say that x is nondegenerate if $\theta_i(x) \neq 0$ for all $i \in M$.

Lemma 1. Let dim A = n, let M be a set with |M| = n + 2 and let $x \in A^M$ be a M-gon in A. Then

$$\sum_{i \in M} \theta_i(x) x_i = 0$$

in $\Lambda^n V \otimes \mathcal{O}_M \otimes W$.

In particular, by applying ε , one gets

$$\sum_{i \in M} \theta_i(x) = 0$$

in $\Lambda^n V \otimes \mathcal{O}_M$.

Proof. Basic multilinear algebra: For $x_i \in W$ the expression

$$\sum_{i=1}^{n+2} (-1)^i (x_1 \wedge \cdots \widehat{x_i} \cdots \wedge x_{n+2}) x_i$$

is alternating in the x_i . Since $n+2 > \dim W$, it vanishes.

For a subset $I \subset M$ we write

$$\theta_I(x) = \prod_{i \in I} \theta_i(x) \in \left(\Lambda^n V \otimes \mathcal{O}_M\right)^{\otimes |I|}$$

Moreover for $i \in M$ we write

 $\rho_i(x) = \theta_{M \setminus \{i\}}(x)$

2. The main statements

Let $n = \dim A$, let M be a set with |M| = n + 2 and let $x \in A^M$ be a M-gon in A.

Notations $V, \varepsilon \colon W \to F$ are as in the previous section.

2.1. The (dual) metric of a (n + 2)-gon. This subsection contains a simple definition of the metric. I found it only after typing the other parts of the text, which turned out to be much more complicated than necessary.

Let

$$L = \Lambda^n V \otimes \mathcal{O}_M$$

Let $a, b \in A$. One considers the tensor

$$\Omega_x = \sum_{i \in M} (x_i - a) \otimes (x_i - b) \otimes \theta_i(x) \in V \otimes V \otimes L$$

Proposition 1. (1) The element Ω_x does not depend on the choice of $a, b \in A$.

(2) The element Ω_x is invariant under switch involution on $V \otimes V$.

(3) Let $I \subset M$ and let $f \in V^{\vee}$. If $f(V_I(x)) = 0$, then

$$(f \otimes \mathrm{id}_V \otimes \mathrm{id}_L)(\Omega_x) \in V_{M \setminus I}(x) \otimes L$$

Proof. (1) follows from $\sum_i \theta_i(x)x_i = 0$ (cf. Lemma 1). (2) is obvious. As for (3), we may assume $I \neq \emptyset$, M. Choose $a \in A_I(x)$ and $b \in A_{M \setminus I}(x)$. Then

$$(f \otimes \mathrm{id}_V \otimes \mathrm{id}_L)(\Omega_x) = \sum_{i \in M \setminus I} f(x_i - a)(x_i - b) \otimes \theta_i(x)$$

The tensor Ω_x defines a symmetric duality

$$\widehat{\Omega}_x \colon V^{\vee} \to V \otimes L$$

Consider its (n-1)-fold exterior power

$$\Lambda^{n-1}\widehat{\Omega}_x \colon \Lambda^{n-1}V^{\vee} \to \Lambda^{n-1}V \otimes L^{\otimes (n-1)}$$

 $\mathbf{4}$

Since $\Lambda^{n-1}V = V^{\vee} \otimes \Lambda^n V$, it defines a symmetric bilinear form

$$\Phi_r \colon V \times V \to L^{\otimes (n+1)}$$

We call the form Φ_x the *metric of* x.

In the following we give some other descriptions.

2.2. The metric of a (n+2)-gon. We consider the following symmetric bilinear map on $\Lambda^2 W$ with values in an appropriate 1-dimensional vector space:

$$\varphi_x \colon \Lambda^2 W \times \Lambda^2 W \to \left(\Lambda^n V \otimes \mathcal{O}_M\right)^{\otimes (n+1)}$$
$$\varphi_x(\alpha, \beta) = \sum_{\substack{I \subset M \\ |I| = n-1}} \theta_I(x) \varepsilon_n \left(\alpha \wedge (\wedge x|_I)\right) \varepsilon_n \left(\beta \wedge (\wedge x|_I)\right)$$

This is to be read as follows. The product $\alpha \wedge (\wedge x|_I)$ is an element of

$$\Lambda^2 W \wedge \Lambda^I W = \Lambda^2 W \wedge \Lambda^{|I|} W \otimes \mathcal{O}_I = \Lambda^{n+1} W \otimes \mathcal{O}_I$$

Thus $\varepsilon_n(\alpha \wedge (\wedge x|_I))$ is an element of $\Lambda^n V \otimes \mathcal{O}_I$ and since $\mathcal{O}_I \otimes \mathcal{O}_I \equiv \mathbf{Z}$ we have

$$\varepsilon_n (\alpha \wedge (\wedge x|_I)) \varepsilon_n (\beta \wedge (\wedge x|_I)) \in (\Lambda^n V)^{\otimes 2} = (\Lambda^n V \otimes \mathcal{O}_M)^{\otimes 2}$$

Lemma 2. If $\alpha \in \Lambda^2 V$ or $\beta \in \Lambda^2 V$, then $\varphi_x(\alpha, \beta) = 0$.

 $\begin{array}{l} \textit{Proof. Suppose } \alpha \in \Lambda^2 V. \text{ Fix } a \in A. \\ \text{ For } z \in A^{n-1} \text{ one has } \end{array}$

$$\varepsilon_n(\alpha \wedge (\wedge z)) = \varepsilon_n(\alpha \wedge z_1 \wedge \dots \wedge z_{n-1})$$

= $\varepsilon_n(\alpha \wedge z_1 \wedge (z_2 - z_1) \wedge \dots \wedge (z_{n-1} - z_1))$
= $\varepsilon_n(\alpha \wedge a \wedge (z_2 - z_1) \wedge \dots \wedge (z_{n-1} - z_1))$
= $\sum_{i=1}^{n-1} (-1)^{i+1} \varepsilon_n(\alpha \wedge a \wedge z_1 \wedge \dots \hat{z_i} \dots \wedge z_{n-1})$

Moreover

$$\varepsilon_n(\beta \wedge (\wedge z)) = (-1)^{i+1} \varepsilon_n(\beta \wedge z_i \wedge z_1 \wedge \cdots \hat{z_i} \cdots \wedge z_{n-1})$$

Hence

$$\varepsilon_n \big(\alpha \wedge (\wedge z) \big) \varepsilon_n \big(\beta \wedge (\wedge z) \big) =$$
$$\sum_{i=1}^{n-1} \varepsilon_n \big(\alpha \wedge a \wedge z_1 \wedge \cdots \widehat{z_i} \cdots \wedge z_{n-1} \big) \varepsilon_n \big(\beta \wedge z_i \wedge z_1 \wedge \cdots \widehat{z_i} \cdots \wedge z_{n-1} \big)$$

This shows that

$$\varepsilon_n \left(\alpha \wedge (\wedge x|_I) \right) \varepsilon_n \left(\beta \wedge (\wedge x|_I) \right) = \sum_{\substack{i \in I \\ K = I \setminus \{i\}}} \varepsilon_n \left(\alpha \wedge a \wedge (\wedge x|_K) \right) \varepsilon_n \left(\beta \wedge x_i \wedge (\wedge x|_K) \right)$$

MARKUS ROST

We get

$$\varphi_x(\alpha,\beta) = \sum_{\substack{I \subset M \\ |I|=n-1}} \theta_I(x)\varepsilon_n (\alpha \land (\land x|_I))\varepsilon_n (\beta \land (\land x|_I))$$
$$= \sum_{\substack{K \subset M \\ |K|=n-2}} \sum_{i \in M \backslash K} \theta_I(x)\varepsilon_n (\alpha \land a \land (\land x|_K))\varepsilon_n (\beta \land x_i \land (\land x|_K))$$

For $i \in K$ one has $x_i \wedge (\wedge x|_K) = 0$. Hence we may extend the range of i to all of M and get

$$\varphi_x(\alpha,\beta) = \sum_{\substack{K \subset M \\ |K|=n-2}} \sum_{i \in M} \theta_K(x) \theta_i(x) \varepsilon_n \big(\alpha \wedge a \wedge (\wedge x|_K) \big) \varepsilon_n \big(\beta \wedge x_i \wedge (\wedge x|_K) \big)$$

This vanishes because of $\sum_{i} \theta_i(x) x_i = 0$ (cf. Lemma 1).

By Lemma 2, the form φ_x is essentially a form on $\Lambda^2 W / \Lambda^2 V \simeq V$. We describe this as follows:

Proposition 2. Let $a, b \in A$. The form

$$\Phi_{x} \colon V \times V \to \left(\Lambda^{n} V \otimes \mathcal{O}_{M}\right)^{\otimes (n+1)}$$
$$\Phi_{x}(v,w) = \sum_{\substack{I \subset M \\ |I|=n-1}} \theta_{I}(x) \varepsilon_{n} \left(v \wedge a \wedge (\wedge x|_{I})\right) \varepsilon_{n} \left(w \wedge b \wedge (\wedge x|_{I})\right)$$

does not depend on the choices of a and b.

We call the form Φ_x the *metric of* x.

Lemma 3. Let $i, j, k, \ell \in M$ be distinct elements. Then

(1)
$$\Phi_x(x_i - x_j, x_k - x_\ell) = 0$$

(2)
$$\Phi_x(x_i - x_j, x_i - x_k) = -\rho_i(x)$$

(3)
$$\Phi_x(x_i - x_j, x_i - x_j) = -\rho_i(x) - \rho_j(x)$$

Proof. It is easy to see that (1) and (3) follow from (2). As for (2) we choose $a = b = x_i$ in the definition of Φ_x . Then

$$\Phi_x(x_i - x_j, x_i - x_k) = \sum_{\substack{I \subset M \\ |I| = n-1}} \theta_I(x) \varepsilon_n \left(-x_j \wedge x_i \wedge (\wedge x|_I) \right) \varepsilon_n \left(-x_k \wedge x_i \wedge (\wedge x|_I) \right)$$

Every summand vanishes except for $I = M \setminus \{i, j, k\}$ and for this term the last two factors amount to $-\theta_j(x)\theta_k(x)$. This shows (2).

Remark 1. One may check (3) also as follows. We have with $a = b = x_j$

$$\Phi_x(x_i - x_j, x_i - x_j) = \sum_{\substack{I \subset M \\ |I| = n-1}} \theta_I(x) \varepsilon_n \left(x_i \wedge x_j \wedge (\wedge x|I) \right)^2$$

 $\mathbf{6}$

Here every summand vanishes except for $I = M \setminus \{i, j, h\}$ with $h \neq i, j$. Hence

$$\Phi_x(x_i - x_j, x_i - x_j) = \sum_{\substack{h \in M \setminus \{i, j\}\\I = M \setminus \{i, j, h\}}} \theta_I(x) \varepsilon_n \left(x_i \wedge x_j \wedge (\wedge x|_I)\right)^2$$
$$= \sum_{\substack{h \in M \setminus \{i, j\}\\I = M \setminus \{i, j, h\}}} \theta_I(x) \theta_h(x)^2$$
$$= \theta_{M \setminus \{i, j\}}(x) \sum_{\substack{h \in M \setminus \{i, j\}\\h \in M \setminus \{i, j\}}} \theta_h(x)$$
$$= \theta_{M \setminus \{i, j\}}(x) (-\theta_i(x) - \theta_j(x))$$

Here we have used $\sum_i \theta_i(x) = 0$ (cf. Lemma 1). Claim (3) is now immediate.

Remark 2. Condition (1) in Lemma 3 is equivalent to

$$V_I(x) \perp_{\Phi_x} V_{M \setminus I}(x)$$

for all subsets $I \subset M$.

Suppose x is nondegenerate. Then

$$V = V_I(x) + V_{M \setminus I}(x)$$

for all subsets $I \subset M$. Moreover the form Φ_x is determined by (1) in Lemma 3 up to multiplication by a scalar.

Remark 3. It is clear (for nondegenerate x) that if two lines of the M-gon are parallel, then its metric is isotropic.

2.3. Second presentation of Φ_x . Fix $h \in M$ and let $N = M \setminus \{h\}$. Then |N| = n + 1. We assume that the family $(x_i)_{i \in N}$ is a basis for W.

Then there exists a symmetric bilinear map

$$\Psi_h \colon W \times W \to \left(\Lambda^n V \otimes \mathcal{O}_M\right)^{\otimes (n+1)}$$

with

$$\Psi_h(x_i, x_j) = 0$$

$$\Psi_h(x_i, x_i) = -\rho_i(x)$$

for $i, j \in N, i \neq j$.

Lemma 4. One has

$$\Psi_h(x_i, x_h) = \rho_h(x)$$

for $i \in M$.

Proof. Indeed,

$$\Psi_h(x_i, x_h) = \Psi_h\left(x_i, -\theta_h(x)^{-1} \sum_{j \in N} \theta_j(x) x_j\right)$$
$$= -\theta_h(x)^{-1} \theta_i(x) \left(-\rho_i(x)\right) = \rho_h(x)$$

and

$$\Psi_h(x_h, x_h) = \Psi_h(x_h, -\theta_h(x)^{-1} \sum_{j \in N} \theta_j(x) x_j)$$
$$= -\theta_h(x)^{-1} \rho_h(x) \sum_{j \in N} \theta_j(x) = \rho_h(x)$$

Corollary. The form Φ_x is the restriction of Ψ_h to V. Moreover

 $\Psi_h(V, x_h) = 0$

and

(4)
$$W = V \oplus x_h F$$

is an orthogonal decomposition with respect to Ψ_h .

2.4. Third presentation of Φ_x . Let |M| = n + 2 and let

$$a \in (F^{\times})^M$$

be a M-family of invertible elements in F with

$$\sum_{i \in M} a_i = 0$$

Let U = F[M] be the vector space with basis $e_i, i \in M$. Let

$$\Psi_a \colon U \times U \to F$$

be the symmetric bilinear form with

$$\Psi_a(e_i, e_j) = 0$$
$$\Psi_a(e_i, e_i) = a_i^{-1}$$

for $i, j \in M, i \neq j$. The vector

$$z = \sum_{i \in M} a_i e_i \in U$$

is isotropic. Let us denote by $[z] \subset U$ the subspace generated by z. Note that $\Psi_a(e_i, z) = 1$ for $i \in M$. Hence for $i, j \in M$ one has $e_i - e_j \in [z]^{\perp}$. Since $z \neq 0$, these elements generate $[z]^{\perp}$.

Now put

$$W_a = U/[z]$$
$$V_a = [z]^{\perp}/[z]$$

Further let

$$\varepsilon \colon W_a \to F$$
$$\varepsilon (u + [z])) = \Psi_a(u, z)$$

and

$$A_a = \varepsilon^{-1}(1)$$

Then A_a is a *n*-dimensional affine space with underlying vector space V_a . Moreover,

$$\begin{aligned} x \colon M \to A_a \\ x_i &= e_i + [z] \end{aligned}$$

defines a M-gon x in A_a .

Let

$$\Phi_a \colon V_a \times V_a \to F$$
$$\Phi_a(u + [z], u' + [z]) = \Psi_a(u, u')$$

be the canonical form associated with Ψ_a and the isotropic vector z.

There is a canonical identification

$$\Lambda^n V_a \otimes \mathcal{O}_M \equiv [z] \otimes U/[z]^{\perp} \otimes \Lambda^n V_a \otimes \mathcal{O}_M \equiv \Lambda^{n+2} U \otimes \mathcal{O}_M \equiv F$$

given by

$$\overline{\alpha} \otimes (\wedge \sigma) \mapsto z \otimes e_i \otimes \overline{\alpha} \otimes (\wedge \sigma) \mapsto (z \wedge e_i \wedge \alpha) \otimes (\wedge \sigma), \quad (\wedge \sigma) \otimes (\wedge \sigma) \mapsto 1$$

with $\alpha \in \Lambda^n([z]^{\perp})$ and $\sigma \colon \{1, \ldots, n+2\} \to M$ a bijection.

With respect to this identification, one has

and

(5)
$$(-a_1 \cdots a_{n+2})^{-1} \Phi_x \perp \mathcal{H} = \Psi_a$$

where \mathcal{H} is a hyperbolic plane.

It is easy to see that every nondegenerate M-gon x in a n-dimensional affine space appears in this way from some

 $\theta_i(x) = a_i$

$$a \in (F^{\times})^M$$

with

$$\sum_{i \in M} a_i = 0$$

Remark 4. For nondegenerate x this gives a very simple way to define Φ_x . The first definition of Φ_x via a sum over all (n-1)-dimensional faces works smoothly for all x and has its own appeal anyway. I don't know an urgent reason to consider the description of Φ_x via the form Ψ_h , $h \in M$ —I used it at first to compute the determinant of Φ_x .

Remark 5. Suppose char $F \neq 2$. Then a *n*-dimensional quadratic form Φ appears as Φ_x for some x if and only if

$$\Phi \perp \langle 1, -1 \rangle \simeq -a_1 \cdots a_{n+2} \langle a_1, \dots, a_{n+2} \rangle$$

for some $a_i \in F^{\times}$ with $\sum_{i=1}^{n+2} a_i = 0$. From this one sees that every similarity class of a *n*-dimensional quadratic form appears as the similarity class of the metric of a (n+2)-gon.

Remark 6. One may also consider twisted forms of (n+2)-gons. The setup would be to consider an etale algebra H of rank n+2 and a point x: Spec $H \to A$. For nondegenerate x the quadratic form Φ_x would be of the form

$$\Phi_x \perp \langle 1, -1 \rangle \simeq -N_{H/F}(a)T_{H/F}(\langle a \rangle)$$

for some $a \in H^{\times}$ with $T_{H/F}(a) = 0$.

2.5. The determinant of Φ_x . Here is the computation:

Lemma 5.

$$\det(\Phi_x) = \left(-\theta_M(x)\right)^{(n-1)} \in (\Lambda^n V)^{\otimes (n+2)(n-1)}$$

In particular we see that Φ_x is nondegenerate if and only if x is nondegenerate.

Proof. Since we have to check a polynomial identity in x, we may assume that x is nondegenerate. Then one may use the description of Φ_x in (5). But one may also use the orthogonal decomposition (4) which shows

$$\det(\Psi_h) = \det(\Phi_x)\Psi_h(x_h, x_h)$$

One has

$$\det(\Psi_h) = \theta_h(x)^{-2} \prod_{i \in N} \left(-\rho_i(x)\right) = \left(-\theta_M(x)\right)^{n-1} \rho_h(x)$$

and we are done by $\Psi_h(x_h, x_h) = \rho_h(x)$ (cf. Lemma 4).

2.6. The dual (n+2)-gon. We assume that x is nondegenerate. Fix $a \in A$ and a basis element λ for $(\Lambda^n V \otimes \mathcal{O}_M)^{\otimes (n+1)}$. Then we get a M-gon

$$y \colon M \to V^{\vee}$$
$$y_i = \widehat{\Phi}_x(x_i - a) / \lambda$$

in the dual space V^{\vee} . We call it a *dual M*-gon of *x*. Dual *M*-gons of *x* are determined by *x* up to dilations (translations and scalar multiplications). They are characterized by

$$\langle y_i - y_j, x_k - x_\ell \rangle = 0$$

where $i, j, k, \ell \in M$ are distinct elements and where \langle , \rangle denotes the natural pairing $V^{\vee} \times V \to F$.

Dual M-gons determine the metric up to multiplication by a scalar.

2.7. The involution of a (n+2)-gon.

Proposition 3. Let $n = \dim A$, let M be a set with |M| = n + 2 and let $x \in A^M$ be a M-gon in A. Suppose that x is nondegenerate. Then there exists a unique involution τ_x of orthogonal type on $\operatorname{End}(V)$ such that

$$\tau_x \left(\operatorname{Hom}(V, V_I(x)) \right) = \operatorname{Hom}(V/V_{M \setminus I}(x), V) \right)$$

for each subset $I \subset M$.

It is clear that $\tau_x = \tau_y$ if x, y differ only by a dilation of A.

Proof. τ_x is the involution associated with the symmetric bilinear form Φ_x , i. e.,

$$\tau_x(\Phi_x(v)\otimes v')=\Phi_x(v')\otimes v$$

Remark 7. Suppose char F = 2, that n is even and that $\theta_i(x) = \theta_j(x) \neq 0$ for all $i, j \in M$. Then

$$\sum_{i \in M} x_i = 0$$

One finds that there is a unique *alternating* bilinear form $\Omega: V \times V \to F$ with

$$\Omega(x_i - x_j, x_i - x_k) = 1$$

for distinct elements $i, j, k \in M$.

This is the only case where an involution τ on End(V) with

$$\tau_x (\operatorname{Hom}(V, V_I(x))) = \operatorname{Hom}(V/V_{M \setminus I}(x), V))$$

for each subset $I \subset M$ is possibly symplectic.

3. The case of a plane quadrangle

We now look at the case dim A = 2 and |M| = 4. In this case $V = V^{\vee} \otimes \Lambda^2 V$ and the duality $\widehat{\Phi}_x$ becomes a map

$$\widehat{\Phi} \colon V \to V^{\vee} \otimes (\Lambda^2 V \otimes \mathcal{O}_M)^{\otimes 3} = V \otimes (\Lambda^2 V)^{\otimes 2} \otimes \mathcal{O}_M$$

3.1. On the lines of a plane quadrangle. We assume that x is nondegenerate. Then $\widehat{\Phi}$ is an isomorphism and induces an involution

$$\sigma_x \colon \mathbf{P}(V) \to \mathbf{P}(V)$$

on the projective space of lines in V. It has the following interpretation: Let $M = \{i, j, k, h\}$. Then

$$\sigma_x([x_i - x_j]) = [x_k - x_h]$$

One may phrase this by saying that "the 6 lines of a plane quadrangle stand in involution". The converse is also true: If 6 points in \mathbf{P}^1 stand in involution, they are given by the lines of a quadrangle. (Note: An involution of \mathbf{P}^1 is determined by two pairs of points.)

3.2. On the dual quadrangle. Since $V = V^{\vee} \otimes \Lambda^2 V$ we may also speak about dual *M*-gons in *V*. They can be described as follows:

Given four general points x_1 , x_2 , x_3 , x_4 in a 2-dimensional affine space, there exists another sequence of four points y_1 , y_2 , y_3 , y_4 such that the line $x_i - x_j$ is parallel to the line $y_k - y_h$ for any permutation ijkh of 1234. The y-tuple is uniquely determined by the x-tuple up to translation and scalar multiplication.

3.3. Selfdual quadrangles? It turns out that a nondegenerate quadrangle is never dual to itself (in characteristic different from 2).

What about nondegenerate quadrangles which become dual to itself after a permutation? It turns out that then there exists one side $x_i - x_j$ which is parallel to its opposite side $x_k - x_h$ and the permutation is (ij)(kh). More specifically, let A = V, let $v, w \in V$ be linearly independent and let $c \in F^{\times}$. Then the quadrangle (0, v, w, w + cv) is dual to (v, 0, w + cv, w).

3.4. The determinant. Let x_1, x_2, x_3, x_4 be a nondegenerate plane quadrangle and let $a_i \in F^{\times}$ with

$$a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 0$$

Then

$$\det(\Phi_x) = -a_1 a_2 a_3 a_4$$

up to multiplication by a square.

Consider the case of a parallelogram. (This amounts to $a_1 = a_2 = -a_3 = -a_4$.) In this case the metric is hyperbolic; the two isotropic lines are given by the pairs of parallel sides.

Suppose that $F = \mathbf{R}$ (real numbers). The Φ_x is definite if and only if one of the points x_i lies inside the triangle formed by the other points x_i , x_k , x_ℓ .

MARKUS ROST

3.5. Orthocentric quadrangles. Let us consider the case $F = \mathbf{R}$. Let x be a nondegenerate plane quadrangle and suppose that the metric Φ_x is definite. Then we have an Euclidean structure on A. With respect to this Euclidean structure, the quadrangle x is orthocentric, i. e., each point x_i is the orthocenter of the opposite triangle x_j , x_k , x_ℓ . A dual quadrangle is obtained from x by a rotation of 90°.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

E-mail address: rost@mathematik.uni-bielefeld.de *URL*: http://www.mathematik.uni-bielefeld.de/~rost